JPH06272541A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH06272541A
JPH06272541A JP5060038A JP6003893A JPH06272541A JP H06272541 A JPH06272541 A JP H06272541A JP 5060038 A JP5060038 A JP 5060038A JP 6003893 A JP6003893 A JP 6003893A JP H06272541 A JPH06272541 A JP H06272541A
Authority
JP
Japan
Prior art keywords
absorbent
exhaust
particulate filter
exhaust gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5060038A
Other languages
Japanese (ja)
Other versions
JP2727906B2 (en
Inventor
Shinya Hirota
信也 広田
Yasushi Araki
康 荒木
Kiyoshi Obata
喜代志 小端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5060038A priority Critical patent/JP2727906B2/en
Publication of JPH06272541A publication Critical patent/JPH06272541A/en
Application granted granted Critical
Publication of JP2727906B2 publication Critical patent/JP2727906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To simply perform operation of detoxication of an NOX absorbent caused by SOX. CONSTITUTION:A particulate filter 10 is disposed in an exhaust path 6 of a diesel engine body 2 and constituted to carry an NOX absorbent. After particulates collected in the particulate filter are burnt, a throttle valve 8 is closed and a reducing agent is supplied from a reducing agent supply device 12 to the particulate filter. Since the NOX absorbent is heated by heat generated in the burning of the particulates to a high temperature, the NOX absorbent is placed under the high temperature and rich atmosphere to rapidly dissolve damages poisened by SOX.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関し、詳細にはディーゼルエンジンの排気中に含まれ
るNOX 成分を効果的に除去可能な排気浄化装置に関す
る。
Relates to an exhaust purifying apparatus of the present invention is an internal combustion engine BACKGROUND OF THE relates effectively removable exhaust purification apparatus NO X components contained in the exhaust of diesel engines in particular.

【0002】[0002]

【従来の技術】特開昭62−106826号公報には、
排気ガスの空燃比がリーンのときにはNOX を吸収し排
気ガス中の酸素濃度が低下すると吸収したNOX を放出
するNOX 吸収剤をディーゼル機関の排気通路内に配置
し、このNOX 吸収剤に排気中のNOX を吸収させ、N
X 吸収剤の吸収効率が低下したときに排気の流入を遮
断してNOX 吸収剤に還元剤を供給し、NOX 吸収剤か
ら吸収したNOX を放出させるとともに放出されたNO
X の還元浄化を行う内燃機関の排気浄化装置が開示され
ている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 62-106826 discloses
Air-fuel ratio of the exhaust gas is arranged the NO X absorbent to the oxygen concentration in the exhaust gas absorbs the NO X when the lean releasing NO X absorbed and reduced in the exhaust passage of the diesel engine, the the NO X absorbent Absorbs NO x in the exhaust gas,
O absorption efficiency of X absorbent shut off the flow of exhaust when the reduced supply the reducing agent to the NO X absorbent was released with the release of NO X absorbed from the NO X absorbent NO
An exhaust gas purification device for an internal combustion engine that performs reduction purification of X is disclosed.

【0003】また、ディーゼルエンジンの排気中に多く
含まれる排気微粒子(パティキュレート)の大気放出を
防止するためにディーゼルエンジンの排気通路にパティ
キュレートフィルタを配置して排気中のパティキュレー
トを捕集することが知られている。
Further, in order to prevent the exhaust particulates (particulates) contained in the exhaust of the diesel engine from being released into the atmosphere, a particulate filter is arranged in the exhaust passage of the diesel engine to collect the particulates in the exhaust. It is known.

【0004】[0004]

【発明が解決しようとする課題】NOX 吸収剤は、上述
のようにリーン空燃比の排気中のNOX を吸収し、排気
中の酸素濃度が低下すると吸収したNOX を放出するN
X の吸放出作用を行う。この吸放出作用については後
に詳述するが、排気中に硫黄酸化物(SOX )が存在す
るとNOX 吸収剤はNOX の吸収作用を行うのと全く同
じメカニズムで排気中のSOX の吸収を行う。
SUMMARY OF THE INVENTION An object of the NO X absorbent absorbs NO X in the exhaust gas of a lean air-fuel ratio as described above, the oxygen concentration in the exhaust gas to release NO X absorbed and reduced N
It acts to absorb and release O X. Although this absorption and desorption action will be described in detail later, when sulfur oxide (SO x ) is present in the exhaust gas, the NO x absorbent absorbs the SO x in the exhaust gas by the same mechanism as the absorption action of the NO x. I do.

【0005】ところが、NOX 吸収剤に吸収されたSO
X は安定な硫酸塩を形成するため一般に分解、放出され
にくく、NOX 吸収剤内に蓄積されやすい傾向がある。
NO X 吸収剤内のSOX 蓄積量が増大すると、NOX
収剤のNOX 吸収容量が減少して排気中のNOX の除去
を十分に行うことができなくなるため、NOX の浄化効
率が低下するいわゆるSOX 被毒が生じる問題がある。
特に、燃料として比較的硫黄成分を多く含む軽油を使用
するディーゼルエンジンにおいてはこのSOX被毒の問
題が生じやすい。
However, NOXSO absorbed by absorbent
XIs generally decomposed and released to form a stable sulfate.
Difficult, NOXIt tends to accumulate in the absorbent.
NO XSO in absorbentXWhen the accumulated amount increases, NOXSucking
NO of collecting agentXNO in exhaust gas due to reduced absorption capacityXRemoval of
Can not be performed sufficiently, so NOXPurifying effect of
So-called SO whose rate decreasesXThere is a problem of poisoning.
In particular, light oil containing a relatively large amount of sulfur is used as fuel
This diesel engine has a SOXQuestion of poisoning
Subject is likely to occur.

【0006】一方、NOX 吸収剤に吸収されたSOX
ついても、NOX の放出、還元浄化と同じメカニズムで
放出、還元浄化が可能であることが知られている。しか
し、上述のようにNOX 吸収剤内に蓄積された硫酸塩は
比較的安定であるため、通常のNOX の放出、還元浄化
操作(以下「NOX 吸収剤の再生操作」という)が行わ
れる温度(例えば、250度C程度以上)ではNOX
収剤内に吸収されたSOX を放出させることは困難であ
る。このため、SOX 被毒を解消するためには、NOX
吸収剤を通常の再生操作時より高い温度(例えば500
度C以上)に昇温し、かつ流入する排気の空燃比をリッ
チにする被毒解消操作を定期的に行う必要がある。
On the other hand, it is known that SO X absorbed in a NO X absorbent can be released and reduced and purified by the same mechanism as NO X is released and reduced and purified. However, since the sulfate accumulated in the NO X absorbent is relatively stable as described above, normal NO X release and reduction purification operations (hereinafter referred to as “NO X absorbent regeneration operation”) are performed. It is difficult to release the SO X absorbed in the NO X absorbent at a temperature (for example, about 250 ° C. or higher). Therefore, in order to eliminate SO X poisoning, NO X
The absorbent should be heated to a higher temperature (eg 500
It is necessary to periodically perform a poisoning elimination operation for increasing the air-fuel ratio of the inflowing exhaust gas to a high temperature (C or more).

【0007】このため、比較的排気温度が低いディーゼ
ルエンジン等ではSOX 被毒解消操作のために電気ヒー
タ、バーナ等の加熱手段を設け一定期間毎に通常より高
い温度にNOX 吸収剤を加熱することが必要となり、加
熱手段の設置による装置コストの上昇や加熱に要するエ
ネルギのための燃費増大の問題が生じていた。本発明
は、上記問題に鑑み、特別な加熱手段を設けることなく
簡易にNOX 吸収剤のSOX 被毒解消操作を行うことの
できる内燃機関の排気浄化装置を提供することを目的と
している。
Therefore, in a diesel engine or the like having a relatively low exhaust temperature, heating means such as an electric heater and a burner are provided for SO X poisoning elimination operation, and the NO X absorbent is heated to a temperature higher than usual at regular intervals. Therefore, there has been a problem that the installation of the heating means increases the cost of the apparatus and increases the fuel consumption due to the energy required for heating. In view of the above problems, it is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine, which can easily perform SO X poisoning elimination operation of a NO X absorbent without providing special heating means.

【0008】[0008]

【課題を解決するための手段】本発明によれば、流入排
気の空燃比がリーンのときにNOX を吸収し流入排気の
酸素濃度が低下したときに吸収したNOX を放出するN
X 吸収剤をディーゼルエンジンの排気通路に配置して
排気中のNOX を吸収させ、NOX 吸収後に前記NOX
吸収剤に流入する排気空燃比をリッチにして前記NOX
吸収剤から吸収したNOX を放出させるとともに放出さ
れたNOX を還元浄化する排気浄化装置において、前記
NOX 吸収剤と排気中の微粒子を捕集するパティキュレ
ートフィルタとを相互に熱伝達可能な位置に配置し、N
X 吸収剤に流入する排気空燃比をリッチにして前記N
X の放出と還元浄化を行い、その後前記パティキュレ
ートフィルタに捕集されたパティキュレートを燃焼さ
せ、このパティキュレート燃焼操作終了後に再度前記N
X 吸収剤に流入する排気空燃比をリッチにしてNO X
吸収剤のSOX 被毒を解消することを特徴とする内燃機
関の排気浄化装置が提供される。
According to the present invention, inflow and outflow
NO when the air-fuel ratio is leanXAbsorbs the
NO absorbed when the oxygen concentration decreasedXReleasing N
OXPlace the absorbent in the exhaust passage of the diesel engine
NO in the exhaustXAbsorbed, NOXNO after absorptionX
When the exhaust air-fuel ratio flowing into the absorbent is made rich, the NOX
NO absorbed from the absorbentXIs released and released
NOXIn the exhaust purification device for reducing and purifying
NOXParticulates that collect particulates in the absorbent and exhaust
The heat filter and the heat
OXThe exhaust air-fuel ratio flowing into the absorbent is made rich and the N
OXRelease and reduction purification, and then the particulate
Burns the particulates collected by the air filter.
After the particulate burning operation is completed, the N
OXThe exhaust air-fuel ratio flowing into the absorbent is made rich and NO X
Absorbent SOXInternal combustion engine characterized by eliminating poisoning
An exhaust purification device of Seki is provided.

【0009】[0009]

【作用】NOX 吸収剤に流入する排気空燃比がリッチに
なると、排気中の酸素濃度が急激に低下してNOX 吸収
剤に吸収されたNOX が放出され、排気中の未燃HC成
分と反応して還元浄化される。次いで排気空燃比をリー
ンにしてパティキュレートフィルタに捕集されたパティ
キュレートの燃焼が行われ、パティキュレートフィルタ
は高温になる。NOX 吸収剤とパティキュレートフィル
タとは相互に熱伝達可能な位置に配置されているため、
このときNOX 吸収剤も高温になる。一般にNOX 吸収
剤が高温になるとリーン雰囲気下でもNOX 吸収剤から
NOX が放出されるようになるが、パティキュレートの
燃焼はNOX 吸収剤のNOX 放出終了後に行われるた
め、パティキュレート燃焼時にはNOX は放出されず未
浄化のNOX が大気に放出されることが防止される。
When the exhaust air-fuel ratio flowing into the NO X absorbent [action] becomes rich, the absorbed NO X is released oxygen concentration in the exhaust gas decreases rapidly in the NO X absorbent, unburned HC components in the exhaust Reacts with and is purified by reduction. Next, the exhaust air-fuel ratio is made lean, and the particulate matter collected by the particulate filter is burned, and the particulate filter becomes high in temperature. Since the NO x absorbent and the particulate filter are arranged at positions where heat can be mutually transferred,
In this case the NO X absorbent becomes high. Generally the NO X absorbent becomes so NO X is released from the NO X absorbent in lean atmosphere becomes a high temperature, the combustion of the particulates is performed after completion of NO X release of the NO X absorbent, particulate during combustion NO X is NO X unpurified not released is prevented from being released into the atmosphere.

【0010】次いで、パティキュレートの燃焼が終了す
ると排気空燃比は再度リッチにされる。このため、NO
X 吸収剤は高温かつリッチ雰囲気条件になり、NOX
収剤からSOX が放出され、SOX 被毒が解消する。
Next, when the combustion of particulates is completed, the exhaust air-fuel ratio is made rich again. Therefore, NO
The X absorbent becomes a high temperature and rich atmosphere condition, SO X is released from the NO X absorbent, and SO X poisoning is eliminated.

【0011】[0011]

【実施例】図1に本発明の第一の実施例を示す。図1に
おいて、2はディーゼルエンジン、4は吸気通路、6は
排気通路を夫々示す。吸気通路4内には吸気絞り弁8が
設けられ、この吸気絞り弁8は通常時は全開とされてお
り、後述のようにNOX 吸収剤の再生を行う際に閉弁さ
れ、エンジン2の吸入空気量を絞りNOX 吸収剤に流入
する排気流量を低減する。これにより、排気中の酸素を
消費してNOX 吸収剤雰囲気の酸素濃度を低下させるた
めに必要な還元剤の量が低減される。図に16で示すの
は吸気絞り弁8を駆動するソレノイド、負圧アクチュエ
ータ等の適宜な形式のアクチュエータである。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 2 is a diesel engine, 4 is an intake passage, and 6 is an exhaust passage. An intake throttle valve 8 is provided in the intake passage 4, and the intake throttle valve 8 is normally fully opened. The intake throttle valve 8 is closed when the NO x absorbent is regenerated as described later, and The intake air amount is throttled to reduce the exhaust flow rate flowing into the NO X absorbent. This reduces the amount of reducing agent required to consume oxygen in the exhaust gas and reduce the oxygen concentration in the NO x absorbent atmosphere. Reference numeral 16 in the drawing denotes an actuator of an appropriate type such as a solenoid for driving the intake throttle valve 8 or a negative pressure actuator.

【0012】排気通路6の途中には、パティキュレート
フィルタ10が配置される。12はパティキュレートフ
ィルタ10上流側の排気通路6に還元剤を供給してNO
X 吸収剤に流入する排気空燃比をリッチにするための還
元剤供給装置である。本実施例では還元剤としてディー
ゼルエンジン2の燃料が使用されており、還元剤供給装
置12はエンジン燃料系統から供給された燃料を排気通
路6内に霧状に噴射するノズルを備えている。
A particulate filter 10 is arranged in the exhaust passage 6. Reference numeral 12 is a NO to supply the reducing agent to the exhaust passage 6 on the upstream side of the particulate filter 10.
This is a reducing agent supply device for making the exhaust air-fuel ratio flowing into the X absorbent rich. In this embodiment, the fuel of the diesel engine 2 is used as the reducing agent, and the reducing agent supply device 12 is provided with a nozzle that atomizes the fuel supplied from the engine fuel system into the exhaust passage 6.

【0013】パティキュレートフィルタ10と還元剤供
給装置12との間の排気通路6には排気温センサ14が
配置され、この排気温センサ14の検出信号は電子制御
ユニット(ECU)30に入力される。ECU30は、
CPU(中央演算装置)、RAM(ランダムアクセスメ
モリ)、ROM(リードオンリメモリ)、入出力ポート
を双方向バスで接続した公知の形式のディジタルコンピ
ュータからなり、燃料噴射量制御等のエンジンの基本制
御を行う他、本実施例ではNOX 吸収剤の再生、パティ
キュレートの燃焼、NO X 吸収剤のSOX 被毒解消等の
制御をも行っている。これらの制御のため、ECU30
は、吸気絞り弁8を駆動するアクチュエータ16、およ
び還元剤供給装置12を制御して、吸気絞り弁8の開閉
と還元剤供給装置12からの還元剤の供給の調節を行
う。
The particulate filter 10 and the reducing agent are used together.
An exhaust gas temperature sensor 14 is provided in the exhaust passage 6 between the supply device 12.
The detection signal of the exhaust temperature sensor 14 is electronically controlled.
It is input to the unit (ECU) 30. The ECU 30
CPU (central processing unit), RAM (random access memory)
Memory), ROM (Read Only Memory), I / O port
A digital computer of a known type in which
The basic control system of the engine such as fuel injection amount control.
In addition to the control, in this embodiment, NOXRegeneration of absorbent, patty
Curate burning, NO XAbsorbent SOXSuch as elimination of poisoning
It also controls. For these controls, the ECU 30
Is an actuator 16 that drives the intake throttle valve 8, and
And the reducing agent supply device 12 are controlled to open / close the intake throttle valve 8.
And adjusting the supply of the reducing agent from the reducing agent supply device 12.
U

【0014】図2にはパティキュレートフィルタ10の
拡大断面図を示す。図2を参照すると、パティキュレー
トフィルタ10は多孔質セラミックから成り、排気ガス
は矢印で示されるように図中左から右に向かって流れ
る。パティキュレートフィルタ10内には、上流側に栓
18が施された第1通路22と下流側に栓20が施され
た第2通路24とが交互に配置されハニカム状をなして
いる。排気ガスが図中左から右に向かって流れると、排
気ガスは第2通路24から多孔質セラミックの流路壁面
を通過して第1通路22に流入し、下流側に流れる。こ
のとき、排気ガス中のパティキュレートは多孔質セラミ
ックによって捕集され、パティキュレートの大気への放
出が防止される。
FIG. 2 shows an enlarged sectional view of the particulate filter 10. Referring to FIG. 2, the particulate filter 10 is made of a porous ceramic, and exhaust gas flows from left to right in the figure as indicated by an arrow. Inside the particulate filter 10, the first passages 22 having the plugs 18 on the upstream side and the second passages 24 having the plugs 20 on the downstream side are alternately arranged to form a honeycomb shape. When the exhaust gas flows from the left to the right in the figure, the exhaust gas passes from the second passage 24 through the flow passage wall surface of the porous ceramic, flows into the first passage 22, and flows downstream. At this time, the particulates in the exhaust gas are captured by the porous ceramic, and the particulates are prevented from being released to the atmosphere.

【0015】第1および第2通路22および24の壁面
にはNOX 吸収剤26が担持されている。NOX 吸収剤
26は、例えばカリウムK、ナトリウムNa,リチウム
Li、セシウムCsのようなアルカリ金属、バリウムB
a、カルシウムCaのようなアルカリ土類、ランタンL
a、イットリウムYのような希土類から選ばれた少なく
とも一つと、白金Ptのような貴金属とから成る。NO
X 吸収剤26は流入排気ガスの空燃比がリーンのときに
はNOX を吸収し、流入排気ガス中の酸素濃度が低下す
ると吸収したNOX を放出するNOX の吸放出作用を行
う。
A NO x absorbent 26 is carried on the wall surfaces of the first and second passages 22 and 24. The NO x absorbent 26 is, for example, potassium K, sodium Na, lithium Li, an alkali metal such as cesium Cs, or barium B.
a, alkaline earth such as calcium Ca, lanthanum L
a, at least one selected from rare earths such as yttrium Y, and a noble metal such as platinum Pt. NO
X absorbent 26 absorbs NO X when the air-fuel ratio of the inflowing exhaust gas is lean, perform absorption and release action of the NO X that releases NO X concentration of oxygen absorbed to decrease in the inflowing exhaust gas.

【0016】本実施例ではディーゼルエンジンが使用さ
れているため、通常時の排気空燃比はリーンでありNO
X 吸収剤26は排気中のNOX の吸収を行う。また、還
元剤装置12からパティキュレートフィルタ10上流側
の排気通路に還元剤が供給されて流入排気の空燃比がリ
ッチになるとNOX 吸収剤26は吸収したNOX の放出
を行う。
Since a diesel engine is used in this embodiment, the exhaust air-fuel ratio at normal times is lean and NO.
The X absorbent 26 absorbs NO X in the exhaust gas. Further, when the reducing agent is supplied from the reducing agent device 12 to the exhaust passage on the upstream side of the particulate filter 10 and the air-fuel ratio of the inflowing exhaust gas becomes rich, the NO X absorbent 26 releases the absorbed NO X.

【0017】この吸放出作用の詳細なメカニズムについ
ては明らかでない部分もある。しかしながらこの吸放出
作用は図3に示すようなメカニズムで行われているもの
と考えられる。次にこのメカニズムについて白金Ptお
よびバリウムBaを担持させた場合を例にとって説明す
るが他の貴金属、アルカリ金属、アルカリ土類、希土類
を用いても同様なメカニズムとなる。
The detailed mechanism of this absorption / release action is not clear in some parts. However, it is considered that this absorbing and releasing action is performed by the mechanism shown in FIG. Next, this mechanism will be described by taking as an example the case where platinum Pt and barium Ba are supported, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths.

【0018】即ち、流入排気ガスがかなりリーンになる
と流入排気ガス中の酸素濃度が大巾に増大し、図3
(A)に示されるようにこれら酸素O2 がO2 - または
2-の形で白金Ptの表面に付着する。一方、流入排気
ガス中のNOは白金Ptの表面上でO2 - またはO2-
反応し、NO2 となる(2NO+O2 →2NO2 )。次
いで生成されたNO2 の一部は白金Pt上で更に酸化さ
れつつNOX 吸収剤26内に吸収されて酸化バリウムB
aOと結合しながら、図3(A)に示されるように硝酸
イオンNO3 - の形でNOX 吸収剤26内に拡散する。
このようにしてNO X がNOX 吸収剤26内に吸収され
る。
That is, the inflowing exhaust gas becomes considerably lean.
And the oxygen concentration in the inflowing exhaust gas increased significantly,
As shown in (A), these oxygen O2Is O2 -Or
O2-It adheres to the surface of platinum Pt in the form of. On the other hand, inflow exhaust
NO in the gas is O on the surface of platinum Pt.2 -Or O2-When
Reacts, NO2Becomes (2NO + O2→ 2 NO2). Next
NO generated by2Is partially oxidized on platinum Pt.
While being NOXBarium oxide B absorbed in the absorbent 26
As shown in FIG. 3 (A), nitric acid binds with aO.
Ionic NO3 -In the form of NOXIt diffuses into the absorbent 26.
NO in this way XIs NOXAbsorbed in the absorbent 26
It

【0019】流入排気ガス中の酸素濃度が高い限り白金
Ptの表面でNO2 が生成され、NOX 吸収剤26のN
X 吸収能力が飽和しない限りNO2 がNOX 吸収剤2
6内に吸収されて硝酸イオンNO3 - が生成される。こ
れに対して流入排気ガス中の酸素濃度が低下してNO2
の生成量が低下すると反応が逆方向(NO3 - →N
2 )に進み、斯くしてNOX 吸収剤26内の硝酸イオ
ンNO3 - がNO2 の形で吸収剤から放出される。即
ち、流入排気ガス中の酸素濃度が低下するとNOX 吸収
剤26からNOX が放出されることになる。流入排気ガ
スのリーンの度合いが低くなれば流入排気ガス中の酸素
濃度が低下し、従って流入排気ガスのリーンの度合いを
低くすればNOX 吸収剤26からNOX が放出されるこ
とになる。
Platinum as long as the oxygen concentration in the inflowing exhaust gas is high
NO on the surface of Pt2Is generated and NOXAbsorbent 26 N
OXNO unless the absorption capacity is saturated2Is NOXAbsorbent 2
Nitrate ion NO absorbed in 63 -Is generated. This
On the other hand, the oxygen concentration in the inflowing exhaust gas decreases and NO2
If the production amount of3 -→ N
O 2), And thus NOXIo nitrate in the absorbent 26
No3 -Is NO2Is released from the absorbent in the form of. Immediately
If the oxygen concentration in the inflowing exhaust gas decreases, NOXabsorption
Agent 26 to NOXWill be released. Inflow exhaust gas
If the leanness of the air becomes low, the oxygen in the inflowing exhaust gas
The concentration is reduced and therefore the leanness of the incoming exhaust gas
NO if loweredXAbsorbent 26 to NOXIs released
Becomes

【0020】一方、このとき流入排気ガスの空燃比をリ
ッチにすると、HC,COは白金Pt上の酸素O2 -
たはO2-と反応して酸化せしめられる。また、流入排気
ガスの空燃比をリッチにすると流入排気ガス中の酸素濃
度が極度に低下するためにNOX 吸収剤26からNO2
が放出され、このNO2 は図3(B)に示されるように
未燃HC,COと反応して還元浄化せしめられる。この
ようにして白金Ptの表面上にNO2 が存在しなくなる
とNOX 吸収剤26から次から次へとNO2 が放出され
る。従って流入排気ガスの空燃比をリッチにすると短時
間のうちにNO X 吸収剤26からNOX が放出されて還
元浄化されることになる。
On the other hand, at this time, the air-fuel ratio of the inflowing exhaust gas is
HC and CO are oxygen O on platinum Pt.2 -Well
Or O2-It reacts with and is oxidized. Also the inflow exhaust
When the air-fuel ratio of the gas is made rich, the oxygen concentration in the inflowing exhaust gas is increased.
NO because the degree is extremely lowXAbsorbent 26 to NO2
Is released and this NO2As shown in FIG.
It reacts with unburned HC and CO and is reduced and purified. this
NO on the surface of platinum Pt2Disappears
And NOXNO one after another from the absorbent 262Is released
It Therefore, if the air-fuel ratio of the inflowing exhaust gas is made rich, it will be
NO in the meantime XAbsorbent 26 to NOXIs released and returned
The original will be purified.

【0021】なお、ここでいう排気の空燃比とはNOX
吸収剤26上流側の排気通路6とエンジン燃焼室または
吸気通路に供給された空気と燃料との比率をいうものと
する。従って排気通路6に空気や還元剤が供給されてい
ないときには排気空燃比はエンジンの運転空燃比(エン
ジン燃焼室内の燃焼空燃比)に等しくなる。また、本発
明に使用する還元剤としては、排気中で炭化水素や一酸
化炭素等の還元成分を発生するものであれば良く、水
素、一酸化炭素等の気体、プロパン、プロピレン、ブタ
ン等の液体又は気体の炭化水素、ガソリン、軽油、灯油
等の液体燃料等が使用できるが、本実施例では貯蔵、補
給等の際の煩雑さを避けるため前述のようにディーゼル
エンジン2の燃料である軽油を還元剤として使用してい
る。
The air-fuel ratio of exhaust gas referred to here is NO x.
It means the ratio of the air and the fuel supplied to the exhaust passage 6 on the upstream side of the absorbent 26 and the engine combustion chamber or the intake passage. Therefore, when air or a reducing agent is not supplied to the exhaust passage 6, the exhaust air-fuel ratio becomes equal to the operating air-fuel ratio of the engine (the combustion air-fuel ratio in the engine combustion chamber). Further, the reducing agent used in the present invention may be one that generates a reducing component such as hydrocarbon or carbon monoxide in the exhaust gas, and a gas such as hydrogen or carbon monoxide, propane, propylene, butane or the like. Liquid or gaseous hydrocarbons, liquid fuels such as gasoline, light oil, kerosene, etc. can be used, but in the present embodiment, as described above, light oil, which is the fuel of the diesel engine 2, is used to avoid complexity during storage, replenishment, etc. Is used as a reducing agent.

【0022】次にNOX 吸収剤のSOX 被毒のメカニズ
ムについて説明する。排気中にSO X 成分が含まれてい
ると、NOX 吸収剤は上述のNOX の吸収と同じメカニ
ズムで排気中のSOX を吸収する。すなわち、排気空燃
比がリーンのとき、排気中のSOX (例えばSO2 )は
白金Pt上で酸化されてSO3 - 、SO4 - となり、酸
化バリウムBaOと結合してBaSO4 を形成する。B
aSO4 は比較的安定であり、また、結晶が粗大化しや
すいため一旦生成されると分解放出されにくい。このた
め、NOX 吸収剤中のBaSO4 の生成量が増大すると
NOX の吸収に関与できるBaOの量が減少してしまい
NOX の吸収能力が低下してしまう。このSOX 被毒を
解消するためには、NOX 吸収剤中に生成されたBaS
4 を高温で分解するとともに、これにより生成される
SO3 - 、SO4 - の硫酸イオンをリッチ雰囲気下で還
元し、気体状のSO2 に転換してNOX 吸収剤から放出
させる必要がある。従ってSOX 被毒を解消するために
は、NOX 吸収剤を高温かつリッチ雰囲気の状態にする
ことが必要とされる。
Next, NOXAbsorbent SOXPoisoned mechanics
I will explain about. SO during exhaust XContains ingredients
Then NOXAbsorbent is NO aboveXSame mechanism as absorption of
SO in the exhaustXAbsorbs. That is, exhaust air-fuel
SO in the exhaust when the ratio is leanX(Eg SO2) Is
SO oxidized by platinum Pt3 -, SOFour -And then acid
BaSO combined with BaOFourTo form. B
aSOFourIs relatively stable, and the crystals become coarse.
Once produced, it is difficult to decompose and release due to rinsing. others
NoXBaSO in the absorbentFourWhen the production of
NOXThe amount of BaO that can be involved in the absorption of
NOXAbsorbs less. This SOXPoisoning
NO to solveXBaS formed in the absorbent
OFourGenerated at the same time as decomposing at high temperature
SO3 -, SOFour -Sulfate ions in a rich atmosphere
Original, gaseous SO2Convert to NOXRelease from absorbent
Need to let. Therefore SOXTo eliminate poisoning
Is NOXPut the absorbent in a high temperature and rich atmosphere
Is needed.

【0023】次に図4を参照しつつ本実施例の動作につ
いて説明する。図4はNOX 吸収剤26のSOX 被毒解
消操作の制御ルーチンを示すフローチャートである。本
ルーチンはECU30により一定時間毎の割込みによっ
て実行される。図4を参照すると、まず、ステップ40
でNOX 吸収剤26からの上記NOXの放出、還元浄化
操作(再生操作)の実行条件が成立したか否かが判定さ
れる。NOX 吸収剤再生開始条件は、例えば、減速時で
あり、NOX 吸収剤26が活性化温度以上であり、かつ
前回再生を実行してから所定時間以上経過していること
等である。NOX 吸収剤再生開始条件が成立していない
と判定された場合、ステップ42に進み吸気絞り弁8が
開弁され、ステップ44で還元剤供給装置12からの燃
料供給が禁止される。
Next, the operation of this embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a control routine for SO X poisoning elimination operation of the NO X absorbent 26. This routine is executed by the ECU 30 by interruption at regular intervals. Referring to FIG. 4, first, step 40
Then, it is determined whether or not the conditions for executing the release of NO X from the NO X absorbent 26 and the reduction purification operation (regeneration operation) are satisfied. The NO X absorbent regeneration start condition is, for example, that the vehicle is decelerating, that the NO X absorbent 26 is at the activation temperature or higher, and that a predetermined time or more has passed since the previous regeneration was executed. When it is determined that the NO X absorbent regeneration start condition is not satisfied, the routine proceeds to step 42, where the intake throttle valve 8 is opened, and at step 44, the fuel supply from the reducing agent supply device 12 is prohibited.

【0024】一方、ステップ40においてNOX 吸収剤
再生開始条件が成立した場合、ステップ46に進み、N
X 吸収剤再生開始条件が成立した時からの経過時間T
が予め定められた第1の時間T1 より小さいか否か判定
される。第1の時間T1 は、NOX 吸収剤26を再生す
るのに必要な時間である。T<T1 の場合、ステップ4
8に進み吸気絞り弁8が閉弁される。これによってパテ
ィキュレートフィルタ10に流入する空気量が減少され
る。次いで、ステップ50で、還元剤供給装置12から
燃料が供給される。供給された燃料はNOX 吸収剤26
の触媒作用によって燃焼し排気ガス中の酸素が消費され
る。このため、パティキュレートフィルタ10内の排気
ガス中の酸素濃度が極度に低下して排気ガスの空燃比は
リッチとなる。これによって、前述のように、NOX
収剤26からNOX が放出され、この放出されたNOX
は還元浄化されることとなる。
On the other hand, when the NO X absorbent regeneration start condition is satisfied in step 40, the routine proceeds to step 46, where N
Elapsed time T from when the conditions for starting regeneration of the O X absorbent are satisfied
There is judged whether the first or the time T 1 is less than a predetermined. The first time T 1 is the time required to regenerate the NO X absorbent 26. If T <T 1 , step 4
8 and the intake throttle valve 8 is closed. As a result, the amount of air flowing into the particulate filter 10 is reduced. Next, at step 50, the fuel is supplied from the reducing agent supply device 12. The supplied fuel is NO x absorbent 26
Oxygen in the exhaust gas is consumed by burning due to the catalytic action of. For this reason, the oxygen concentration in the exhaust gas in the particulate filter 10 is extremely reduced, and the air-fuel ratio of the exhaust gas becomes rich. Thereby, as described above, NO X from the NO X absorbent 26 is released, the released NO X
Will be reduced and purified.

【0025】次いで、ステップ46でT≧T1 と判定さ
れた場合、すなわち、NOX 吸収剤26の再生が完了し
たと判定された場合、ステップ52に進み、経過時間T
が予め定められた第2の時間T2 より小さいか否か判定
される。T2 はT1 より大きい値であり、T2 −T
1 は、パティキュレートフィルタ10に捕集されたパテ
ィキュレートを燃焼させるために要する時間である。T
<T2 の場合、すなわち燃焼時間内である場合には、ス
テップ54に進み吸気絞り弁8が開弁される。これによ
って多量の空気がパティキュレートフィルタ10内に流
入する。次いでステップ56に進んで還元剤供給装置1
2から着火用の燃料が供給されて燃焼される。これによ
って、パティキュレートフィルタ10に捕集されたパテ
ィキュレートに着火され、燃焼する。なお、図示してい
ないが、パティキュレートフィルタ10上流側に電気ヒ
ータ等の補助的加熱手段を設け、NOX 吸収剤の再生完
了後一定時間パティキュレートフィルタ10を加熱する
ようにすればパティキュレートの着火が促進される。
Next, when it is judged at step 46 that T ≧ T 1 , that is, when the regeneration of the NO x absorbent 26 is completed, the routine proceeds to step 52, where the elapsed time T
There is judged whether or not the second or the time T 2 is less than a predetermined. T 2 is a value larger than T 1 , and T 2 −T
1 is the time required to burn the particulates collected by the particulate filter 10. T
If <T 2 , that is, if it is within the combustion time, the routine proceeds to step 54, where the intake throttle valve 8 is opened. As a result, a large amount of air flows into the particulate filter 10. Next, in step 56, the reducing agent supply device 1
Fuel for ignition is supplied from 2 and burned. As a result, the particulates collected by the particulate filter 10 are ignited and burned. Although not shown, if an auxiliary heating means such as an electric heater is provided on the upstream side of the particulate filter 10 and the particulate filter 10 is heated for a certain period of time after the completion of regeneration of the NO X absorbent, the particulate filter 10 can be heated. Ignition is accelerated.

【0026】次いでステップ52でT≧T2 と判定され
た場合、すなわち、パティキュレートの燃焼が完了した
場合には、ステップ58に進み経過時間Tが所定の第3
の時間T3 より小さいか否かが判定される。T3 はT2
より大きい値であり、T3 −T2 は、NOX 吸収剤26
のSOX 被毒の解消のために必要な時間である。T<T
3 の場合、すなわちSOX 被毒解消操作時間内の場合に
はステップ60に進み吸気絞り弁8は再度閉弁され、ス
テップ62で還元剤供給装置12からSOX 被毒解消用
の燃料が供給される。これにより、NOX 吸収剤26は
高温かつリッチ雰囲気の状態になり、NOX 吸収剤26
に吸収されたSOX がSO2 の形でNO X 吸収剤から放
出される。
Next, at step 52, T ≧ T2Is determined
If, i.e., the burning of particulates is completed
In this case, the process proceeds to step 58 where the elapsed time T is the third
Time T3It is determined whether or not it is smaller. T3Is T2
Greater value, T3-T2Is NOXAbsorbent 26
SOXThis is the time required to eliminate poisoning. T <T
3, Ie SOXWithin the poisoning elimination operation time
Proceeds to step 60, the intake throttle valve 8 is closed again, and
From the reducing agent supply device 12 at step 62 to SOXFor eliminating poisoning
Fuel is supplied. As a result, NOXThe absorbent 26
NO in high temperature and rich atmosphereXAbsorbent 26
Absorbed by SOXIs SO2In the form of NO XRelease from absorbent
Will be issued.

【0027】また、ステップ58でT≧T3 と判定され
た場合、すなわち、SOX 被毒解消操作が完了した場合
には、ステップ42に進み吸気絞り弁8が開弁され、ス
テップ44で還元剤供給装置12からの燃料供給が禁止
される。これにより、NOX吸収剤26は再び排気中の
NOX の吸収を行う。以上のように本実施例によれば、
NOX 吸収剤26をパティキュレートフィルタに担持さ
せ、NOX 吸収剤の再生操作を行った後にパティキュレ
ートを燃焼させて、更にその後にNOX 吸収剤のSOX
被毒解消操作を行うようにしているために、以下のよう
な効果を得ることができる。
When it is judged at step 58 that T ≧ T 3 , that is, when the SO X poisoning elimination operation is completed, the routine proceeds to step 42, where the intake throttle valve 8 is opened, and at step 44 the reduction is performed. Fuel supply from the agent supply device 12 is prohibited. As a result, the NO X absorbent 26 absorbs the NO X in the exhaust gas again. As described above, according to this embodiment,
The NO X absorbent 26 is carried on the particulate filter, the NO X absorbent is regenerated, the particulates are burned, and then the SO X of the NO X absorbent is burned.
Since the poisoning elimination operation is performed, the following effects can be obtained.

【0028】パティキュレートフィルタ10に捕集され
たパティキュレートを燃焼させることにより、パティキ
ュレートフィルタ10に担持されたNOX 吸収剤26が
高温になるため、NOX 吸収剤26のSOX 被毒解消操
作のために別途加熱手段を設けてNOX 吸収剤26を加
熱昇温する必要がないので簡易にNOX 吸収剤のSO X
被毒解消操作を行うことができる。また、SOX 被毒解
消操作時にパティキュレートの燃焼により発生する熱を
利用してNOX 吸収剤を加熱するため、NOX吸収剤の
加熱のために外部から供給するエネルギを大幅に低減す
ることができる。
Collected by the particulate filter 10
By burning the particulates,
NO carried on the filter 10XThe absorbent 26
NO due to high temperatureXSO of absorbent 26XPoison elimination operation
No separate heating means for productionXAdd absorbent 26
No need to heat up heat easilyXAbsorbent SO X
Poisoning elimination operation can be performed. Also, SOXPoisoning
The heat generated by the burning of particulates during the extinguishing operation
Use NOXNO to heat the absorbentXAbsorbent
Significantly reduces energy supplied from the outside for heating
You can

【0029】また、NOX 吸収剤26の再生操作実行後
にパティキュレートを燃焼させるようにしているために
パティキュレート燃焼時の熱によってNOX 吸収剤26
に吸収されたNOX が大気に放出されることを防止する
ことができ、さらに、NOX吸収剤26の再生操作時に
供給された燃料がNOX 吸収剤26上で燃焼しパティキ
ュレートフィルタ10の温度が上昇するため、これによ
りパティキュレートフィルタ10に捕集されているパテ
ィキュレートが昇温され、パティキュレートの着火燃焼
が容易になる。
Further, the NO X absorbent by heat during particulate combustion because it so as to burn the particulates after the regenerating operation of the NO X absorbent 26 26
Absorbed NO X can be prevented from being released into the atmosphere, further, NO X fuel supplied to the playback operation of the absorbent 26 is of the particulate filter 10 is burned on the NO X absorbent 26 Since the temperature rises, the temperature of the particulates trapped in the particulate filter 10 rises, which facilitates the ignition and combustion of the particulates.

【0030】なお、本実施例ではNOX 吸収剤をパティ
キュレートフィルタ内の排気通路壁面に担持させている
が、NOX 吸収剤とパティキュレートフィルタとは別個
に独立させてもよい。この場合には、NOX 吸収剤の上
流側にパティキュレートフィルタを配置し、パティキュ
レート燃焼時にパティキュレートフィルタで発生する熱
が効率よくNOX 吸収剤に伝達されるようにする。
Although the NO x absorbent is carried on the wall surface of the exhaust passage in the particulate filter in this embodiment, the NO x absorbent and the particulate filter may be separately provided. In this case, a particulate filter is arranged on the upstream side of the NO X absorbent so that the heat generated by the particulate filter at the time of particulate combustion can be efficiently transferred to the NO X absorbent.

【0031】次に図5を用いて本発明の第二の実施例に
ついて説明する。図1の実施例ではNOX 吸収剤の再生
及びSOX 被毒解消操作時に吸気絞り弁8を閉じてエン
ジンの吸入空気量を絞り、NOX 吸収剤(パティキュレ
ートフィルタ)に流入する排気流量を低下させるように
して排気中の酸素を消費するために必要な還元剤の量を
低減している。このため、NOX 吸収剤の再生、SOX
被毒解消操作時にはエンジン出力が低下することにな
る。このため、これらの操作は限られた運転条件下(例
えばエンジンブレーキ時等エンジン出力が低下しても運
転に影響が生じない条件下)で行う必要があり、任意の
時期にNOX 吸収剤再生やSOX 被毒解消操作を行うこ
とができない。
Next, a second embodiment of the present invention will be described with reference to FIG. In the embodiment of FIG. 1, the intake throttle valve 8 is closed to reduce the intake air amount of the engine at the time of regeneration of the NO X absorbent and SO X poisoning elimination operation, and the exhaust flow rate flowing into the NO X absorbent (particulate filter) is controlled. The amount of the reducing agent required to consume the oxygen in the exhaust gas is reduced by decreasing the amount. For this reason, regeneration of NO X absorbent, SO X
The engine output will decrease during the poisoning elimination operation. For this reason, these operations must be performed under limited operating conditions (for example, conditions such as engine braking that do not affect the operation even when the engine output decreases), and NO x absorbent regeneration at any time. And SO X poisoning elimination operation cannot be performed.

【0032】図5に示す実施例ではNOX 吸収剤を担持
したパティキュレートフィルタを排気管に2つ並列に配
置し、一方ずつNOX 吸収剤に流入する排気を遮断して
NO X 吸収剤の再生とSOX 被毒解消操作を行う。これ
により、一方のNOX 吸収剤の再生操作実行中には他方
のNOX 吸収剤に排気の流れを切り換えて運転できるの
で、全体として排気流量を絞る必要がなくエンジンの出
力低下を生じない。このため、運転条件に左右されるこ
となく任意の時期にNOX 吸収剤の再生等の操作を行う
ことが可能となる。
In the embodiment shown in FIG. 5, NOXCarrying absorbent
Place two particulate filters in parallel with the exhaust pipe.
Put, and NO one by oneXShut off the exhaust flowing into the absorbent
NO XRegeneration of absorbent and SOXPerform poisoning elimination operation. this
One of the NOXThe other side during the regeneration operation of the absorbent
NOXCan be operated by switching the exhaust flow to the absorbent
Therefore, it is not necessary to throttle the exhaust flow rate as a whole
It does not cause weakness. Therefore, it may depend on operating conditions.
NO at any timeXPerform operations such as regeneration of absorbent
It becomes possible.

【0033】図5において、6はエンジン(図示せず)
の排気管、6a、6bは排気管6の分岐通路、10a、
10bは分岐通路6a,6bに配置されたパティキュレ
ートフィルタ、9a、9bはそれぞれ分岐通路6a,6
bのパティキュレートフィルタ10a、10b上流側に
設けられた遮断弁、91a、91bは遮断弁9a、9b
を駆動するソレノイド、負圧アクチュエータ等の適宜な
形式のアクチュエータである。本実施例においてもパテ
ィキュレートフィルタ10a、10bはそれぞれ図2の
実施例と同様にNOX 吸収剤を担持した構造とされてい
る。
In FIG. 5, 6 is an engine (not shown).
Exhaust pipes 6a, 6b are branch passages of the exhaust pipe 6, 10a,
10b is a particulate filter disposed in the branch passages 6a and 6b, and 9a and 9b are branch passages 6a and 6b, respectively.
b of the particulate filters 10a and 10b, cutoff valves provided on the upstream side, and 91a and 91b are cutoff valves 9a and 9b.
It is an actuator of an appropriate type such as a solenoid for driving a. Also in this embodiment, each of the particulate filters 10a and 10b has a structure in which the NO x absorbent is carried similarly to the embodiment of FIG.

【0034】また、本実施例においては還元剤供給装置
12はそれぞれパティキュレートフィルタ10a、10
bの上流側の分岐通路6a、6b内に還元剤(燃料)を
供給する噴射ノズル12a、12bを備えている。更
に、本実施例では遮断弁9a、9bとパティキュレート
フィルタ10a、10bとの間の分岐通路6a、6bに
二次空気を供給する二次空気供給装置11が設けられて
いる。二次空気供給装置11はエアポンプ等の空気供給
源11cとそれぞれ分岐通路6a、6bに空気を供給す
るノズル11a、11bとを備え、後述のECU30か
らの制御信号によりパティキュレートフィルタ10a、
10bに二次空気を供給する。
Further, in the present embodiment, the reducing agent supply device 12 is provided with the particulate filters 10a and 10 respectively.
Injection nozzles 12a and 12b for supplying a reducing agent (fuel) are provided in the branch passages 6a and 6b on the upstream side of b. Further, in this embodiment, a secondary air supply device 11 that supplies secondary air to the branch passages 6a and 6b between the shutoff valves 9a and 9b and the particulate filters 10a and 10b is provided. The secondary air supply device 11 is provided with an air supply source 11c such as an air pump and nozzles 11a and 11b for supplying air to the branch passages 6a and 6b, respectively, and a particulate filter 10a according to a control signal from an ECU 30 described later,
Supply secondary air to 10b.

【0035】また、本実施例ではパティキュレートフィ
ルタの再生操作の要否を判定するために分岐通路6a、
6bの上流側の排気管6には排気管6内の排気圧力を検
出する背圧センサ21が設けられている。さらに、パテ
ィキュレートフィルタ10a、10bの下流側の分岐通
路6a、6bには排気温度を検出する排気温度センサ2
3a、23bと、排気中の酸素濃度を検出して酸素濃度
に応じた連続的な出力信号を発生する酸素濃度センサ2
5a、25bがそれぞれ配置されている。
Further, in the present embodiment, the branch passage 6a, for judging whether or not the regeneration operation of the particulate filter is necessary,
A back pressure sensor 21 that detects the exhaust pressure in the exhaust pipe 6 is provided in the exhaust pipe 6 on the upstream side of 6b. Further, an exhaust gas temperature sensor 2 for detecting the exhaust gas temperature is provided in the branch passages 6a, 6b on the downstream side of the particulate filters 10a, 10b.
3a and 23b, and an oxygen concentration sensor 2 that detects the oxygen concentration in the exhaust gas and generates a continuous output signal according to the oxygen concentration.
5a and 25b are arranged respectively.

【0036】また、電子制御ユニット(ECU)30の
入力ポートには背圧センサ21、排気温度センサ23
a、23b、酸素濃度センサ25a、25bからの出力
信号がそれぞれ図示しないA/D変換器を介して入力さ
れている他、エンジン回転数等の信号か図示しないセン
サから入力されている。さらに、ECU30の出力ポー
トは、図示しない駆動回路を通じて遮断弁9a、9bの
アクチュエータ91a、91b、還元剤供給装置12の
ノズル12a、12b、二次空気供給装置11のエアポ
ンプ11c、ノズル11a、11bにそれぞれ接続さ
れ、これらの作動を制御している。
The input port of the electronic control unit (ECU) 30 has a back pressure sensor 21 and an exhaust temperature sensor 23.
Output signals from the sensors a, 23b and the oxygen concentration sensors 25a, 25b are respectively input through an A / D converter (not shown), and signals such as engine speed are also input by a sensor (not shown). Further, the output port of the ECU 30 is connected to the actuators 91a and 91b of the shutoff valves 9a and 9b, the nozzles 12a and 12b of the reducing agent supply device 12, the air pump 11c and the nozzles 11a and 11b of the secondary air supply device 11 through a drive circuit (not shown). Each is connected and controls these operations.

【0037】本実施例では、通常時遮断弁9a、9bの
一方(例えば遮断弁9a)は分岐通路(例えば分岐通路
6a)を閉鎖し、排気の略全量をもう一方のパティキュ
レートフィルタ(10b)に導いて該一方のパティキュ
レートフィルタでNOX の吸収とパティキュレートの捕
集を行う。また、このNOX の吸収を行っているパティ
キュレートフィルタ(10b)上のNOX 吸収剤のNO
X 吸収量が増大した場合には、遮断弁を切り換えて排気
の略全量をもう一方の分岐通路のパティキュレートフィ
ルタ(6a、10a)に導いてNOX の吸収とパティキ
ュレートの捕集を行うとともに、NOX 吸収量が増大し
たパティキュレートフィルタ(10b)に還元剤を供給
してNOX 吸収剤の再生を行う。
In the present embodiment, one of the normal-time cutoff valves 9a and 9b (for example, the cutoff valve 9a) closes the branch passage (for example, the branch passage 6a), and substantially the entire amount of exhaust gas is discharged to the other particulate filter (10b). Then, the one particulate filter absorbs NO X and collects the particulates. Further, NO in the NO X absorbent on the particulate filter are subjected to absorption of NO X (10b)
When the amount of absorbed X increases, the shut-off valve is switched to guide almost all of the exhaust gas to the particulate filter (6a, 10a) in the other branch passage to absorb NO X and collect the particulates. , The reducing agent is supplied to the particulate filter (10b) having increased NO X absorption amount to regenerate the NO X absorbent.

【0038】また、ECU30は背圧センサ21の出力
から使用中のパティキュレートフィルタの排気抵抗が増
大したことを検出すると、このパティキュレートフィル
タのNOX 吸収剤再生操作実行後に、遮断弁は閉弁した
まま二次空気供給装置11からパティキュレートフィル
タに二次空気を供給することにより、続いてパティキュ
レートフィルタに捕集されたパティキュレートを燃焼さ
せる。
When the ECU 30 detects from the output of the back pressure sensor 21 that the exhaust resistance of the particulate filter in use has increased, the shut-off valve is closed after the NO x absorbent regeneration operation of this particulate filter is executed. As it is, the secondary air is supplied from the secondary air supply device 11 to the particulate filter, so that the particulates collected in the particulate filter are subsequently burned.

【0039】更に、パティキュレートの燃焼が完了する
と遮断弁の閉弁と還元剤の供給は維持したまま二次空気
の供給を停止する。これによりパティキュレートフィル
タに担持されたNOX 吸収剤は高温かつリッチ雰囲気に
置かれるためNOX 吸収剤からSOX が放出されSOX
被毒が解消する。図6はNOX 吸収剤のSOX 被毒解消
操作を示すフローチャートである。本ルーチンはECU
30により一定時間毎に実行される。
Further, when the combustion of particulates is completed, the shutoff valve is closed and the supply of the reducing agent is maintained, and the supply of the secondary air is stopped. Thus the NO X absorbent carried on the particulate filter SO X is released from the NO X absorbent to be placed in a high temperature and rich atmosphere SO X
Poisoning disappears. FIG. 6 is a flowchart showing the SO X poisoning elimination operation of the NO X absorbent. This routine is ECU
30 is executed at regular intervals.

【0040】図6においてルーチンがスタートすると、
ステップ601では現在使用しているパティキュレート
フィルタのNOX 吸収剤の再生操作開始条件が成立して
いるか否かが判断される。NOX 吸収剤の再生はエンジ
ン排気温度が所定値以上(すなわち、NOX 吸収剤が所
定の活性温度以上)であり、かつNOX 吸収剤の使用時
間(NOX 吸収量)が所定値(例えば1分から3分程
度)に達している場合(すなわち、使用中のNOX 吸収
剤のNOX 吸収量が所定量以上になっている場合)に実
行される。
When the routine starts in FIG. 6,
In step 601, it is judged whether or not the conditions for starting the regeneration operation of the NO x absorbent of the particulate filter currently used are satisfied. Regeneration of the NO X absorbent engine exhaust temperature is equal to or higher than a predetermined value (i.e., the NO X absorbent is higher than a predetermined activation temperature) is, and the NO X absorbent usage time (NO X absorption amount) exceeds a predetermined value (e.g. If reaches about 1 to 3 minutes) (i.e., NO X absorption of the NO X absorbent during use is executed when) that is a predetermined amount or more.

【0041】ステップ601でNOX 吸収剤の再生操作
開始条件が成立している場合にはステップ603で遮断
弁9a、9bを切換えて、再生操作を行う側のパティキ
ュレートフィルタの分岐通路を閉鎖する。これにより、
排気の略全量がもう一方の分岐通路に流れ、再生を行う
側のパティキュレートフィルタには遮断弁全閉時の洩れ
流量に相当する排気流量が流れるのみとなる。次いでス
テップ605では再生操作を行う側のパティキュレート
フィルタに還元剤供給装置12から燃料が供給される。
これにより、燃料はパティキュレートフィルタに担持さ
れたNOX 吸収剤上で燃焼し、NOX 吸収剤の周囲の排
気中の酸素が消費され、NOX 吸収剤からのNOX の放
出と還元浄化が行われるとともに、燃焼によりNOX
収剤を担持するパティキュレートフィルタの温度が上昇
する。
When the condition for starting the NO x absorbent regeneration operation is satisfied in step 601, the shut-off valves 9a and 9b are switched in step 603 to close the branch passage of the particulate filter on the regeneration operation side. . This allows
Almost all of the exhaust gas flows to the other branch passage, and only the exhaust gas flow amount corresponding to the leak flow amount when the shutoff valve is fully closed flows to the particulate filter on the regeneration side. Next, at step 605, the reducing agent supply device 12 supplies the fuel to the particulate filter on the side where the regeneration operation is performed.
Thus, the fuel is combusted on the NO X absorbent carried on the particulate filter, it is consumed oxygen in the exhaust around of the NO X absorbent, the reduction purification and release of the NO X from the NO X absorbent As it is performed, the temperature of the particulate filter carrying the NO X absorbent rises due to combustion.

【0042】次いでステップ607ではNOX 吸収剤の
再生操作の終了条件が判定される。NOX 吸収剤の再生
操作は、再生操作実行中のパティキュレートフィルタの
下流側の酸素濃度センサ(25aまたは25b)で検出
した排気酸素濃度が所定値以下(略ゼロ)になった状態
(排気中の酸素が全部消費された状態)から所定時間
(例えば、数秒から数十秒)経過した時に終了する。
Next, at step 607, the condition for ending the regeneration operation of the NO X absorbent is judged. In the regeneration operation of the NO x absorbent, the exhaust oxygen concentration detected by the oxygen concentration sensor (25a or 25b) on the downstream side of the particulate filter during the regeneration operation is equal to or lower than a predetermined value (approximately zero) (during exhaust). When a predetermined time (for example, several seconds to several tens of seconds) has passed from the state where all the oxygen was consumed), the process ends.

【0043】ステップ607でNOX 吸収剤の再生操作
が終了したと判断されたときにはステップ609でパテ
ィキュレートフィルタの再生操作を同時に行う必要があ
るか否かが判定される。パティキュレートフィルタの再
生操作は、NOX 吸収剤の再生開始前に背圧センサ21
から読み込んだ排気圧力が所定値(エンジンの回転数、
負荷などに応じて予め設定された値)以上か否かにより
判断される。
When it is determined in step 607 that the NO X absorbent regeneration operation has ended, it is determined in step 609 whether or not the particulate filter regeneration operation must be performed simultaneously. The regeneration operation of the particulate filter is performed by the back pressure sensor 21 before starting the regeneration of the NO X absorbent.
Exhaust pressure read from the specified value (engine speed,
It is determined by whether or not it is a value set in advance according to the load or the like.

【0044】ステップ609でパティキュレートフィル
タの再生操作が必要ないと判断された場合にはステップ
621で還元剤供給装置12からの燃料供給が停止さ
れ、遮断弁9a、9bはこのままの状態に保持され、再
生後のNOX 吸収剤は待機状態に置かれる。ステップ6
09でパティキュレートフィルタの再生操作が必要と判
断された場合には続いてステップ611から615のパ
ティキュレートフィルタの再生操作が行われる。すなわ
ち、ステップ611では還元剤供給装置12から供給さ
れる燃料の量が増量され、ステップ613では二次空気
供給装置11からパティキュレートフィルタに所定量の
二次空気(例えば50リットル/分程度)が供給され
る。これによりパティキュレートフィルタに捕集された
パティキュレートが着火、燃焼する。
When it is determined in step 609 that the particulate filter regeneration operation is not necessary, the fuel supply from the reducing agent supply device 12 is stopped in step 621, and the cutoff valves 9a and 9b are maintained as they are. After the regeneration, the NO X absorbent is put on standby. Step 6
If it is judged at 09 that the particulate filter regeneration operation is necessary, then the particulate filter regeneration operation in steps 611 to 615 is performed. That is, in step 611, the amount of fuel supplied from the reducing agent supply device 12 is increased, and in step 613, a predetermined amount of secondary air (for example, about 50 liters / minute) is supplied from the secondary air supply device 11 to the particulate filter. Supplied. As a result, the particulates collected by the particulate filter are ignited and burned.

【0045】次いで、ステップ615では、パティキュ
レートの燃焼が終了したか否かが判断される。本実施例
では、ステップ611と613が開始されて所定時間
(例えば8分程度)が経過した場合にパティキュレート
の燃焼が完了したと判断して、引き続きステップ617
から619のSOX 被毒解消操作を実行する。すなわ
ち、ステップ617では遮断弁の全閉状態と還元剤供給
装置12からの還元剤供給量は維持したまま二次空気供
給装置11からの二次空気供給が停止される。前述のよ
うに、この状態ではパティキュレートの燃焼によりパテ
ィキュレートフィルタに担持されたNOX 吸収剤は高温
(500度C以上)になっており、遮断弁の全閉状態と
還元剤供給量を維持したまま二次空気の供給を停止する
ことによりNOX 吸収剤は通常のNOX 吸収剤の再生操
作時より大幅に高温かつリッチ雰囲気に置かれることに
なる。このため、NOX 吸収剤に吸収されたSOXはS
2 の形で速やかにNOX 吸収剤から放出され、NOX
吸収剤のSOX 被毒が解消する。
Next, at step 615, it is judged if the combustion of particulates has ended. In this embodiment, when steps 611 and 613 are started and a predetermined time (for example, about 8 minutes) has elapsed, it is determined that the particulates have been burned, and step 617 is continued.
To 619 SO x poisoning elimination operation is executed. That is, in step 617, the secondary air supply from the secondary air supply device 11 is stopped while the fully closed state of the shutoff valve and the reducing agent supply amount from the reducing agent supply device 12 are maintained. As described above, in this state, the NO x absorbent carried on the particulate filter is at a high temperature (500 ° C. or higher) due to the combustion of particulates, and the shutoff valve is fully closed and the reducing agent supply amount is maintained. temperature and the NO X absorbent than significantly during playback operation of normal of the NO X absorbent by stopped while the supply of secondary air will be placed in a rich atmosphere. Therefore, SO X absorbed by the NO X absorbent is S
Is rapidly released from the NO X absorbent in the form of O 2, NO X
SO X poisoning of the absorbent is eliminated.

【0046】次いでステップ619ではSOX 被毒解消
操作が完了したか否かが判断される。本実施例ではステ
ップ617の被毒解消操作が開始されてから所定時間
(例えば数秒から数十秒)が経過したときにSOX 被毒
が解消したと判断され、ステップ621で遮断弁9a、
9bの状態を保持したまま還元剤の供給が停止される。
これにより、NOX 吸収剤の再生とSOX 被毒解消及び
パティキュレートの燃焼が完了したパティキュレートフ
ィルタは待機状態に保持される。
Next, at step 619, it is judged if the SO X poisoning elimination operation is completed. In the present embodiment, it is determined that SO X poisoning has been eliminated when a predetermined time (for example, several seconds to several tens of seconds) has elapsed since the poisoning elimination operation of step 617 was started, and in step 621 the shutoff valve 9a,
The supply of the reducing agent is stopped while maintaining the state of 9b.
As a result, the particulate filter that has completed the regeneration of the NO X absorbent, the SO X poisoning elimination, and the burning of the particulates is held in the standby state.

【0047】本実施例においては、エンジン自体の排気
流量を絞ることなくSOX 被毒を解消することができる
ため、運転状態に左右されることなくNOX 吸収剤のS
X被毒解消操作を行うことができ、NOX 吸収剤の吸
収能力を常に高い状態に維持することができる。また、
図1の実施例と同様パティキュレートフィルタに捕集さ
れたパティキュレートの燃焼後にSOX 被毒解消操作を
行うため、SOX 被毒解消のために特別な加熱手段を設
ける必要がなく、簡易にSOX 被毒を解消することがで
きる図1の実施例と同様な効果を得ることができる。
In the present embodiment, SO X poisoning can be eliminated without throttling the exhaust flow rate of the engine itself, so the S of NO X absorbent is not affected by operating conditions.
O X poisoning elimination operation can be performed, and the absorption capacity of the NO X absorbent can be constantly maintained at a high level. Also,
As in the embodiment of FIG. 1, since the SO X poisoning elimination operation is performed after burning the particulates collected by the particulate filter, it is not necessary to provide a special heating means for SO X poisoning elimination, and it is easy to perform. It is possible to obtain the same effect as that of the embodiment of FIG. 1 that can eliminate SO X poisoning.

【0048】[0048]

【発明の効果】本発明は、パティキュレートフィルタに
捕集されたパティキュレートを燃焼させる際に発生する
熱をNOX 吸収剤のSOX 被毒解消に利用することがで
きるようにNOX 吸収剤とパティキュレートフィルタを
相互に熱伝達可能な位置に配置し、パティキュレートフ
ィルタに捕集されたパティキュレートの燃焼を行った後
にNOX 吸収剤のSOX 被毒解消操作を行うようにした
ことにより、SOX 被毒解消操作のために特別な加熱手
段を設けることなく簡易にNOX 吸収剤のSOX被毒を
解消することができるとともに、SOX 被毒解消操作時
にNOX 吸収剤を加熱するために外部から供給するエネ
ルギを大幅に低減できる効果を奏する。
According to the present invention, the NO X absorbent to be able to utilize the heat generated during the combustion of particulates trapped in the particulate filter in SO X poisoning recovery of the NO X absorbent and placing the particulate filter to another heat transfer possible positions, by which to perform the sO X poisoning removing operation of the NO X absorbent after the burning of particulates trapped in the particulate filter , it is possible to eliminate the sO X poisoning simple in the NO X absorbent without providing any special heating means for sO X poisoning recovery operation, heating the NO X absorbent when sO X poisoning recovery operation Therefore, it is possible to significantly reduce the energy supplied from the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】パティキュレートフィルタ10の拡大断面図で
ある。
FIG. 2 is an enlarged cross-sectional view of the particulate filter 10.

【図3】NOX の吸放出作用を説明するための図であ
る。
FIG. 3 is a diagram for explaining the action of NO X absorption and release.

【図4】図1の実施例のNOX 吸収剤のSOX 被毒解消
操作を示すフローチャートである。
4 is a flow chart showing a SO X poisoning elimination operation of the NO X absorbent of the embodiment of FIG.

【図5】本発明の第二の実施例を示す図である。FIG. 5 is a diagram showing a second embodiment of the present invention.

【図6】図5の実施例のNOX 吸収剤のSOX 被毒解消
操作を示すフローチャートである。
FIG. 6 is a flowchart showing a SO X poisoning elimination operation of the NO X absorbent of the embodiment of FIG.

【符号の説明】[Explanation of symbols]

2…ディーゼルエンジン 6…排気通路 8…吸気絞り弁 9a、9b…排気遮断弁 10…パティキュレートフィルタ 11…二次空気供給装置 12…還元剤供給装置 26…NOX 吸収剤2 ... Diesel engine 6 ... Exhaust passage 8 ... Intake throttle valve 9a, 9b ... Exhaust cutoff valve 10 ... Particulate filter 11 ... Secondary air supply device 12 ... Reductant supply device 26 ... NO X absorbent

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 ZAB E R F02D 41/04 305 Z 8011−3G 43/00 301 T 7536−3G E 7536−3G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F01N 3/24 ZAB ER F02D 41/04 305 Z 8011-3G 43/00 301 T 7536-3G E 7536-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入排気の空燃比がリーンのときにNO
X を吸収し流入排気の酸素濃度が低下したときに吸収し
たNOX を放出するNOX 吸収剤をディーゼルエンジン
の排気通路に配置して排気中のNOX を吸収させ、NO
X 吸収後に前記NOX 吸収剤に流入する排気空燃比をリ
ッチにして前記NOX 吸収剤から吸収したNOX を放出
させるとともに放出されたNOX を還元浄化する排気浄
化装置において、前記NOX 吸収剤と排気中の微粒子を
捕集するパティキュレートフィルタとを相互に熱伝達可
能な位置に配置し、NOX 吸収剤に流入する排気空燃比
をリッチにして前記NOX の放出と還元浄化を行い、そ
の後前記パティキュレートフィルタに捕集されたパティ
キュレートを燃焼させ、このパティキュレート燃焼操作
終了後に再度前記NOX 吸収剤に流入する排気空燃比を
リッチにしてNO X 吸収剤のSOX 被毒を解消すること
を特徴とする内燃機関の排気浄化装置。
1. NO when the air-fuel ratio of the inflowing exhaust gas is lean
XAbsorbed when the oxygen concentration in the exhaust gas decreases
NOXReleases NOXAbsorbent diesel engine
Placed in the exhaust passage of the NO in the exhaustXAbsorbed, NO
XNO after absorptionXThe exhaust air-fuel ratio flowing into the absorbent is
The above NOXNO absorbed from the absorbentXEmit
NO releasedXExhaust purification to reduce and purify
In the gasification device, the NOXAbsorbent and particulates in the exhaust
Heat transfer between the collecting particulate filter and each other
Place it in an effective position, NOXExhaust air-fuel ratio flowing into the absorbent
Enriched with NOXRelease and reduction purification,
After the particulates collected by the particulate filter
This particulate burning operation to burn the curate
After the end, the NO againXThe exhaust air-fuel ratio flowing into the absorbent
Rich and NO XAbsorbent SOXEliminate poisoning
An exhaust emission control device for an internal combustion engine, characterized by:
JP5060038A 1993-03-19 1993-03-19 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP2727906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060038A JP2727906B2 (en) 1993-03-19 1993-03-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060038A JP2727906B2 (en) 1993-03-19 1993-03-19 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06272541A true JPH06272541A (en) 1994-09-27
JP2727906B2 JP2727906B2 (en) 1998-03-18

Family

ID=13130509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060038A Expired - Lifetime JP2727906B2 (en) 1993-03-19 1993-03-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2727906B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746989A (en) * 1995-08-14 1998-05-05 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas of a diesel engine
EP0896134A2 (en) 1997-08-06 1999-02-10 Mazda Motor Corporation Exhaust gas purifying system for engine
US5974791A (en) * 1997-03-04 1999-11-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
WO1999061763A1 (en) * 1998-05-27 1999-12-02 Volvo Personvagnar Ab Method and arrangement for sulphur oxide regeneration of an exhaust catalyst
EP0976915A2 (en) * 1998-07-28 2000-02-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
WO2000008311A1 (en) * 1998-08-07 2000-02-17 Volkswagen Aktiengesellschaft Method and device for desulfurising a catalyst system
EP1064984A2 (en) * 1999-06-23 2001-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier and method for purifying internal combustion engine exhaust gas
EP1086741A2 (en) * 1999-09-22 2001-03-28 Volkswagen Aktiengesellschaft Process for controlling the regeneration of a particulate filter and the desulphurisation of a NOx storage catalyst
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
JP2001317338A (en) * 2000-04-28 2001-11-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
FR2809767A1 (en) * 2000-06-01 2001-12-07 Toyota Motor Co Ltd Nitrogen oxide removal device from exhaust gases from internal combustion engine, comprises catalytic apparatus which can be regenerated by one of two ways
JP2001342820A (en) * 2000-03-29 2001-12-14 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2002021544A (en) * 2000-05-12 2002-01-23 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for removing nitrogen oxide and carbon-black particulate from dilute exhaust in internal combustion engine, and exhaust emission control system therefor
FR2812029A1 (en) 2000-07-24 2002-01-25 Toyota Motor Co Ltd Exhaust gas purification comprises use of nitrogen oxide adsorption/discharge agent supported by oxidizing particle filter, where exhaust gas air/fuel ratio is raised to recover agent from sulfur poisoning
US6367246B1 (en) * 1997-04-24 2002-04-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
JP2002349237A (en) * 2001-05-25 2002-12-04 Toyota Motor Corp Exhaust emission control device
US6490857B2 (en) 2000-06-29 2002-12-10 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6510686B2 (en) 2000-03-27 2003-01-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine and method for purifying exhaust gas
JP2003083040A (en) * 2001-09-05 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2003025374A1 (en) 2001-09-18 2003-03-27 Nissan Motor Co., Ltd. Excess air factor control of diesel engine
US6546721B2 (en) 2000-04-18 2003-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
EP1174600A3 (en) * 2000-07-21 2003-06-18 Toyota Jidosha Kabushiki Kaisha Emission control system and method of internal combustion engine
US6588203B2 (en) 2000-07-03 2003-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust device of internal combustion engine
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6594991B2 (en) 2000-03-27 2003-07-22 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus of an internal combustion engine
US6644022B2 (en) 2000-03-29 2003-11-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
EP1298291A3 (en) * 2001-10-01 2003-12-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine and control method thereof
US6672989B2 (en) 2001-02-06 2004-01-06 Toyota Jidosha Kabushiki Kaisha Direct injection type engine
EP1433932A1 (en) * 2002-12-26 2004-06-30 Nissan Motor Company, Limited Device and method for freeing the catalyst of a diesel engine from the effect of sulfur poisoning
US6769245B2 (en) 2000-02-16 2004-08-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method
US6813882B2 (en) 2001-12-18 2004-11-09 Ford Global Technologies, Llc System and method for removing NOx from an emission control device
US6823665B2 (en) 2000-07-24 2004-11-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US6874316B2 (en) 2002-04-25 2005-04-05 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
FR2865240A1 (en) * 2000-08-15 2005-07-22 Daimler Chrysler Ag EXHAUST GAS PURIFYING SYSTEM WITH PARTICLE FILTER AND ABSORBER FOR NITROGEN OXIDES, AND METHOD FOR IMPLEMENTING THE SAME
FR2867228A1 (en) * 2004-03-08 2005-09-09 Toyota Motor Co Ltd Eliminating sulfur oxides poisoning in nitrogen oxide catalyst for exhaust gas emissions of internal combustion engine
US6978603B2 (en) 2002-01-16 2005-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device-equipped internal combustion engine and exhaust gas control method
WO2006006031A1 (en) * 2004-07-05 2006-01-19 Toyota Jidosha Kabushiki Kaisha Control method and control device for exhaust gas control apparatus
WO2006118344A1 (en) * 2005-05-02 2006-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
US7165394B2 (en) 2003-05-14 2007-01-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP1745836A1 (en) * 2005-07-21 2007-01-24 Ford Global Technologies, LLC A method and an arrangement for purifying exhaust gas in an internal combustion engine
US7181904B2 (en) 2003-10-29 2007-02-27 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of compression ignition type internal combustion engine
WO2007046519A1 (en) 2005-10-18 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
JP2007162532A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
WO2008004704A1 (en) 2006-07-05 2008-01-10 Toyota Jidosha Kabushiki Kaisha Control unit and control method for internal combustion engine
JP2009057981A (en) * 2008-12-18 2009-03-19 Denso Corp Exhaust emission control device for internal combustion engine
EP1510671A3 (en) * 2003-08-29 2010-06-09 Isuzu Motors Limited Exhaust gas purifying method and exhaust gas purifying system
US7963102B2 (en) 2005-03-09 2011-06-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
US8104271B2 (en) 2006-07-04 2012-01-31 Toyota Jidosha Kabushiki Kaisha Exhaust purification device and exhaust purification method of internal combustion engine
US8484952B2 (en) 2006-06-09 2013-07-16 Toyota Jidosha Kabushiki Kaisha Device for purification of exhaust gas
JP2015045260A (en) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 Control device for internal combustion engine
EP3521595A1 (en) * 2018-02-06 2019-08-07 Mazda Motor Corporation Engine system, method of controlling engine system, and computer program product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757856B2 (en) 2001-12-07 2006-03-22 トヨタ自動車株式会社 Exhaust gas purification device
JP3757894B2 (en) 2002-04-15 2006-03-22 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine and exhaust purification method for internal combustion engine
JP4052178B2 (en) 2003-05-15 2008-02-27 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4270170B2 (en) 2004-11-02 2009-05-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4254721B2 (en) 2005-02-04 2009-04-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746989A (en) * 1995-08-14 1998-05-05 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas of a diesel engine
US5974791A (en) * 1997-03-04 1999-11-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
US6367246B1 (en) * 1997-04-24 2002-04-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
US6141960A (en) * 1997-08-06 2000-11-07 Mazda Motor Corporation Exhaust gas purifying system for engine
EP0896134A2 (en) 1997-08-06 1999-02-10 Mazda Motor Corporation Exhaust gas purifying system for engine
EP0896134A3 (en) * 1997-08-06 2000-06-28 Mazda Motor Corporation Exhaust gas purifying system for engine
WO1999061763A1 (en) * 1998-05-27 1999-12-02 Volvo Personvagnar Ab Method and arrangement for sulphur oxide regeneration of an exhaust catalyst
EP0976915A3 (en) * 1998-07-28 2000-08-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US6233927B1 (en) 1998-07-28 2001-05-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
EP0976915A2 (en) * 1998-07-28 2000-02-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
WO2000008311A1 (en) * 1998-08-07 2000-02-17 Volkswagen Aktiengesellschaft Method and device for desulfurising a catalyst system
EP1064984A3 (en) * 1999-06-23 2001-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier and method for purifying internal combustion engine exhaust gas
EP1064984A2 (en) * 1999-06-23 2001-01-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier and method for purifying internal combustion engine exhaust gas
US6361579B1 (en) 1999-06-23 2002-03-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier and method for internal combustion engine
EP1086741A2 (en) * 1999-09-22 2001-03-28 Volkswagen Aktiengesellschaft Process for controlling the regeneration of a particulate filter and the desulphurisation of a NOx storage catalyst
EP1086741A3 (en) * 1999-09-22 2002-01-02 Volkswagen Aktiengesellschaft Process for controlling the regeneration of a particulate filter and the desulphurisation of a NOx storage catalyst
US6769245B2 (en) 2000-02-16 2004-08-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method
US6786041B2 (en) 2000-02-16 2004-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification apparatus
US6510686B2 (en) 2000-03-27 2003-01-28 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine and method for purifying exhaust gas
US6874315B2 (en) 2000-03-27 2005-04-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
CN1325773C (en) * 2000-03-27 2007-07-11 丰田自动车株式会社 Exhaust gas cleaning device
US6588204B2 (en) 2000-03-27 2003-07-08 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
WO2001073271A1 (en) * 2000-03-27 2001-10-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device
US6681566B2 (en) 2000-03-27 2004-01-27 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus of an internal combustion engine
US6594991B2 (en) 2000-03-27 2003-07-22 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus of an internal combustion engine
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2001342820A (en) * 2000-03-29 2001-12-14 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US6644022B2 (en) 2000-03-29 2003-11-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US6546721B2 (en) 2000-04-18 2003-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
JP2001317338A (en) * 2000-04-28 2001-11-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002021544A (en) * 2000-05-12 2002-01-23 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for removing nitrogen oxide and carbon-black particulate from dilute exhaust in internal combustion engine, and exhaust emission control system therefor
JP2011256869A (en) * 2000-05-12 2011-12-22 Umicore Ag & Co Kg Method for removing nitrogen oxide and carbon black particulates from lean exhaust gas of internal combustion engine
FR2809767A1 (en) * 2000-06-01 2001-12-07 Toyota Motor Co Ltd Nitrogen oxide removal device from exhaust gases from internal combustion engine, comprises catalytic apparatus which can be regenerated by one of two ways
US6490857B2 (en) 2000-06-29 2002-12-10 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6588203B2 (en) 2000-07-03 2003-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust device of internal combustion engine
EP1174600A3 (en) * 2000-07-21 2003-06-18 Toyota Jidosha Kabushiki Kaisha Emission control system and method of internal combustion engine
US7296401B2 (en) 2000-07-21 2007-11-20 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
EP1500800A1 (en) * 2000-07-21 2005-01-26 Toyota Jidosha Kabushiki Kaisha Emission control system and method of internal combustion engine
US6823665B2 (en) 2000-07-24 2004-11-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US7059113B2 (en) 2000-07-24 2006-06-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
FR2812029A1 (en) 2000-07-24 2002-01-25 Toyota Motor Co Ltd Exhaust gas purification comprises use of nitrogen oxide adsorption/discharge agent supported by oxidizing particle filter, where exhaust gas air/fuel ratio is raised to recover agent from sulfur poisoning
FR2865240A1 (en) * 2000-08-15 2005-07-22 Daimler Chrysler Ag EXHAUST GAS PURIFYING SYSTEM WITH PARTICLE FILTER AND ABSORBER FOR NITROGEN OXIDES, AND METHOD FOR IMPLEMENTING THE SAME
US6672989B2 (en) 2001-02-06 2004-01-06 Toyota Jidosha Kabushiki Kaisha Direct injection type engine
JP2002349237A (en) * 2001-05-25 2002-12-04 Toyota Motor Corp Exhaust emission control device
JP4599759B2 (en) * 2001-05-25 2010-12-15 トヨタ自動車株式会社 Exhaust gas purification device
JP2003083040A (en) * 2001-09-05 2003-03-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4586321B2 (en) * 2001-09-05 2010-11-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2003025374A1 (en) 2001-09-18 2003-03-27 Nissan Motor Co., Ltd. Excess air factor control of diesel engine
US6993901B2 (en) 2001-09-18 2006-02-07 Nissan Motor Co., Ltd. Excess air factor control of diesel engine
CN100339576C (en) * 2001-09-18 2007-09-26 日产自动车株式会社 Excess air factor control of diesel engine
EP1298291A3 (en) * 2001-10-01 2003-12-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine and control method thereof
US6813882B2 (en) 2001-12-18 2004-11-09 Ford Global Technologies, Llc System and method for removing NOx from an emission control device
US6978603B2 (en) 2002-01-16 2005-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device-equipped internal combustion engine and exhaust gas control method
US6874316B2 (en) 2002-04-25 2005-04-05 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
EP1433932A1 (en) * 2002-12-26 2004-06-30 Nissan Motor Company, Limited Device and method for freeing the catalyst of a diesel engine from the effect of sulfur poisoning
CN1306150C (en) * 2002-12-26 2007-03-21 日产自动车株式会社 Eliminating sulfur poisoning of diesel engine catalyzer
US7165394B2 (en) 2003-05-14 2007-01-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US7464542B2 (en) 2003-05-14 2008-12-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
EP1510671A3 (en) * 2003-08-29 2010-06-09 Isuzu Motors Limited Exhaust gas purifying method and exhaust gas purifying system
US7181904B2 (en) 2003-10-29 2007-02-27 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of compression ignition type internal combustion engine
FR2867228A1 (en) * 2004-03-08 2005-09-09 Toyota Motor Co Ltd Eliminating sulfur oxides poisoning in nitrogen oxide catalyst for exhaust gas emissions of internal combustion engine
CN100445524C (en) * 2004-07-05 2008-12-24 丰田自动车株式会社 Control method and control device for exhaust gas control apparatus
WO2006006031A1 (en) * 2004-07-05 2006-01-19 Toyota Jidosha Kabushiki Kaisha Control method and control device for exhaust gas control apparatus
KR100828986B1 (en) * 2004-07-05 2008-05-14 도요다 지도샤 가부시끼가이샤 Control method and control device for exhaust gas control apparatus
US7963102B2 (en) 2005-03-09 2011-06-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
WO2006118344A1 (en) * 2005-05-02 2006-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
US7908844B2 (en) 2005-05-02 2011-03-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP1745836A1 (en) * 2005-07-21 2007-01-24 Ford Global Technologies, LLC A method and an arrangement for purifying exhaust gas in an internal combustion engine
US7954313B2 (en) 2005-10-18 2011-06-07 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
WO2007046519A1 (en) 2005-10-18 2007-04-26 Toyota Jidosha Kabushiki Kaisha Exhaust cleaner for internal combustion engine
JP2007162532A (en) * 2005-12-12 2007-06-28 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US8484952B2 (en) 2006-06-09 2013-07-16 Toyota Jidosha Kabushiki Kaisha Device for purification of exhaust gas
US8104271B2 (en) 2006-07-04 2012-01-31 Toyota Jidosha Kabushiki Kaisha Exhaust purification device and exhaust purification method of internal combustion engine
WO2008004704A1 (en) 2006-07-05 2008-01-10 Toyota Jidosha Kabushiki Kaisha Control unit and control method for internal combustion engine
US8191353B2 (en) 2006-07-05 2012-06-05 Toyota Jidosha Kabushiki Kaisha Device and method for controlling internal combustion engine
JP2009057981A (en) * 2008-12-18 2009-03-19 Denso Corp Exhaust emission control device for internal combustion engine
JP2015045260A (en) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 Control device for internal combustion engine
EP3521595A1 (en) * 2018-02-06 2019-08-07 Mazda Motor Corporation Engine system, method of controlling engine system, and computer program product

Also Published As

Publication number Publication date
JP2727906B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP2727906B2 (en) Exhaust gas purification device for internal combustion engine
JP2722987B2 (en) Exhaust gas purification device for internal combustion engine
JP3645704B2 (en) Exhaust gas purification device for internal combustion engine
JP3248187B2 (en) Exhaust gas purification device for internal combustion engine
JP4413020B2 (en) Exhaust gas purification device and control method thereof
JP3899534B2 (en) Exhaust gas purification method for diesel engine
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3201237B2 (en) Exhaust gas purification device for internal combustion engine
JP3613669B2 (en) Exhaust gas purification device for internal combustion engine
KR100437521B1 (en) System for purifying an exhaust gas of internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP3374780B2 (en) Exhaust gas purification device for internal combustion engine
JP2830669B2 (en) Exhaust gas purification device for internal combustion engine
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JPH06307230A (en) Exhaust gas purifying device of internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP2842135B2 (en) Exhaust gas purification device for internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JP4178797B2 (en) Exhaust gas purification device for internal combustion engine
JP2004036405A (en) Exhaust emission control device
JP2830652B2 (en) Exhaust gas purification device for internal combustion engine
JPH06272536A (en) Exhaust emission control device for internal combustion engine
JP3473496B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 16