JP2891057B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP2891057B2
JP2891057B2 JP24300193A JP24300193A JP2891057B2 JP 2891057 B2 JP2891057 B2 JP 2891057B2 JP 24300193 A JP24300193 A JP 24300193A JP 24300193 A JP24300193 A JP 24300193A JP 2891057 B2 JP2891057 B2 JP 2891057B2
Authority
JP
Japan
Prior art keywords
absorbent
exhaust
fuel ratio
exhaust gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24300193A
Other languages
Japanese (ja)
Other versions
JPH0797917A (en
Inventor
泰生 原田
康 荒木
信也 広田
喜代志 小端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24300193A priority Critical patent/JP2891057B2/en
Publication of JPH0797917A publication Critical patent/JPH0797917A/en
Application granted granted Critical
Publication of JP2891057B2 publication Critical patent/JP2891057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、詳細には、ディーゼルエンジンや希薄燃焼を
行うガソリンエンジン等、リーン空燃比の燃焼を行う内
燃機関の排気中のNOX を効果的に除去可能な排気浄化
装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an exhaust purifying apparatus for an internal combustion engine, in particular, a gasoline engine or the like for a diesel engine or lean burn, the NO X in the exhaust gas of an internal combustion engine causing combustion of lean air-fuel ratio The present invention relates to an exhaust purification device that can be removed effectively.

【0002】[0002]

【従来の技術】この種の排気浄化装置の例としては、例
えば特開昭62─106826号公報に開示されたもの
がある。同公報の装置は、ディーゼル機関の排気通路
に、酸素の存在下でNOX を吸収する吸収剤(触媒)を
配置して排気中のNOX を吸収させ、該吸収剤のNOX
吸収能力が飽和したときに吸収剤への排気の流入を遮断
して吸収剤に還元剤を供給し、NOX 吸収剤をリッチ空
燃比下の雰囲気にすることにより吸収剤からNOXを放
出させるとともに放出されたNOX を還元浄化するよう
にしたものである。
2. Description of the Related Art An example of this type of exhaust gas purifying apparatus is disclosed, for example, in Japanese Patent Application Laid-Open No. 62-106826. The apparatus of this publication, in an exhaust passage of a diesel engine, absorbent absorbs NO X in the presence of oxygen by placing a (catalyst) to absorb the NO X in the exhaust gas, NO X in the absorbent
Absorption capacity and cut off the flow of exhaust gas into the absorber when saturated supplying reducing agent to the absorbent to release NO X from the absorbent by the the NO X absorbent in an atmosphere under a rich air-fuel ratio In addition, the NO X released together with the above is reduced and purified.

【0003】[0003]

【発明が解決しようとする課題】上記特開昭62─10
6826号公報の排気浄化装置では、NOX 吸収剤への
排気の流入を遮断してNOX 吸収剤に還元剤を供給する
ことにより、NOX 吸収剤の再生操作を行っている(な
お、本明細書では上記のNOX 吸収剤からのNO X 放出
及び還元浄化の操作を「NOX 吸収剤の再生操作」と呼
ぶ)。ところが、上記公報の装置では再生操作終了後、
次のNOX 吸収操作再開までの待機期間中NOX 吸収剤
を排気の流入を遮断したままの状態に保持すると、高温
の排気が供給されないため、待機期間中にNOX 吸収剤
の温度が低下してしまう場合がある。特に、排気通路に
複数のNOX 吸収剤を並列に接続して、順番に排気の流
入を遮断してNOX 吸収剤の再生を行うような場合に
は、各NOX 吸収剤のNOX 吸収能力を最大限に利用す
るためにNOX の吸収を行う時間は再生に必要な時間よ
り大幅に長く設定される。このため、再生操作終了後の
待機期間が長くなり、NOX 吸収剤の温度低下も大きく
なる。
Problems to be Solved by the Invention
In the exhaust gas purifying apparatus disclosed in Japanese Patent No. 6826, NOXTo the absorbent
NO by shutting off the inflow of exhaustXSupply reducing agent to absorbent
NOXThe absorbent is being regenerated.
In this specification, the above NOXNO from absorbent Xrelease
And the operation of reduction purificationXAbsorbent regeneration operation ''
Bu). However, in the device of the above publication, after the end of the reproduction operation,
Next NOXNO during standby period until absorption operation restartXAbsorbent
Keeps the exhaust
Is not supplied during the standby period.XAbsorbent
Temperature may decrease. Especially in the exhaust passage
Multiple NOXConnect the absorbents in parallel and turn the exhaust
Shut off and NOXIn the case of regenerating absorbent
Means each NOXAbsorbent NOXMake the most of your absorption capacity
NO toXThe time to absorb the water is the time required for regeneration
Set much longer. For this reason, after the end of the playback operation,
Waiting period becomes longer, NOXLarge temperature drop of absorbent
Become.

【0004】NOX 吸収剤のNOX 吸収能力は低温域で
は大幅に低下してしまうため、上記のように待機期間中
にNOX 吸収剤の温度が低下すると、NOX の吸収を再
開した場合にNOX 吸収剤が所定の吸収能力を発揮でき
ず、排気中のNOX の浄化効率が低下してしまう問題が
生じる。これを解決するために、NOX 吸収剤の再生終
了後直ちにNOX 吸収操作を開始して待機期間中のNO
X 吸収剤の温度低下を防止することも可能であるが、前
述のように複数のNOX 吸収剤を並列に排気通路に接続
して切り換えて使用するような場合には吸収と再生の切
換え周期を短縮すると各NOX 吸収剤のNOX 吸収能力
を有効に活用できなくなる問題がある。また、NOX
収剤への排気流入遮断に伴う排気抵抗の変動により機関
出力に影響が生じる場合があり、切換え周期を短縮する
ことは好ましくない。
[0004] Since NO X absorbing capacity of the NO X absorbent is lowered significantly in the low temperature range, the temperature of the NO X absorbent is lowered during the waiting period, as described above, when restarting the absorption of the NO X the NO X absorbent can not exhibit a predetermined absorbent capacity, a problem that the purification efficiency of the NO X in the exhaust gas decreases occur. To solve this problem, NO waiting period to start playback immediately after termination NO X absorbing operation of the NO X absorbent
Although it is possible to prevent the temperature of the X absorbent from lowering, in the case where a plurality of NO X absorbents are connected in parallel to the exhaust passage for switching as described above, the switching cycle between the absorption and the regeneration is used. These shortened there is a problem that effectively no longer take advantage of the NO X absorption capability of each the NO X absorbent. Also, there are cases where the effect on the engine output caused by exhaust flowing blocked accompanying the exhaust resistance variation to the NO X absorbent, it is not preferable to shorten the switching cycle.

【0005】本発明は上記に鑑み、再生操作終了後の待
機期間中のNOX 吸収剤の温度低下を防止し、NOX
収操作再開時のNOX 吸収剤の吸収能力を高く維持する
ことが可能な内燃機関の排気浄化装置を提供することを
目的としている。
[0005] The present invention has been made in view of the above, to prevent the temperature decrease of the NO X absorbent during the waiting period after regeneration operation end, it is maintained at a high level the absorption capacity of the NO X absorbing operation resumption of the NO X absorbent It is an object of the present invention to provide a possible exhaust gas purification device for an internal combustion engine.

【0006】[0006]

【課題を解決するための手段】本発明によれば、リーン
空燃比の燃焼を行うことのできる内燃機関の排気通路
に、流入排気の空燃比がリーンのときに排気中のNOX
を吸収し、流入排気中に還元剤が供給され酸素濃度が低
下したときに吸収したNOX を放出するNOX 吸収剤を
配置し、NOX を吸収させた後にNOX 吸収剤に流入す
る排気流量を低減するとともにNOX 吸収剤に還元剤を
供給して吸収したNOX を放出させる再生操作と、再生
終了後に排気流量を回復させてNOX 吸収を再開する操
作とを繰り返す内燃機関の排気浄化装置において、排気
流量を回復させて前記NOX 吸収を再開する前の所定期
間NOX 吸収剤に還元剤を供給してNOX 吸収剤を通過
する排気空燃比を理論空燃比近傍に制御する手段を設け
たことを特徴とする内燃機関の排気浄化装置が提供され
る。
According to the present invention, in order to solve the problems], in an exhaust passage of an internal combustion engine capable of performing combustion of the lean air-fuel ratio, NO X in the exhaust gas when the air-fuel ratio of the inflowing exhaust is lean
Absorb oxygen concentration reducing agent is supplied to the inflowing exhaust is arranged the NO X absorbent to release the absorbed NO X when dropped, flows into the NO X absorbent after imbibed with NO X exhaust An exhaust gas of an internal combustion engine that repeats a regeneration operation of reducing the flow rate and supplying the reducing agent to the NO X absorbent to release the absorbed NO X and an operation of restoring the exhaust flow rate and restarting the NO X absorption after the regeneration is completed in purifying apparatus for controlling the air-fuel ratio of the exhaust gas passing through the the NO X absorbent and supplying the reducing agent in a predetermined time period the NO X absorbent before resuming the NO X absorbed by recovering exhaust flow rate to near stoichiometric air-fuel ratio There is provided an exhaust gas purification device for an internal combustion engine, characterized by comprising means.

【0007】[0007]

【作用】NOX 吸収再開前に、NOX 吸収剤に理論空燃
比近傍の空燃比の排気と還元剤との混合気が供給され、
NOX 吸収剤上で還元剤の酸化反応熱が生じる。これに
より、待機期間中のNOX 吸収剤の温度が高く維持さ
れ、NOX 吸収再開時のNOX 吸収剤の吸収能力低下が
生じない。
[Action] Prior NO X absorbent resumed, the air-fuel mixture and the exhaust of the air-fuel ratio of the near stoichiometric air-fuel ratio and the reducing agent is supplied to the NO X absorbent,
The heat of oxidation of the reducing agent is generated on the NO x absorbent. Accordingly, the temperature of the NO X absorbent during the waiting period is kept high, the absorption capacity reduction of the NO X absorbent resumption of the NO X absorbent does not occur.

【0008】[0008]

【実施例】以下、添付図面を用いて本発明の実施例を説
明する。図1において、1はディーゼルエンジン、希薄
燃焼を行うガソリンエンジン等のリーン空燃比の燃焼を
行うことのできる内燃機関、3は内燃機関1の排気通路
を示す。本実施例では排気通路3には2つの分岐通路3
a、3bが設けられており、通路3a、3bにはそれぞ
れ流入する排気空燃比がリーンのときに排気中のNOX
を吸収し、排気中の酸素濃度が低下したときに吸収した
NOX を放出するNOX 吸収剤、それぞれ5a、5bが
接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes an internal combustion engine capable of performing combustion at a lean air-fuel ratio, such as a diesel engine or a gasoline engine performing lean combustion, and 3 denotes an exhaust passage of the internal combustion engine 1. In this embodiment, the exhaust passage 3 has two branch passages 3.
a, 3b are provided, NO X in the exhaust gas when the passage 3a, the exhaust air-fuel ratio flowing into each of the 3b lean
Absorb, NO X absorbent oxygen concentration in the exhaust gas to release NO X absorbed when lowered, respectively 5a, 5b are connected.

【0009】また、排気通路3の通路3a、3bの分岐
部には排気切り換え弁2が設けられ、排気通路3a、3
bの任意の一方を所定の開度に閉鎖して排気通路3a、
3bに排気を分配するようになっている。例えば排気切
換え弁2が図1に実線で示した位置に切り換えられる
と、排気の大部分は分岐通路3b側に流入し、分岐通路
3a側に流入する排気流量が低減される。また、排気切
換え弁2が図1に点線で示した位置に切り換えられる
と、排気の大部分は分岐通路3a側に流入し、分岐通路
3b側に流入する排気流量が低減される。図に2aで示
すのは、後述するエンジン制御回路(ECU)20から
の制御信号により切り換え弁2を駆動して所定の切り換
え位置をとらせるための負圧アクチュエータ等、適宜な
形式のアクチュエータである。
An exhaust switching valve 2 is provided at a branch of the exhaust passage 3 from the passages 3a and 3b.
b is closed to a predetermined opening to exhaust passage 3a,
The exhaust gas is distributed to 3b. For example, when the exhaust switching valve 2 is switched to the position shown by the solid line in FIG. 1, most of the exhaust flows into the branch passage 3b, and the flow rate of the exhaust flowing into the branch passage 3a is reduced. When the exhaust switching valve 2 is switched to the position shown by the dotted line in FIG. 1, most of the exhaust flows into the branch passage 3a, and the flow rate of the exhaust flowing into the branch passage 3b is reduced. An actuator of an appropriate type, such as a negative pressure actuator for driving the switching valve 2 to a predetermined switching position by driving a switching valve 2 by a control signal from an engine control circuit (ECU) 20 to be described later, is shown in FIG. .

【0010】また、本実施例では分岐通路3a、3bは
NOX 吸収剤5a、5b下流側で再び合流しており、こ
の合流部には排気切換え弁2と同様な排気切換え弁22
と、アクチュエータ22aとが設けられている。排気切
換え弁22は、排気切換え弁2と連動して作動し、それ
ぞれの分岐通路に流入する排気流量を制御するととも
に、後述のNOX 吸収剤再生操作時に再生中のNOX
収剤に下流側から排気が逆流することを防止している。
[0010] The branch passage 3a in the present embodiment, 3b is the NO X absorbent 5a, are joined again at 5b downstream, the exhaust switching valve 2 is in the merging portion similar exhaust switching valve 22
And an actuator 22a. Exhaust switching valve 22 operates in conjunction with the exhaust switching valve 2 controls the flow rate of the exhaust gas flowing into the respective branch passages, the downstream side in the NO X absorbent during regeneration when the NO X absorbent regeneration operation described later Exhaust is prevented from flowing backwards.

【0011】更に、分岐通路3a、3bのNOX 吸収剤
5a、5b上流側には後述する還元剤供給装置11から
NOX 吸収剤5a、5bに還元剤を供給する還元剤供給
ノズル、それぞれ12a、12bが接続されている。ま
た、図1に7a、7bで示すのは、それぞれ分岐通路3
a、3bのNOX 吸収剤5a、5b下流側に配置された
空燃比センサである。空燃比センサ7a、7bは排気中
の酸素濃度を検出し、広い範囲で排気空燃比に対応した
出力電圧を発生する、いわゆる全域空燃比センサが使用
される。
Furthermore, branch passages 3a, NO X absorbent 5a of 3b, NO X absorbent 5a from the reducing agent supply device 11 to be described later to 5b upstream, the reducing agent supply nozzle for supplying a reducing agent to 5b, respectively 12a , 12b are connected. In FIG. 1, reference numerals 7a and 7b denote branch passages 3 respectively.
a, NO X absorbent 5a of 3b, a air-fuel ratio sensor disposed in 5b the downstream side. As the air-fuel ratio sensors 7a and 7b, so-called all-range air-fuel ratio sensors that detect the oxygen concentration in the exhaust gas and generate an output voltage corresponding to the exhaust air-fuel ratio in a wide range are used.

【0012】図に20で示すのはエンジン1の制御回路
(ECU)である。ECU20はCPU、RAM、RO
M、及び入力ポート、出力ポートを相互に双方向バスで
接続した構成の公知のディジタルコンピュータからな
り、エンジンの燃料噴射量制御等の基本制御を行ってい
る。また、本実施例ではECU20は、更に、図示しな
い駆動回路や負圧制御弁等を介してアクチュエータ2
a、22aを駆動して排気切り換え弁2、22の切り換
え位置制御を行うほか、還元剤供給装置11からの還元
剤供給制御を行っている。これらの制御のためECU2
0の入力ポートには、空燃比センサ7a、7bからの空
燃比信号が入力されている他、エンジン回転数、機関吸
入空気量等の信号がそれぞれ図示しないセンサから入力
されている。
A control circuit (ECU) of the engine 1 is shown at 20 in FIG. The ECU 20 includes a CPU, a RAM, and an RO.
M, and a well-known digital computer having a configuration in which an input port and an output port are mutually connected by a bidirectional bus, and performs basic control such as fuel injection amount control of an engine. Further, in the present embodiment, the ECU 20 further includes a drive circuit (not shown), a negative pressure control valve, and the like.
a and 22a are driven to control the switching position of the exhaust switching valves 2 and 22, and the reducing agent supply control from the reducing agent supply device 11 is performed. ECU2 for these controls
The input port of 0 receives air-fuel ratio signals from the air-fuel ratio sensors 7a and 7b, and also inputs signals such as engine speed and engine intake air amount from sensors not shown.

【0013】還元剤供給装置11は還元剤容器、加圧ポ
ンプ等から構成される還元剤供給源13と、還元剤供給
源13から還元剤供給ノズル12a、12bに供給され
る還元剤供給量の流量を調節する制御弁14a、14b
及び、ノズル12a、12bと制御弁14a、14bと
の間に配置された排気逆流防止用の逆止弁15a、15
bとを備えている。制御弁14a、14bは、後述する
NOX 吸収剤5a、5bの再生操作時及び、その後の待
機期間中に、ECU20の制御信号に応じて所定の開度
をとり、開度に応じた量の還元剤をNOX 吸収剤5a、
5bに供給するものである。
The reducing agent supply device 11 includes a reducing agent supply source 13 composed of a reducing agent container, a pressure pump and the like, and a reducing agent supply amount supplied from the reducing agent supply source 13 to the reducing agent supply nozzles 12a and 12b. Control valves 14a and 14b for adjusting the flow rate
And check valves 15a, 15 disposed between the nozzles 12a, 12b and the control valves 14a, 14b for preventing exhaust backflow.
b. Control valves 14a, 14b is described below the NO X absorbent 5a, when 5b playback operation and, during the subsequent waiting period, take the predetermined opening in response to a control signal of ECU 20, in an amount corresponding to the opening the reducing agent the NO X absorbent 5a,
5b.

【0014】NOX 吸収剤5a、5bのNOX 放出、還
元操作(再生操作)に使用する還元剤としては、排気中
で炭化水素、一酸化炭素等の還元成分を発生するもので
あれば良く、水素、一酸化炭素等の気体、プロパン、プ
ロピレン、ブタン等の液体又は気体の炭化水素、ガソリ
ン、軽油、灯油等の液体燃料等が使用できる。NOX
収剤5a、5bは例えばアルミナ等の担体を使用し、こ
の担体上に例えばカリウムK,ナトリウムNa ,リチウ
ムLi ,セシウムCs のようなアルカリ金属、バリウム
Ba , カルシウムCa のようなアルカリ土類、ランタン
La ,イットリウムYのような希土類から選ばれた少な
くとも一つと、白金Pt のような貴金属とが担持されて
いる。このNOX 吸収剤5a、5bは流入する排気の空
燃比がリーンの場合にはNOX を吸収し、酸素濃度が低
下するとNOX を放出するNOX の吸放出作用を行う。
[0014] the NO X absorbent 5a, 5b of the NO X emission, the reducing agent used for reduction operations (playback operations), as long as it generates a hydrocarbon, reducing components such as carbon monoxide in the exhaust gas , Hydrogen, carbon monoxide and the like, liquid and gaseous hydrocarbons such as propane, propylene and butane, and liquid fuels such as gasoline, light oil and kerosene. The NO X absorbent 5a, 5b uses a carrier such as alumina or the like, an alkali metal, barium Ba, alkaline earth such as calcium Ca, such as the carrier on, for example, potassium K, sodium Na, lithium Li, cesium Cs , Lanthanum La, and rare earth elements such as yttrium Y, and a noble metal such as platinum Pt. This the NO X absorbent 5a, 5b absorbs NO X in the case the air-fuel ratio of the exhaust gas flowing is lean, the oxygen concentration is carried out to absorbing and releasing action of the NO X that releases NO X when lowered.

【0015】なお、上述の排気空燃比とは、ここではN
X 吸収剤5a、5bの上流側の排気通路やエンジン燃
焼室、吸気通路等にそれぞれ供給された空気量の合計と
燃料と還元剤の合計との比を意味するものとする。従っ
て、NOX 吸収剤5a、5bの上流側排気通路に燃料、
還元剤または空気が供給されない場合には排気空燃比は
エンジンの運転空燃比(エンジン燃焼室内の燃焼におけ
る空燃比)と等しくなる。
The above-mentioned exhaust air-fuel ratio is defined as N
O X absorbent 5a, upstream of the exhaust passage and the engine combustion chamber 5b, it shall mean the ratio of the sum of the total fuel and reducing agent, respectively to the intake passage or the like supplied air quantity. Therefore, NO X absorbent 5a, the fuel in the upstream side exhaust passage 5b,
When no reducing agent or air is supplied, the exhaust air-fuel ratio becomes equal to the operating air-fuel ratio of the engine (air-fuel ratio in combustion in the engine combustion chamber).

【0016】本実施例では、リーン空燃比の燃焼を行う
機関が使用されているため、通常運転時の排気空燃比は
リーンであり、NOX 吸収剤5a、5bは排気中のNO
X の吸収を行う。また、還元剤供給装置11から排気中
に還元剤が導入されて酸素濃度が低下すると、NOX
収剤5a、5bは吸収した還元剤の放出を行う。この吸
放出作用の詳細なメカニズムについては明らかでない部
分もある。しかし、この吸放出作用は図2に示すような
メカニズムで行われているものと考えられる。次にこの
メカニズムについて担体上に白金Pt およびバリウムB
a を担持させた場合を例にとって説明するが他の貴金
属、アルカリ金属、アルカリ土類、希土類を用いても同
様なメカニズムとなる。
In this embodiment, since an engine that performs combustion at a lean air-fuel ratio is used, the exhaust air-fuel ratio during normal operation is lean, and the NO X absorbents 5a and 5b
Absorb X. Further, when the has been oxygen concentration introduced the reducing agent into the exhaust gas decreases, NO X absorbent 5a, 5b is a release of absorbed reducing agent performs a reducing agent supply device 11. The detailed mechanism of this absorption / release action is not clear in some parts. However, it is considered that this absorption / release action is performed by a mechanism as shown in FIG. Next, regarding this mechanism, platinum Pt and barium B
Although the case where a is carried will be described as an example, the same mechanism is obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.

【0017】すなわち、流入排気がかなりリーンになる
と流入排気中の酸素濃度が大巾に増大し、図2(A) に示
されるようにこれら酸素O2 がO2 - またはO2-の形で
白金Pt の表面に付着する。一方、流入排気中のNOは
白金Pt の表面上でこのO2 - またはO2-と反応し、N
2 となる(2NO+O2 →2NO2 ) 。次いで生成さ
れたNO2 の一部は白金Pt上で酸化されつつ吸収剤内
に吸収されて酸化バリウムBaOと結合しながら、図2
(A) に示されるように硝酸イオンNO3 - の形で吸収剤
内に拡散する。このようにしてNOX がNOX 吸収剤5
a、5b内に吸収される。
That is, the inflow exhaust gas becomes considerably lean.
And the oxygen concentration in the inflowing exhaust gas greatly increased, as shown in Fig. 2 (A).
These oxygen OTwoIs OTwo -Or O2-In the form of
It adheres to the surface of platinum Pt. On the other hand, NO in the inflow exhaust gas is
This O on the surface of platinum PtTwo -Or O2-Reacts with N
OTwo(2NO + OTwo→ 2NOTwo ). Then generated
NOTwoSome of the oxygen is oxidized on platinum Pt and
FIG. 2 shows that while being absorbed by and combined with barium oxide BaO.
As shown in (A), nitrate ion NOThree -Absorbent in the form of
Spreads in. NO in this wayXIs NOXAbsorbent 5
a and 5b.

【0018】従って、流入排気中の酸素濃度が高い限り
白金Pt の表面でNO2 が生成され、吸収剤のNOX
収能力が飽和しない限りNO2 が吸収剤内に吸収されて
硝酸イオンNO3 - が生成される。これに対して流入排
気中の酸素濃度が低下してNO2 の生成量が減少すると
反応が逆方向(NO3 - →NO2 )に進み、こうして吸
収剤内の硝酸イオンNO3 - がNO2 の形で吸収剤から
放出される。すなわち、流入排気中の酸素濃度が低下す
るとNOX 吸収剤5a、5bからNOX が放出されるこ
とになる。
Therefore, as long as the oxygen concentration in the inflowing exhaust gas is high, NO 2 is generated on the surface of the platinum Pt, and as long as the NO x absorption capacity of the absorbent is not saturated, NO 2 is absorbed in the absorbent and nitrate ions NO 3 - is generated. On the other hand, when the oxygen concentration in the inflowing exhaust gas decreases and the amount of generated NO 2 decreases, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrate ion NO 3 in the absorbent becomes NO 2 Released from the absorbent in the form of That is, the oxygen concentration when decreases the NO X absorbent 5a of the inflowing exhaust, NO X is to be released from 5b.

【0019】一方、流入排気中にHC、CO等の還元成
分が存在すると、これらの成分は白金Pt 上の酸素O2
- またはO2-と反応して酸化され、排気中の酸素を消費
して排気中の酸素濃度を低下させる。また、排気中の酸
素濃度低下によりNOX 吸収剤5a、5bから放出され
たNO2 は図2(B) に示すようにHC,COと反応して
還元される。このようにして白金Pt の表面上にNO2
が存在しなくなると吸収剤から次から次へとNO2 が放
出される。
On the other hand, if reducing components such as HC and CO are present in the inflowing exhaust gas, these components become oxygen O 2 on platinum Pt.
- or it is reacted with oxide and O 2-, lowering the oxygen concentration in the exhaust to consume oxygen in the exhaust. Further, NO 2 released from the NO x absorbents 5a and 5b due to a decrease in the oxygen concentration in the exhaust gas is reduced by reacting with HC and CO as shown in FIG. 2 (B). In this manner, NO 2 is deposited on the surface of platinum Pt.
When NO is no longer present, NO 2 is released from the absorbent one after another.

【0020】すなわち、流入排気中のHC,COは、ま
ず白金Pt 上のO2 - またはO2-とただちに反応して酸
化され、次いで白金Pt 上のO2 - またはO2-が消費さ
れてもまだHC,COが残っていればこのHC,COに
よって吸収剤から放出されたNOX 、および排気ととも
に流入するNOX が還元される。本実施例では、排気切
換え弁2、22の操作によりNOX 吸収剤5aと5bの
NOX 吸収と放出とを交互に行う。すなわち、本実施例
では、排気切換え弁2、22の操作により一方のNOX
吸収剤(例えば5a)に大部分の排気を流してNOX
吸収させる。また、NOX 吸収剤5aのNOX 吸収量が
増大してくると、排気切換え弁2、22を切り換えて他
方のNOX 吸収剤5bに排気を流し、NO X 吸収剤5a
に流入する排気流量を低減するとともに、還元剤供給ノ
ズル12aからNOX 吸収剤5aに還元剤を供給してN
X 吸収剤5aの再生を行う。また、切換え後NOX
収剤5bのNOX 吸収量が増大してくると、再度排気切
換え弁2、22の切換えを行い、NOX 吸収剤5a側に
排気を流してNOX 吸収剤5aによるNOX 吸収を再開
するとともにNOX 吸収剤5bの再生を行う。
That is, HC and CO in the inflow exhaust gas are
O on platinum PtTwo -Or O2-Reacts immediately with acid
And then O on platinum PtTwo -Or O2-Is consumed
If HC and CO still remain,
Therefore, NO released from the absorbentX, And with the exhaust
NO flowing intoXIs reduced. In this embodiment, the exhaust
NO by operating the changeover valves 2 and 22XOf the absorbents 5a and 5b
NOXAlternate absorption and release. That is, this embodiment
By operating the exhaust switching valves 2 and 22, one NOX
Most of the exhaust gas flows through the absorbent (for example, 5a) and NOXTo
Absorb. NOXNO of absorbent 5aXAbsorption
When it increases, the exhaust switching valves 2 and 22 are switched and other
NOXExhaust gas is passed through the absorbent 5b, and NO XAbsorbent 5a
While reducing the flow rate of exhaust gas flowing into the
NO from chisel 12aXSupplying the reducing agent to the absorbent 5a
OXThe absorbent 5a is regenerated. NO after switchingXSucking
NO of absorbent 5bXWhen the amount of absorption increases, turn off the exhaust again.
The switching of the switching valves 2 and 22 is performed and NOXOn the absorbent 5a side
NO exhaust gasXNO by absorbent 5aXResume absorption
NOXThe regeneration of the absorbent 5b is performed.

【0021】上記の、NOX 吸収剤がNOX 吸収を行う
ことのできる時間は、例えば10分程度と比較的長いの
に対して、NOX 吸収剤の再生に必要な時間は、例えば
数十秒程度と比較的短い。従って、再生操作が終了した
NOX 吸収剤は、次に排気切換え弁が切り換えられてN
X 吸収を再開するまでの間、排気流量を低減したまま
で待機状態に置かれることになる。このため、待機期間
中にNOX 吸収剤の温度が低下してしまう問題が生じ
る。
[0021] above, the time the NO X absorbent is capable of performing the NO X absorbent, for example a relatively long of about 10 minutes, the time required for regeneration of the NO X absorbent, for example, several tens of Relatively short, on the order of seconds. Therefore, NO X absorbent reproducing operation is ended, the next is switched exhaust switching valve N
Until the OX absorption is resumed, the exhaust gas flow rate is kept reduced while the apparatus is in a standby state. Therefore, the problem that the temperature of the NO X absorbent is lowered occurs during the waiting period.

【0022】本発明による実施例では、待機中のNOX
吸収剤に還元剤を供給し、NOX 吸収剤を通過する排気
の空燃比を理論空燃比近傍に維持することにより、NO
X 吸収剤の温度低下の問題を解決している。すなわち、
NOX 吸収剤は図2で説明したように、酸素の存在下で
HC、CO等の還元成分の酸化を促進する酸化触媒とし
ての機能を有している。従って、待機中のNOX 吸収剤
に酸素と還元剤とを供給することにより、NOX 吸収剤
上で還元剤の酸化反応を生じさせ、反応熱によりNOX
吸収剤の温度低下を防止することが可能となる。本発明
による実施例では、上記酸化反応に最適な理論空燃比近
傍に維持した排気と還元剤との混合気を待機中のNOX
吸収剤に供給することにより、NOX 吸収剤の温度を高
く保持してNOX 吸収再開時の吸収能力の低下を防止し
ている。
In the embodiment according to the present invention, the standby NO X
Supplying a reducing agent to the absorber, by maintaining the air-fuel ratio of the exhaust gas passing through the NO X absorbent to near the stoichiometric air-fuel ratio, NO
Solves the problem of temperature drop of X absorbent. That is,
As described with reference to FIG. 2, the NO X absorbent has a function as an oxidation catalyst that promotes the oxidation of reducing components such as HC and CO in the presence of oxygen. Therefore, by supplying oxygen and a reducing agent to the NO X absorbent in standby, causing an oxidation reaction of the NO X absorbent on the reducing agent, NO X by reaction heat
It is possible to prevent the temperature of the absorbent from lowering. In the embodiment according to the present invention, the NO X which is in the standby state for the mixture of the exhaust gas and the reducing agent maintained near the stoichiometric air-fuel ratio optimum for the oxidation reaction.
By supplying the absorbent, thereby preventing a decrease in the absorption capacity at the time of NO X absorbed resumed maintaining a high temperature of the NO X absorbent.

【0023】次に、本実施例の排気浄化操作について説
明する。以下の説明では、図1のNOX 吸収剤5aのN
X 吸収及び再生操作について説明するが、NOX 吸収
剤5bについても全く同様に吸収、再生操作が行われ
る。排気切換え弁2、22が図1の点線の位置に保持さ
れ、NOX 吸収剤5aに機関の排気の大部分が流入する
と、NOX 吸収剤5aは前述のように排気中のNO X
吸収を行う。次いで、所定時間が経過してNOX 吸収剤
5aのNOX 吸収量が増大するとECU20は、排気切
換え弁2、22を図1の実線の位置に切り換え、NOX
吸収剤5aの再生操作を開始する。
Next, the exhaust gas purifying operation of this embodiment will be described.
I will tell. In the following description, NO in FIG.XN of absorbent 5a
OXThe absorption and regeneration operations will be described.Xabsorption
Absorption and regeneration operations are performed in the same manner for agent 5b.
You. The exhaust switching valves 2 and 22 are held at the positions indicated by the dotted lines in FIG.
NOXMost of the engine exhaust flows into the absorbent 5a
And NOXAs described above, the absorbent 5a contains NO in the exhaust gas. Xof
Perform absorption. Then, after a predetermined time has passed, NOXAbsorbent
NO of 5aXWhen the amount of absorption increases, the ECU 20 turns off the exhaust.
The changeover valves 2 and 22 are switched to the positions indicated by the solid lines in FIG.X
The regeneration operation of the absorbent 5a is started.

【0024】なお、本実施例ではNOX 吸収剤の再生は
一定時間毎に行われるが、機関のNOX 発生量に応じて
NOX 吸収剤のNOX 吸収量が所定値に達する毎にNO
X 吸収剤の再生を行うようにしてもよい。この場合、E
CU20は、機関の単位時間当たりのNOX 発生量を機
関負荷(例えば、機関1回転当たりの吸入空気量)と機
関回転数との関数としてROMに予め格納しておき、所
定時間毎に機関負荷条件を読みとり、ROMから上記の
NOX 発生量を読みだし、この発生量に一定の係数を乗
じたものを積算してNOX 吸収剤のNOX 吸収量とす
る。このNOX 吸収量が所定値に達したときにNOX
収剤の再生を行うようにすれば、機関NO X 発生量の変
化にかかわらず、NOX 吸収剤のNOX 吸収能力を有効
に活用することができる。
In this embodiment, NOXRegeneration of absorbent
This is performed at regular intervals, but the engine NOXDepending on the amount
NOXAbsorbent NOXNO each time the amount of absorption reaches a predetermined value
XRegeneration of the absorbent may be performed. In this case, E
The CU 20 determines the NO per unit time of the institution.XGenerated amount
Related load (for example, intake air amount per engine revolution) and machine
Is stored in advance in ROM as a function of
Read the engine load condition at regular time intervals and read the above
NOXRead out the amount of generation and multiply this amount by a certain coefficient.
NOXAbsorbent NOXAbsorbed amount
You. This NOXNO when the absorption amount reaches a predetermined valueXSucking
If the sorbent is regenerated, the engine NO XChange in the amount generated
NO regardless ofXAbsorbent NOXEnable absorption capacity
It can be used for

【0025】排気切換え弁2、22が図1の実線の位置
に切り換えられると、NOX 吸収剤5aに流入する排気
流量が低下し、排気の大部分はNOX 吸収剤5bを通過
して流れるため、NOX 吸収剤5bによる排気中のNO
X 吸収が行われる。NOX 吸収剤5aの再生操作は、以
下の手順で行われる。まず、ECU20は、NOX の吸
収を開始したNOX 吸収剤5bの下流側に配置された空
燃比センサ7bの出力から機関の排気空燃比を読みと
り、この排気空燃比と、再生を行うNOX 吸収剤5a側
に流入する排気流量とからNOX 吸収剤5aに供給すべ
き還元剤流量を決定する。本実施例では、再生操作時に
NOX 吸収剤に供給する還元剤流量は、NOX 吸収剤に
流入する排気空燃比を理論空燃比より所定量だけリッチ
側に維持する量とされる。また、再生操作時に排気切換
え弁を通過してNOX 吸収剤に流入する排気流量は、機
関負荷、回転数等の運転条件の関数として、予め実測な
どにより求めておき、ROMに格納しておく。
[0025] exhaust switching valve 2, 22 is switched to the position indicated by the solid line in FIG. 1, the flow rate of the exhaust gas flowing to the NO X absorbent 5a is reduced, most of the exhaust flows through the the NO X absorbent 5b because, NO in the exhaust gas by the NO X absorbent 5b
X absorption is performed. Regenerating operation of the NO X absorbent 5a is performed in the following procedure. First, ECU 20 are read exhaust air-fuel ratio of the engine from an output of the air-fuel ratio sensor 7b disposed on the downstream side of the NO X absorbent 5b that initiated the absorption of the NO X, and the exhaust air-fuel ratio, NO X to be reproduced determining a reducing agent flow rate to be supplied to the NO X absorbent 5a and a flow rate of the exhaust gas flowing into the absorbent 5a side. In this embodiment, the reducing agent flow rate supplied to the NO X absorbent during the regenerating operation is an amount that maintains only the rich side by a predetermined amount than the stoichiometric air-fuel ratio of the air-fuel ratio of the exhaust gas flowing into the NO X absorbent. Further, the flow rate of the exhaust gas flowing to the NO X absorbent passes through the exhaust switching valve during playback operation, the engine load, as a function of operating conditions such as rotational speed, to previously obtain in advance by actual measurement and stored in the ROM .

【0026】ECU20は、還元剤供給装置11の制御
弁14を、上記により算出された還元剤流量に対応する
開度に設定してNOX 吸収剤5aに還元剤の供給を行う
とともに、NOX 吸収剤5a下流側の空燃比センサ7a
の出力に基づいて還元剤の供給時間を制御する。前述の
ように、NOX 吸収剤への還元剤供給が開始されると、
まず還元剤は排気中やNOX 吸収剤のPt表面のO2
消費し、このO2 を消費した後にNOX の還元浄化を開
始する。従って、還元剤供給開始後初期の段階では、N
X 吸収剤から流出する排気中の酸素濃度は比較的高く
なっており、上記O2 が消費され、NOX の還元が始ま
ると排気中の酸素濃度が急激に低下する。ECU20
は、空燃比センサ7aの出力変化から上記酸素濃度の低
下を検出した後所定期間の間、排気空燃比がリッチにな
るように前記還元剤供給量を維持する。これによりNO
X 吸収剤再生終了後に過剰な還元剤がNOX 吸収剤から
流出することが防止される。なお、この期間は、NOX
吸収剤に吸収したNOX 量(吸収時間)に応じて予め設
定されている。
The ECU20 is a control valve 14 of the reducing agent supply device 11, performs the supply of the reducing agent to the NO X absorbent 5a is set to the corresponding opening to the calculated reducing agent flow through the, NO X Air-fuel ratio sensor 7a downstream of absorbent 5a
The supply time of the reducing agent is controlled based on the output of. As described above, when the supply of the reducing agent to the NO X absorbent is started,
First, the reducing agent consumes O 2 in the exhaust gas or the Pt surface of the NO X absorbent, and after consuming this O 2 , reduction and purification of NO X is started. Therefore, at the initial stage after the start of the supply of the reducing agent, N
The oxygen concentration in exhaust gas flowing out of O X absorbent is relatively high, the O 2 is consumed, the oxygen concentration in the exhaust gas and the reducing starts of the NO X decreases rapidly. ECU 20
Maintains the supply amount of the reducing agent so that the exhaust air-fuel ratio becomes rich for a predetermined period after detecting the decrease in the oxygen concentration from the output change of the air-fuel ratio sensor 7a. This makes NO
It is prevented that X absorbent excess reducing agent after playing flows out from the NO X absorbent. During this period, NO X
It is set in advance according to the amount of NO X absorbed by the absorbent (absorption time).

【0027】上記再生操作終了後、NOX 吸収剤5aは
排気の流量を低減したまま次回のNOX 吸収開始に備え
て待機状態に置かれる。本実施例ではECU20は、上
記再生時間が経過した後、待機中のNOX 吸収剤5a下
流側の排気空燃比が理論空燃比近傍になるように、空燃
比センサ7aの出力に基づいて制御弁14aの開度をフ
ィードバック制御する。このように、下流側の空燃比セ
ンサ出力に基づいて還元剤供給量をフィードバック制御
することにより、待機中のNOX 吸収剤を通過する排気
空燃比は正確に理論空燃比近傍に保持されるため、NO
X 吸収剤に供給された還元剤の良好な酸化反応が得ら
れ、待機中のNOX 吸収剤温度を高く維持することがで
きる。また、これによりNOX 吸収剤に供給された還元
剤の全量を酸化することができるため、過剰な還元剤が
NOX 吸収剤下流に流出することが防止される。
[0027] After the reproduction operation terminated, NO X absorbent 5a is placed in a standby state includes the NO X absorbent starts the next while reducing the flow rate of the exhaust. ECU20 in the present embodiment, after the reproduction time has elapsed, so that the exhaust gas air-fuel ratio of the NO X absorbent 5a downstream waiting is in the vicinity of the stoichiometric air-fuel ratio, the control valve based on output of the air-fuel ratio sensor 7a The opening of 14a is feedback-controlled. Thus, since by feedback-controlling the reducing agent supply amount based on the air-fuel ratio sensor output of the downstream exhaust air-fuel ratio passes through the NO X absorbent waiting is held accurately in the vicinity stoichiometric air-fuel ratio , NO
A favorable oxidation reaction of the reducing agent supplied to the X absorbent is obtained, and the temperature of the standby NO X absorbent can be kept high. This also it is possible to oxidize the total amount of the reducing agent supplied to the NO X absorbent is prevented from excess reducing agent flows out into the NO X absorbent downstream.

【0028】図3は、上記操作による、NOX 吸収剤に
流入する排気空燃比の変化サイクルを示している。図3
において、NOX 吸収剤のNOX 吸収操作時にはNOX
吸収剤に流入する排気空燃比はリーン空燃比に維持され
る(図3、区間 I)。次いで排気切換え弁の切換えが行
われると、NOX 吸収剤に還元剤が供給され、切換え後
の所定期間排気空燃比はリッチ空燃比に保持され、NO
X 吸収剤の再生が行われる(図3、区間II)。また、N
X 吸収剤の再生が終了したあとの待機期間中は、排気
空燃比は理論空燃比近傍に維持され、NOX 吸収剤の温
度が高く維持される(図3、区間 III)。この状態で再
度排気切換え弁の切換えが行われるとNOX 吸収剤に流
入する排気の空燃比は再びリーン空燃比になり、NOX
吸収剤は温度が低下することなくNOX 吸収を再開する
(図3、区間 IV )。
[0028] Figure 3, according to the operation shows the change cycle of the air-fuel ratio of the exhaust gas flowing into the NO X absorbent. FIG.
In, at the time of NO X absorbing operation of the NO X absorbent NO X
The exhaust air-fuel ratio flowing into the absorbent is maintained at a lean air-fuel ratio (Fig. 3, section I). Then the switching of the exhaust switching valve is performed, the reducing agent is supplied to the NO X absorbent, the predetermined period exhaust air-fuel ratio after the switching is held in the rich air-fuel ratio, NO
Regeneration of the X absorbent is performed (FIG. 3, section II). Also, N
During O waiting period after the reproduction is completed in the X absorbent, the exhaust air-fuel ratio is maintained near the stoichiometric air-fuel ratio, the temperature of the NO X absorbent is maintained high (Fig. 3, section III). When the exhaust switching valve is switched again in this state, the air-fuel ratio of the exhaust gas flowing into the NO X absorbent becomes the lean air-fuel ratio again, and the NO X
Absorbent resume NO X absorbent without temperature decreases (Fig. 3, section IV).

【0029】なお、上述の実施例ではNOX 吸収剤の再
生操作が終了後、引き続きNOX 吸収剤に流入する排気
空燃比を理論空燃比に維持しているが、待機期間が特に
長い場合には、再生操作終了後一旦還元剤の供給を停止
し、NOX 吸収を再開する前の所定の期間だけ還元剤を
供給して排気空燃比を理論空燃比に維持することによ
り、NOX 吸収再開前にNOX 吸収剤温度を上昇させる
ようにしてもよい。
[0029] Incidentally, after the reproduction operation of the NO X absorbent in the embodiment described above is finished, the exhaust air-fuel ratio to continue flowing into the NO X absorbent is being maintained at the stoichiometric air-fuel ratio, when particularly long waiting period stops the supply of the regenerating operation after the end once the reducing agent, by which only supplying a reducing agent predetermined period before resuming the NO X absorbent to maintain the exhaust air-fuel ratio to the stoichiometric air-fuel ratio, NO X absorbent resume it may be to raise the the NO X absorbent temperature before.

【0030】また、本実施例では、還元剤の供給量の制
御のみによって待機中のNOX 吸収剤に流入する排気空
燃比を調節しているが、還元剤供給量とともに排気切換
え弁2、22の開度を制御して流入する排気量を調節す
ることにより排気空燃比を制御することも可能である。
Further, in this embodiment, although adjusting the air-fuel ratio of the exhaust gas flowing into the NO X absorbent waiting only by controlling the supply amount of the reducing agent, the exhaust switching valve together with a reducing agent supply amount 2,22 It is also possible to control the exhaust air-fuel ratio by controlling the opening degree of the exhaust gas and adjusting the amount of exhaust gas flowing in.

【0031】[0031]

【発明の効果】本発明の排気浄化装置は、上述のように
NOX 吸収再開前の待機中のNOX 吸収剤に理論空燃比
近傍の排気と還元剤との混合気を供給するようにしたこ
とにより、待機中のNOX 吸収剤の温度低下を有効に防
止し、NOX 吸収開始時のNO X 吸収剤の吸収能力を高
く維持することが可能となる効果を奏する。
As described above, the exhaust gas purifying apparatus of the present invention
NOXNO in standby before resuming absorptionXThe stoichiometric air-fuel ratio for the absorbent
A mixture of the nearby exhaust and reducing agent was supplied.
And the waiting NOXEffectively prevents temperature drop of absorbent
Stop, NOXNO at the start of absorption XHigh absorption capacity of absorbent
This has the effect of being able to maintain a high level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気浄化装置の一実施例を示す全体図
である。
FIG. 1 is an overall view showing one embodiment of an exhaust gas purification apparatus of the present invention.

【図2】NOX 吸収剤のNOX の吸放出作用を説明する
図である。
FIG. 2 is a view for explaining the NO X absorption / release action of a NO X absorbent.

【図3】NOX 吸収剤に流入する排気空燃比の変化サイ
クルを説明する図である。
FIG. 3 is a diagram illustrating a cycle of changing an exhaust air-fuel ratio flowing into a NO X absorbent.

【符号の説明】[Explanation of symbols]

1…内燃機関 3…排気通路 3a、3b…分岐通路 5a、5b…NOX 吸収剤 2、22…排気切り換え弁 11…還元剤供給装置(全体)1 ... engine 3 ... exhaust passage 3a, 3b ... branch passages 5a, 5b ... NO X absorbent 2,22 ... exhaust switching valve 11 ... reducing agent supply device (overall)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/20 ZAB F01N 3/20 ZABN (72)発明者 小端 喜代志 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭62−106826(JP,A) 国際公開93/12863(WO,A1) (58)調査した分野(Int.Cl.6,DB名) F01N 3/08 - 3/28 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/20 ZAB F01N 3/20 ZABN (72) Inventor Kiyoshi Shibata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-62-106826 (JP, A) WO 93/12863 (WO, A1) (58) Fields investigated (Int. Cl. 6 , DB name) F01N 3/08-3/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リーン空燃比の燃焼を行うことのできる
内燃機関の排気通路に、流入排気の空燃比がリーンのと
きに排気中のNOX を吸収し、流入排気中に還元剤が供
給され酸素濃度が低下したときに吸収したNOX を放出
するNOX 吸収剤を配置し、NOX を吸収させた後にN
X 吸収剤に流入する排気流量を低減するとともにNO
X 吸収剤に還元剤を供給して吸収したNOX を放出させ
る再生操作と、再生終了後に排気流量を回復させてNO
X 吸収を再開する操作とを繰り返す内燃機関の排気浄化
装置において、 排気流量を回復させて前記NOX 吸収を再開する前の所
定期間NOX 吸収剤に還元剤を供給してNOX 吸収剤を
通過する排気空燃比を理論空燃比近傍に制御する手段を
設けたことを特徴とする内燃機関の排気浄化装置。
In an exhaust passage of claim 1 an internal combustion engine capable of performing combustion of the lean air-fuel ratio, the air-fuel ratio of the inflowing exhaust absorbs NO X in the exhaust gas when the lean, the reducing agent is supplied to the inflowing exhaust oxygen concentration place the NO X absorbent to release the absorbed NO X when dropped, N after imbibed with NO X
NO reduces input flow rate of the exhaust gas flowing into the O X absorbent
A regeneration operation for supplying the reducing agent to the X absorbent to release the absorbed NO X , and recovering the exhaust flow rate after the regeneration to
In the exhaust gas purifying apparatus for an internal combustion engine that repeats the operation of restarting the X absorption, the reducing agent is supplied to the NO X absorbent for a predetermined period before the exhaust gas flow rate is recovered and the NO X absorption is restarted, thereby reducing the NO X absorption. An exhaust purification device for an internal combustion engine, comprising means for controlling an exhaust air-fuel ratio passing therethrough to a value close to a stoichiometric air-fuel ratio.
JP24300193A 1993-09-29 1993-09-29 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP2891057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24300193A JP2891057B2 (en) 1993-09-29 1993-09-29 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24300193A JP2891057B2 (en) 1993-09-29 1993-09-29 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0797917A JPH0797917A (en) 1995-04-11
JP2891057B2 true JP2891057B2 (en) 1999-05-17

Family

ID=17097417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24300193A Expired - Lifetime JP2891057B2 (en) 1993-09-29 1993-09-29 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2891057B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
JP4003564B2 (en) 2002-07-17 2007-11-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4515217B2 (en) * 2004-10-14 2010-07-28 ヤンマー株式会社 Exhaust gas purification device control method
DE102016001197B3 (en) * 2016-02-03 2017-07-06 Audi Ag exhaust system

Also Published As

Publication number Publication date
JPH0797917A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP3757856B2 (en) Exhaust gas purification device
JP2722987B2 (en) Exhaust gas purification device for internal combustion engine
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
JPH06272541A (en) Exhaust emission control device for internal combustion engine
JP2004239218A (en) Exhaust gas purging system of internal combustion engine
JP2888124B2 (en) Exhaust gas purification device for internal combustion engine
JP2727914B2 (en) Exhaust gas purification device for internal combustion engine
JP2845080B2 (en) Exhaust gas purification device for internal combustion engine
JP2845056B2 (en) Exhaust gas purification device for internal combustion engine
JP2891057B2 (en) Exhaust gas purification device for internal combustion engine
JP2984528B2 (en) Exhaust gas purification device for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JP2830669B2 (en) Exhaust gas purification device for internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP2959948B2 (en) Exhaust gas purification device for internal combustion engine
JP2845068B2 (en) Exhaust gas purification device for internal combustion engine
JP3374780B2 (en) Exhaust gas purification device for internal combustion engine
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP3487209B2 (en) Exhaust gas purification device for internal combustion engine
JP2888109B2 (en) Exhaust gas purification device for internal combustion engine
JPH06307232A (en) Exhaust emission control device of internal combustion engine
JP2842135B2 (en) Exhaust gas purification device for internal combustion engine
JP2722985B2 (en) Exhaust gas purification device for internal combustion engine
JP3846353B2 (en) Exhaust gas purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140226

EXPY Cancellation because of completion of term