JP3487209B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP3487209B2
JP3487209B2 JP04500299A JP4500299A JP3487209B2 JP 3487209 B2 JP3487209 B2 JP 3487209B2 JP 04500299 A JP04500299 A JP 04500299A JP 4500299 A JP4500299 A JP 4500299A JP 3487209 B2 JP3487209 B2 JP 3487209B2
Authority
JP
Japan
Prior art keywords
reduction catalyst
reducing agent
storage reduction
amount
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04500299A
Other languages
Japanese (ja)
Other versions
JP2000240428A (en
Inventor
忍 石山
之弘 塚崎
淳 田原
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04500299A priority Critical patent/JP3487209B2/en
Publication of JP2000240428A publication Critical patent/JP2000240428A/en
Application granted granted Critical
Publication of JP3487209B2 publication Critical patent/JP3487209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関し、詳細には流入する排気空燃比がリーンのと
きに排気中のNOX を吸収し、流入する排気中の酸素濃
度が低下したときに吸収したNOX を放出するNOX
蔵還元触媒を備えた内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more specifically, when the inflowing exhaust air-fuel ratio is lean, it absorbs NO x in the exhaust gas and the oxygen concentration in the inflowing exhaust gas is reduced. The present invention relates to an exhaust emission control device for an internal combustion engine equipped with a NO X storage reduction catalyst that releases NO X that is sometimes absorbed.

【0002】[0002]

【従来の技術】流入する排気空燃比がリーンのときに排
気中のNOX を吸収し、流入する排気中の酸素濃度が低
下したときに吸収したNOX を放出するNOX 吸蔵還元
触媒が知られている。この種のNOX 吸蔵還元触媒を用
いた内燃機関の排気浄化装置の例としては、例えば特開
平6−200738号公報に記載されたものがある。
2. Description of the Related Art There is known a NO X storage reduction catalyst that absorbs NO X in exhaust gas when the inflowing exhaust air-fuel ratio is lean and releases the absorbed NO X when the oxygen concentration in the inflowing exhaust gas decreases. Has been. An example of an exhaust gas purification device for an internal combustion engine using this type of NO X storage reduction catalyst is disclosed in Japanese Patent Laid-Open No. 6-200738.

【0003】同公報の装置は、リーン空燃比で運転可能
な機関の排気通路にNOX 吸蔵還元触媒を配置し、機関
がリーン空燃比で運転されているときに排気中のNOX
を吸収させ、NOX 吸蔵還元触媒のNOX 吸収量が所定
値に到達したときにNOX 吸蔵還元触媒の上流側の排気
通路に配置した還元剤供給ノズルから還元剤として液体
または気体の炭化水素等を排気中に噴射するようにした
ものである。NOX 吸蔵還元触媒に排気とともに還元剤
が供給されると、還元剤のNOX 吸蔵還元触媒上での酸
化により排気中の酸素濃度が低下するためNOX 吸蔵還
元触媒からは吸収したNOX が放出される。また、放出
されたNOX は触媒上で排気中の還元剤と反応して還
元、浄化される。
[0003] The apparatus of this publication, the the NO X storage reduction catalyst disposed in an exhaust passage of an operable engine at a lean air-fuel ratio, NO X in the exhaust gas when the engine is operated at a lean air-fuel ratio
When the amount of NO x absorbed and reduced by the NO x storage reduction catalyst reaches a predetermined value, a liquid or gaseous hydrocarbon as a reducing agent is discharged from the reducing agent supply nozzle arranged in the exhaust passage on the upstream side of the NO x storage reduction catalyst. Etc. are injected into the exhaust gas. When the reducing agent with the exhaust to the NO X occluding and reducing catalyst is supplied, NO X is oxygen concentration in the exhaust gas absorbed from the NO X storage reduction catalyst for reduction by oxidation on the NO X storage reduction catalyst reducing agent Is released. Further, the released NO X reacts with the reducing agent in the exhaust gas on the catalyst to be reduced and purified.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記特開平
6−200738号公報の装置のように、ある時間間隔
でNOX 吸蔵還元触媒に還元剤を供給してNOX 吸蔵還
元触媒からのNOX の放出と還元浄化とを行うようにし
たときに、還元剤供給の時間間隔によっては全体として
のNOX の浄化率が良好にならない場合が生じる。
[SUMMARY OF THE INVENTION However, NO X from the JP-A as in the 6-200738 discloses a device, there by supplying reducing agent to the NO X occluding and reducing catalyst at the time intervals the NO X storage reduction catalyst In some cases, when the NOx emission and the reduction purification are performed, the overall NO x purification rate may not be good depending on the time interval of the reducing agent supply.

【0005】通常、NOX 吸蔵還元触媒に還元剤を供給
してNOX 吸蔵還元触媒からのNO X の放出と還元浄化
とを行う操作(以下、「NOX 吸蔵還元触媒の再生操
作」と呼ぶ)は、NOX 吸蔵還元触媒に吸収されたNO
X 量がある一定レベルに到達したときに実行されるが、
このNOX 吸収量のレベルはNOX 吸蔵還元触媒が吸収
したNOX で飽和する吸収量(飽和量)を基準に定めら
れる。すなわち、NOX吸蔵還元触媒のNOX 吸収能力
を最大限に活用してNOX 吸蔵還元触媒の再生操作の実
行頻度を低く抑えるためには、できるだけ多くのNOX
がNOX 吸蔵還元触媒に吸収されてから再生操作を実行
することが好ましい。そこで、通常、再生操作を実行す
るNOX 吸収量のレベルはNOX 吸蔵還元触媒の飽和量
にある程度の余裕を見た比較的高いレベル(例えばNO
X 吸蔵還元触媒の飽和量の70パーセント程度)に設定
される。
Normally, NOXSupplying a reducing agent to the storage reduction catalyst
Then NOXNO from storage reduction catalyst XRelease and reduction purification
Operation to perform (hereinafter, "NOXRegeneration operation of storage reduction catalyst
"Work") is NOXNO absorbed by the storage reduction catalyst
XIt is executed when the amount reaches a certain level,
This NOXAbsorption level is NOXAbsorption by storage reduction catalyst
NOXDetermined based on the amount of absorption (saturation amount) saturated with
Be done. That is, NOXNO of storage reduction catalystXAbsorption capacity
To make the most of NOXActual operation of regeneration of storage reduction catalyst
In order to keep the line frequency low, as much NO as possibleX
Is NOXThe regeneration operation is executed after being absorbed by the storage reduction catalyst.
Preferably. So, normally, you should execute the playback operation.
NOXAbsorption level is NOXSaturation amount of storage reduction catalyst
A relatively high level with a certain amount of margin (eg NO
XSet to about 70% of the saturation amount of the storage reduction catalyst)
To be done.

【0006】ところが、このようにNOX 吸蔵還元触媒
のNOX 吸収量が比較的高いレベルに到達するまで待っ
てNOX 吸蔵還元触媒の再生操作を実行した場合には全
体としてのNOX の浄化率を大幅に向上させることが困
難であることが判明している。例えば、従来NOX 吸蔵
還元触媒の再生操作時にはNOX 吸蔵還元触媒から放出
されたNOX は供給された還元剤により完全に浄化さ
れ、下流側には未浄化のNOX は放出されないと考えら
れていた。ところが、実際にはNOX 吸蔵還元触媒の再
生操作時に未浄化のままのNOX が触媒下流側に放出さ
れる場合があることが判明している。
However, when the NO X storage reduction catalyst regeneration operation is executed after waiting until the NO X absorption amount of the NO X storage reduction catalyst reaches a relatively high level, purification of NO X as a whole is performed. It has proven difficult to significantly increase the rate. For example, it is considered that the NO x released from the NO x storage reduction catalyst is completely purified by the supplied reducing agent during the regeneration operation of the conventional NO x storage reduction catalyst, and unpurified NO x is not released downstream. Was there. However, in fact, it has been found that unpurified NO X may be released to the downstream side of the catalyst during the regeneration operation of the NO X storage reduction catalyst.

【0007】前述のように、還元剤が供給されるとNO
X 吸蔵還元触媒近傍の酸素濃度が低下しNOX 吸蔵還元
触媒からはNOX が放出される。ところが、触媒からの
NO X の放出速度は一定ではなく、酸素濃度が低下した
直後(還元剤供給開始直後)には急激に比較的多量のN
X が放出され、その後はほぼ一様な比較的低い放出速
度でNOX が放出されることが判明している。この、還
元剤供給開始直後にNOX 吸蔵還元触媒から吸収したN
X が急激に放出される現象を「NOX の吐き出し」と
呼ぶことにすると、NOX の吐き出しにおけるNOX
出量(放出速度)はNOX 吸蔵還元触媒のNOX 吸蔵
量、すなわちNOX 吸蔵還元触媒内に吸収されたNOX
の量が多い程大きくなる。このため、NOX 吸蔵還元触
媒の再生操作を比較的高いNOX 吸蔵量レベルで実行す
るようにしているとNOX の吐き出しにより放出された
多量の未浄化NOX により一時的に排気中の還元剤が不
足するようになり、還元剤供給開始直後に放出されたN
X が未浄化のままNOX 吸蔵還元触媒下流側に流出す
るようになる。NOX の吐き出しは還元剤供給開始後短
時間で終了し、その後はNOX 放出速度は比較的低い速
度になるため吐き出しが終了した後は排気中の還元剤が
不足することはなくなる。このため、NOX 吸蔵還元触
媒のNOX 吸蔵量が比較的高いレベルにあっても還元剤
供給開始後ある程度の時間が経過すれば未浄化のNOX
の流出は停止するようになるが、この場合、再生操作実
行毎にNOX 吸蔵還元触媒から未浄化のNOX が流出す
るため全体としての平均NOX 浄化率をある程度以上に
は上げることができない問題が生じる。
As described above, when the reducing agent is supplied, NO
XThe oxygen concentration near the storage reduction catalyst decreases and NOXStorage reduction
NO from catalystXIs released. However, from the catalyst
NO XRelease rate was not constant and oxygen concentration decreased
Immediately after (immediately after the supply of the reducing agent), a relatively large amount of N
OXIs emitted, and thereafter is relatively uniform and has a relatively low emission rate
NO in degreesXHas been found to be released. This return
NO immediately after starting the supply of the base materialXN absorbed from the storage reduction catalyst
OXThe phenomenon of sudden release of "NOXSpit out of
NO to callXNO in exhalingXRelease
Output (release rate) is NOXNO of storage reduction catalystXOcclusion
Quantity, ie NOXNO absorbed in the storage reduction catalystX
The larger the amount, the larger. Therefore, NOXOcclusion reduction
Regeneration operation of medium is relatively high NOXRun at storage level
NO if you tryXReleased by the exhalation of
Large amount of unpurified NOXTemporarily reduces the reducing agent in the exhaust gas.
And N released immediately after starting the supply of reducing agent
OXRemains unpurified NOXOutflow to the downstream side of the storage reduction catalyst
Become so. NOXSpitting out is short after starting the supply of reducing agent
Ends in time, then NOXRelease rate is relatively low
After the discharge is finished, the reducing agent in the exhaust gas
There will be no shortage. Therefore, NOXOcclusion reduction
Medium NOXReducing agent even if the storage amount is at a relatively high level
If a certain amount of time has passed after the start of supply, unpurified NOX
Will stop flowing out, but in this case, the playback operation
NO for each lineXUnpurified NO from the storage reduction catalystXIs leaked
Therefore average NO as a wholeXPurification rate above a certain level
There is a problem that cannot be raised.

【0008】更に、NOX 吸蔵還元触媒では上記NOX
の吐き出し以外にも「NOX の染み出し」と称する現象
が発見されている。従来、NOX 吸蔵還元触媒はNOX
吸蔵量が飽和量に到達しない限り排気空燃比がリーンで
あれば排気中のNOX を吸収すると考えられていた。し
かし、実際にはNOX 吸蔵還元触媒のNOX 吸蔵量が増
大するにつれてNOX 吸蔵還元触媒のNOX 吸収能力は
徐々に低下することが判明している。このため、NOX
吸蔵還元触媒のNOX 吸蔵量が飽和量よりかなり低い状
態であっても、NOX 吸蔵還元触媒下流側には触媒に吸
収されなかったNOX が流出している。また、このNO
X 流出量はNOX 吸蔵還元触媒のNOX 吸蔵量が多くな
るにつれて増大し、NOX 吸蔵量が飽和量に到達すると
排気中のNOX はNOX 吸蔵還元触媒に全く吸収されず
に下流側に流出するようになる。このように、排気空燃
比がリーンのときにNOX 吸蔵量に応じた量のNOX
未浄化のまま触媒下流側に流出する現象を「NOX の染
み出し」と称する。
Further, in the NO X storage reduction catalyst, the above NO X
A phenomenon referred to as "exuding of NO X" in addition to the discharge have been found of. Conventionally, NO X storage reduction catalyst is NO X
Storage amount exhaust air-fuel ratio unless reaching the saturation amount is believed to absorb NO X in the exhaust gas if lean. However, in practice it has been found that NO X absorbing capacity of the NO X occluding and reducing catalyst gradually decreases as the NO X storage amount of the NO X occluding and reducing catalyst is increased. Therefore, NO X
Also the NO X storage amount of storage reduction catalyst is a much lower than the saturation amount, NO X in the occluding and reducing catalyst downstream is not absorbed in the catalyst NO X is flowing. In addition, this NO
X runoff increases as the NO X storage amount of the NO X occluding and reducing catalyst is increased, the downstream side in the NO X in the exhaust gas and the NO X storage amount reaches the saturation amount not at all absorbed in the NO X occluding and reducing catalyst Will be leaked to. In this way, when the exhaust air-fuel ratio is lean, a phenomenon in which an amount of NO X corresponding to the NO X storage amount flows out to the downstream side of the catalyst without being purified is called “NO X ooze out”.

【0009】上述のように、NOX 吸蔵還元触媒の再生
時にNOX の吐き出しにより流出する未浄化のNO
X 量、及びリーン空燃比下でNOX の染み出しにより流
出する未浄化のNOX 量はともにNOX 吸蔵還元触媒の
NOX 吸蔵量に応じて増大する。このため、従来のよう
にNOX 吸蔵量が比較的高いレベルに到達したときにN
X 吸蔵還元触媒の再生操作を実行するようにした排気
浄化装置では、NOX の吐き出しと染み出しとにより放
出される未浄化のNOX のため、ある程度以上には全体
としてのNOX 浄化率を向上させることはできない。
As mentioned above, NOXRegeneration of storage reduction catalyst
Sometimes NOXUnpurified NO that flows out when exhaling
XAmount and NO under lean air-fuel ratioXFlowing out of
Unpurified NO outXBoth amount is NOXOf storage reduction catalyst
NOXIt increases according to the amount of occlusion. For this reason,
NOXN when the storage amount reaches a relatively high level
O XExhaust gas adapted to perform regeneration operation of storage reduction catalyst
NO in the purification deviceXRelease by exhaling and seeping out
Unpurified NO issuedXFor a certain degree or more
NO asXThe purification rate cannot be improved.

【0010】本発明は上記問題に鑑み、NOX の吐き出
しまたは染み出しによるNOX 浄化率の低下を防止し、
大幅にNOX 浄化率を向上させることが可能な内燃機関
の排気浄化装置を提供することを目的としている。
[0010] The present invention has been made in view of the above problems, preventing deterioration of the NO X purification rate by discharging or exudation of the NO X,
It is an object of the present invention to provide an exhaust gas purification device for an internal combustion engine that can significantly improve the NO x purification rate.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の発明に
よれば、内燃機関の排気通路に配置され流入する排気の
空燃比がリーンのときに排気中のNOXを吸収し、流入
する排気中の酸素濃度が低下したときに吸収したNOX
を放出するNOX吸蔵還元触媒と、該NOX吸蔵還元触媒
に流入する排気空燃比がリーンのときにNOX吸蔵還元
触媒に還元剤を供給することにより、NOX吸蔵還元触
媒に流入する排気中の酸素濃度を低下させるとともに、
放出されたNOXを還元浄化する還元剤供給装置とを備
えた内燃機関の排気浄化装置において、前記NOX吸蔵
還元触媒は、前記還元剤供給開始直後に、供給された還
元剤によっては還元されない未浄化NOXを下流側に放
出し、該未浄化NOXNOX吸蔵還元触媒の吸収した
NOX量に応じて増加する、NO X の吐き出しを生じ、
記還元剤供給装置は、NOX吸蔵還元触媒に吸収された
NOX量が所定のレベルに到達したときにNOX吸蔵還元
触媒に還元剤を供給し、前記所定のNOX吸収量レベル
は、前記還元剤供給開始時の前記NOX吸蔵還元触媒か
らのNO X の吐き出しにより流出する未浄化NOX放出量
が予め定めた値以下になるように設定されていることを
特徴とする内燃機関の排気浄化装置が提供される。
According to the invention described in claim 1 SUMMARY OF THE INVENTION, the air-fuel ratio of the exhaust gas is disposed in the exhaust passage flows into the internal combustion engine to absorb NO X in the exhaust gas when the lean, flows NO x absorbed when the oxygen concentration in the exhaust decreased
By supplying the the NO X storage reduction catalyst which releases a reducing agent to the NO X occluding and reducing catalyst when the exhaust air-fuel ratio is lean flowing into the the NO X storage reduction catalyst and flows into the NO X storage reduction catalyst exhaust While reducing the oxygen concentration in the inside,
In an exhaust gas purification device for an internal combustion engine, comprising a reducing agent supply device that reduces and purifies the released NO x , the NO x storage reduction catalyst is not reduced by the supplied reducing agent immediately after starting the supply of the reducing agent. releasing unpurified NO X downstream, yet-purifying amount of NO X is increased in response to the absorbed amount of NO X in the NO X storage reduction catalyst, results in discharging of the NO X, the reducing agent supply device, NO The reducing agent is supplied to the NO X storage reduction catalyst when the amount of NO X absorbed by the X storage reduction catalyst reaches a predetermined level, and the predetermined NO X absorption amount level is the above-mentioned at the time of starting the supply of the reducing agent. Provided is an exhaust gas purification device for an internal combustion engine, wherein an amount of unpurified NO x released that flows out when NO x is discharged from a NO x storage reduction catalyst is set to be a predetermined value or less.

【0012】すなわち、請求項1に記載の発明ではNO
X 吸蔵還元触媒に吸収されたNOX量が所定レベルに到
達する毎にNOX 吸蔵還元触媒の再生操作が行われる。
しかし、この所定レベルは再生操作開始時のNOX の吐
き出しにより流出する未浄化のNOX 量が所定の低い値
に維持されるように、従来に較べてかなり低いレベルに
設定される。これにより、本発明では従来に比較して非
常に短い間隔で再生操作が実行されることになるが、再
生操作開始時の吐き出しによる未浄化のNOXの放出量
は極めて低い値に抑えられるため全体としてのNOX
浄化率を大幅に向上させることができる。なお、NOX
吸蔵還元触媒への還元剤の供給はNOX吸蔵還元触媒上
流側の排気通路に炭化水素(HC)等から成る還元剤を
噴射することによって行ってもよいし、機関を短時間リ
ッチ空燃比で運転することにより、排気中の未燃HC、
CO成分を増大させることによって行っても良い。
That is, in the invention described in claim 1, NO
Every time the amount of NO X absorbed by the X storage reduction catalyst reaches a predetermined level, the NO X storage reduction catalyst is regenerated.
However, as the amount of NO X unpurified flowing out by discharging the predetermined level at the start of reproduction operation NO X is maintained at a predetermined low value is set to a much lower level compared to the prior art. As a result, in the present invention, the regeneration operation is executed at an extremely short interval as compared with the prior art, but the amount of unpurified NO X released due to the discharge at the start of the regeneration operation is suppressed to an extremely low value. The purification rate of NO x as a whole can be significantly improved. In addition, NO X
The reducing agent may be supplied to the storage reduction catalyst by injecting a reducing agent composed of hydrocarbon (HC) or the like into the exhaust passage on the upstream side of the NO X storage reduction catalyst, or the engine may be operated at a rich air-fuel ratio for a short time. By operating, unburned HC in exhaust gas,
It may be performed by increasing the CO component.

【0013】請求項2に記載の発明によれば、内燃機関
の排気通路に配置され流入する排気の空燃比がリーンの
ときに排気中のNOXを吸収し、流入する排気中の酸素
濃度が低下したときに吸収したNOXを放出するNOX
蔵還元触媒と、該NOX吸蔵還元触媒に流入する排気空
燃比がリーンのときにNOX吸蔵還元触媒に還元剤を供
給することにより、NOX吸蔵還元触媒に流入する排気
中の酸素濃度を低下させるとともに、放出されたNOX
を還元浄化する還元剤供給装置とを備えた内燃機関の排
気浄化装置において、前記NOX吸蔵還元触媒は、流入
する排気空燃比がリーンであっても吸収したNOX量に
応じて増大する量の未浄化のNOXを下流側に放出する
NO X の染み出しを生じ、前記還元剤供給装置は、NOX
吸蔵還元触媒に吸収されたNOX量が所定のレベルに到
達したときにNOX吸蔵還元触媒に還元剤を供給し、前
記所定のNOX吸収量レベルは、リーン空燃比排気下に
おける前記NOX吸蔵還元触媒からのNO X の染み出しに
より流出する未浄化NOX放出量が予め定めた値以下に
なるように設定されていることを特徴とする内燃機関の
排気浄化装置が提供される。
According to the invention described in claim 2, the oxygen concentration in the exhaust gas air-fuel ratio of the exhaust gas is disposed in an exhaust passage of the internal combustion engine flows to absorb NO X in the exhaust gas when the lean, flows By supplying a reducing agent to the NO X storage reduction catalyst that releases the absorbed NO X when it has decreased, and a reducing agent to the NO X storage reduction catalyst when the exhaust air-fuel ratio flowing into the NO X storage reduction catalyst is lean. X The oxygen concentration in the exhaust flowing into the storage reduction catalyst is reduced, and the released NO X
In the exhaust gas purification device for an internal combustion engine, which comprises a reducing agent supply device for reducing and purifying NOx, the NO X storage reduction catalyst is an amount that increases according to the absorbed NO X amount even if the inflowing exhaust air-fuel ratio is lean. releasing unpurified of the NO X in the downstream
Cause oozing of NO X, the reducing agent supply device, NO X
When the amount of NO X absorbed by the storage reduction catalyst reaches a predetermined level, a reducing agent is supplied to the NO X storage reduction catalyst, and the predetermined NO X absorption level is the NO X under lean air-fuel ratio exhaust. For NO x seepage from the storage reduction catalyst
There is provided an exhaust gas purification device for an internal combustion engine, wherein the amount of unpurified NO x released more outflow is set to be a predetermined value or less.

【0014】すなわち、請求項2に記載の発明において
もNOX 吸蔵還元触媒に吸収されたNOX 量が所定レベ
ルに到達する毎にNOX 吸蔵還元触媒の再生操作が行わ
れる。しかし、本発明ではこの所定レベルはNOX 吸蔵
還元触媒のNOX 吸蔵量の増大によるNOX の染み出し
により流出する未浄化のNOX 量が所定の低い値に維持
されるように、従来に較べてかなり低いレベルに設定さ
れる。これにより、本発明では従来に比較して非常に短
い間隔で再生操作が実行されることになるが、NOX
染み出しによる未浄化のNOX の放出量は極めて低い値
に抑えられるため全体としてのNOX の浄化率を大幅に
向上させることができる。なお、本発明においてもNO
X 吸蔵還元触媒への還元剤の供給は排気通路への還元剤
の噴射により、または機関を短時間リッチ空燃比で運転
することにより、行っても良い。
That is, also in the second aspect of the invention, the regeneration operation of the NO X storage reduction catalyst is performed every time the NO X amount absorbed by the NO X storage reduction catalyst reaches a predetermined level. However, this predetermined level in the present invention as the amount of NO X unpurified flowing out by exudation of the NO X due to the increase in the NO X storage amount of the NO X occluding and reducing catalyst is maintained at a predetermined low value, the conventional It is set to a considerably lower level in comparison. As a result, in the present invention, the regeneration operation is executed at a much shorter interval than in the conventional case, but the amount of unpurified NO X released due to NO X oozing is suppressed to an extremely low value, so As a result, the purification rate of NO x can be significantly improved. Note that in the present invention as well, NO
The reducing agent may be supplied to the X storage reduction catalyst by injecting the reducing agent into the exhaust passage or by operating the engine for a short time at the rich air-fuel ratio.

【0015】なお、NOX 吸蔵還元触媒の再生操作を開
始するNOX 吸蔵量のレベルは、請求項1の発明の吐き
出しによる未浄化NOX 量が所定値以下になる値、また
は本発明の染み出しによる未浄化NOX 量が所定値以下
になる値のいずれか低い方の値に設定するようにすれ
ば、より完全に未浄化のNOX の放出を低減することが
できる。
The level of the NO X storage amount for starting the regeneration operation of the NO X storage reduction catalyst is the value at which the unpurified NO X amount by the discharge of the invention of claim 1 becomes a predetermined value or less, or the stain of the present invention. If the amount of unpurified NO x due to discharge is set to a lower value, whichever is lower, the release of unpurified NO x can be more completely reduced.

【0016】請求項3に記載の発明によれば、前記還元
剤供給装置は、前記NOX 吸蔵還元触媒の上流側の排気
通路に還元剤を噴射する還元剤供給ノズルを備え、NO
X 吸蔵還元触媒に流入する排気空燃比がリーンのときに
NOX 吸蔵還元触媒に吸収されたNOX 量が前記所定の
レベルに到達する毎に予め定めた量の還元剤を排気中に
供給する請求項1または請求項2に記載の内燃機関の排
気浄化装置が提供される。
According to the third aspect of the present invention, the reducing agent supply device includes a reducing agent supply nozzle for injecting the reducing agent into the exhaust passage on the upstream side of the NO X storage reduction catalyst.
When the exhaust air-fuel ratio flowing into the X storage reduction catalyst is lean, a predetermined amount of reducing agent is supplied into the exhaust gas every time the NO X amount absorbed by the NO X storage reduction catalyst reaches the predetermined level. An exhaust gas purification device for an internal combustion engine according to claim 1 or 2 is provided.

【0017】すなわち、請求項3に記載の発明ではNO
X 吸蔵還元触媒への還元剤の供給はNOX 吸蔵還元触媒
上流側の排気通路に配置した還元剤供給ノズルから排気
中に還元剤を噴射することにより行われる。これによ
り、リッチ空燃比で運転することが困難なディーゼル機
関においてもNOX の浄化率を大幅に向上させることが
できる。
That is, in the invention described in claim 3, NO
Supply of the reducing agent to the X occluding and reducing catalyst is carried out by injecting a reducing agent into the exhaust gas from the reducing agent feed nozzle disposed in the exhaust path of the NO X occluding and reducing catalyst upstream. As a result, the NO x purification rate can be significantly improved even in a diesel engine that is difficult to operate at a rich air-fuel ratio.

【0018】請求項4に記載の発明によれば、前記還元
剤供給ノズルからの還元剤の噴射量と噴射率とは、前記
還元剤の供給が行われる時間間隔に応じて設定されてい
る請求項3に記載の内燃機関の排気浄化装置が提供され
る。すなわち、請求項4に記載の発明では、再生操作の
実行間隔に応じて還元剤供給ノズルからの還元剤の噴射
率と噴射量とが設定される。本発明では、従来に較べて
短い間隔で再生操作が実行されることになるため、各再
生操作時に従来と同じ量の還元剤を噴射していたのでは
還元剤消費量が大幅に増大する。また、本発明ではNO
X 吸蔵還元触媒のNOX 吸蔵量が低いレベルにあるとき
に再生操作を行うため、再生操作に必要とされる還元剤
の量は少ない。このため、本発明では再生操作時に供給
する還元剤の量は再生操作の時間間隔に応じて、すなわ
ち再生操作時にNOX 吸蔵還元触媒に吸蔵されているN
X の量に応じて過不足が生じないように設定される。
また、これにより各再生操作時に還元剤供給ノズルから
噴射される還元剤の量は減少するが、この少ない量の還
元剤を長時間の間に排気に噴射したのでは、還元剤が排
気に希釈されてしまいNOX 吸蔵還元触媒の酸素濃度を
低下させる事ができない。そこで、本発明では、還元剤
供給ノズルからの還元剤の噴射率を噴射量に応じて(す
なわち再生操作の実行間隔に応じて)設定し、排気中の
還元剤濃度が充分に高く維持されるようにしている。こ
れにより、再生操作の時間間隔が短く設定されても還元
剤の消費量の増大が抑制されるとともに、NOX 吸蔵還
元触媒の完全な再生が行われる。
According to the invention described in claim 4, the injection amount and injection rate of the reducing agent from the reducing agent supply nozzle are set according to the time interval in which the reducing agent is supplied. An exhaust gas purification device for an internal combustion engine according to item 3 is provided. That is, in the invention described in claim 4, the injection rate and the injection amount of the reducing agent from the reducing agent supply nozzle are set according to the execution interval of the regeneration operation. In the present invention, since the regeneration operation is executed at a shorter interval than in the conventional case, if the same amount of reducing agent as in the conventional case is injected during each regeneration operation, the reducing agent consumption amount increases significantly. Further, in the present invention, NO
Since the regeneration operation is performed when the NO X storage amount of the X storage reduction catalyst is at a low level, the amount of reducing agent required for the regeneration operation is small. Therefore, in the present invention, the amount of the reducing agent supplied during the regeneration operation depends on the time interval of the regeneration operation, that is, the N stored in the NO X storage reduction catalyst during the regeneration operation.
Depending on the amount of O X excess and deficiency is set so as not to cause.
This also reduces the amount of reducing agent injected from the reducing agent supply nozzle during each regeneration operation.However, if this small amount of reducing agent was injected into the exhaust gas over a long period of time, the reducing agent would dilute into the exhaust gas. As a result, the oxygen concentration of the NO X storage reduction catalyst cannot be lowered. Therefore, in the present invention, the reducing agent injection rate from the reducing agent supply nozzle is set according to the injection amount (that is, according to the execution interval of the regeneration operation), and the reducing agent concentration in the exhaust gas is maintained sufficiently high. I am trying. As a result, even if the time interval of the regeneration operation is set to be short, an increase in the consumption amount of the reducing agent is suppressed and the NO X storage reduction catalyst is completely regenerated.

【0019】[0019]

【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。図1は、本発明の排気浄化
装置の一実施形態の概略構成を示す図である。図1にお
いて、1は内燃機関を示す。本実施形態では、内燃機関
1としてディーゼル機関が使用されており、機関の各気
筒排気ポートは排気マニホルド31を介して共通の排気
通路3に接続されている。更に、排気通路3上には後述
するNOX 吸蔵還元触媒7が配置されている。図1に9
で示すのはNOX 吸蔵還元触媒7再生操作時にNOX
蔵還元触媒7に還元剤を供給する還元剤供給装置であ
る。還元剤供給装置は、NOX 吸蔵還元触媒7の排気入
口近傍に配置された還元剤供給ノズル91を備えNOX
吸蔵還元触媒7に流入する排気中に還元剤を噴射するこ
とによりNOX 吸蔵還元触媒7に流入する排気中の酸素
濃度を低下させ、触媒7から吸収したNOX を放出させ
るとともに、放出されたNOX を還元浄化する。後述す
るように、本実施形態では還元剤として機関1の燃料
(ディーゼル油)が使用される。還元剤供給装置9は、
図示しない機関燃料系統に接続され、燃料系統から供給
された加圧燃料を還元剤供給ノズル91から排気通路3
内に噴射する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of an embodiment of an exhaust emission control device of the present invention. In FIG. 1, reference numeral 1 denotes an internal combustion engine. In the present embodiment, a diesel engine is used as the internal combustion engine 1, and each cylinder exhaust port of the engine is connected to a common exhaust passage 3 via an exhaust manifold 31. Further, a NO x storage reduction catalyst 7 described later is arranged on the exhaust passage 3. 9 in FIG.
It is shown in a reducing agent supply device for supplying the reducing agent to the NO X occluding and reducing catalyst 7 during the NO X storage reduction catalyst 7 playback operation. The reducing agent supply device, comprising a the NO X storage reduction the reducing agent feed nozzle 91 disposed in an exhaust inlet near the catalyst 7 NO X
By injecting a reducing agent into the exhaust gas flowing into the storage reduction catalyst 7, the oxygen concentration in the exhaust gas flowing into the NO x storage reduction catalyst 7 is reduced, and the NO x absorbed by the catalyst 7 is released and released. Reduces and purifies NO X. As will be described later, in this embodiment, the fuel (diesel oil) of the engine 1 is used as the reducing agent. The reducing agent supply device 9 is
The pressurized fuel supplied from the fuel system, which is connected to an engine fuel system (not shown), is discharged from the reducing agent supply nozzle 91 to the exhaust passage 3
To inject.

【0020】図1に30で示すのは、機関1の電子制御
ユニット(ECU)である。本実施形態では、ECU3
0はRAM、ROM、CPUを備えた公知の構成のマイ
クロコンピュータとして構成され、機関1の燃料噴射
量、燃料噴射時期等の基本制御を行う他、還元剤供給装
置9を制御して後述するNOX 吸蔵還元触媒7からのN
X の放出及び還元浄化操作(NOX 吸蔵還元触媒の再
生操作)を実施する。
Reference numeral 30 in FIG. 1 is an electronic control unit (ECU) of the engine 1. In this embodiment, the ECU 3
Reference numeral 0 denotes a microcomputer having a well-known configuration including a RAM, a ROM, and a CPU, which performs basic control of the fuel injection amount, fuel injection timing, etc. of the engine 1 and also controls the reducing agent supply device 9 to be described later in NO. N from X storage reduction catalyst 7
O X release and reduction purification operation (NO X catalyst regeneration operation of the reduction catalyst) is carried out.

【0021】本実施形態のNOX 吸蔵還元触媒7は、ア
ルミナ等の担体上に例えばカリウムK、ナトリウムNa
、リチウムLi 、セシウムCs のようなアルカリ金
属、バリウムBa 、カルシウムCa のようなアルカリ土
類、ランタンLa 、セリウムCe、イットリウムYのよ
うな希土類から選ばれた少なくとも一つの成分と、白金
Ptのような貴金属とを担持したものである。NOX
蔵還元触媒は流入する排気ガスの空燃比がリーンのとき
に、排気中のNOX (NO2 、NO)を硝酸イオンNO
3 - の形で吸収し、流入排気ガスの酸素濃度が低下する
と吸収したNOX を放出するNOX の吸放出作用を行
う。
The NO X storage reduction catalyst 7 of the present embodiment comprises, for example, potassium K and sodium Na on a carrier such as alumina.
, Lithium Li, at least one component selected from alkali metals such as cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, cerium Ce and yttrium Y, and platinum Pt. It carries a precious metal. The NO X storage reduction catalyst converts NO X (NO 2 , NO) in the exhaust gas into nitrate ions NO when the air-fuel ratio of the inflowing exhaust gas is lean.
3 - absorbed in the form of, performing absorption and release action of the NO X that releases NO X concentration of oxygen absorbed to decrease the inflow exhaust gas.

【0022】この吸放出のメカニズムについて、以下に
白金PtおよびバリウムBaを使用した場合を例にとっ
て説明するが他の貴金属、アルカリ金属、アルカリ土
類、希土類を用いても同様なメカニズムとなる。流入排
気中の酸素濃度が増大すると(すなわち排気の空燃比が
リーン空燃比になると)、これら酸素は白金Pt上にO
2 - またはO2-の形で付着し、排気中のNOX は白金P
t上のO2 - またはO2-と反応し、これによりNO2
生成される。また、流入排気中のNO2 及び上記により
生成したNO2 は白金Pt上で更に酸化されつつ触媒中
に吸収されて吸収剤として機能する酸化バリウムBaO
と結合しながら硝酸イオンNO3 - の形で触媒内に拡散
する。このため、リーン雰囲気下では排気中のNOX
NOX 吸蔵還元触媒内に硝酸塩の形で吸収されるように
なる。
The mechanism of this absorption and release will be described below by taking the case of using platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths. When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes the lean air-fuel ratio), these oxygens are O 2 on the platinum Pt.
2 - or deposited at O 2- form, NO X in the exhaust gas platinum P
Reacts with O 2 or O 2 on t, which produces NO 2 . Further, barium oxide BaO NO 2 and NO 2 produced by the above in the inflowing exhaust gas is to function as an absorbent is absorbed by the catalyst while being further oxidized on the platinum Pt
It diffuses into the catalyst in the form of nitrate ions NO 3 while being bound with. Therefore, in a lean atmosphere, NO X in the exhaust gas is absorbed in the NO X storage reduction catalyst in the form of nitrate.

【0023】また、流入排気中の酸素濃度が低下すると
(すなわち、排気の空燃比が低下すると)、白金Pt上
でのNO2 生成量が減少するため反応が逆方向に進むよ
うになり、触媒内の硝酸イオンNO3 - はNO2 の形で
NOX 吸蔵還元触媒から放出されるようになる。この場
合、排気中にHC、CO等の成分が存在すると白金Pt
上でこれらの成分によりNO2 が還元される。
When the oxygen concentration in the inflowing exhaust gas decreases (that is, the air-fuel ratio of the exhaust gas decreases), the amount of NO 2 produced on the platinum Pt decreases, so that the reaction proceeds in the opposite direction and the catalyst The nitrate ion NO 3 in the inside is released from the NO X storage reduction catalyst in the form of NO 2 . In this case, if HC, CO, etc. are present in the exhaust gas, platinum Pt
NO 2 is reduced by these components above.

【0024】本実施形態では、機関1としてディーゼル
機関が使用されているため機関の排気空燃比はリーンで
あり、通常運転中は排気通路3のNOX 吸蔵還元触媒7
にはリーン空燃比の排気が流入し排気中のNOX がNO
X 吸蔵還元触媒7に吸収される。また、NOX 吸蔵還元
触媒7上流側の排気通路3に還元剤が供給されるとNO
X 吸蔵還元触媒7には還元剤を含んだ排気が流入し、還
元剤の一部はNOX 吸蔵還元触媒7の白金Pt上で酸素
と反応する。これにより、NOX 吸蔵還元触媒7の雰囲
気中の酸素濃度が低下するとともに、還元剤の酸化によ
り未燃HC、CO等の成分が発生する。還元剤の酸化に
よりNOX 吸蔵還元触媒7の雰囲気酸素濃度が低下する
と、上述したメカニズムによりNOX 吸蔵還元触媒7か
らNOXが放出され排気中のHC、CO成分により還元
される。
In this embodiment, since the diesel engine is used as the engine 1, the exhaust air-fuel ratio of the engine is lean, and the NO x storage reduction catalyst 7 in the exhaust passage 3 is in normal operation.
Lean air-fuel ratio exhaust flows into the exhaust and NO x in the exhaust is NO
It is absorbed by the X storage reduction catalyst 7. Further, when the reducing agent is supplied to the exhaust passage 3 on the upstream side of the NO X storage reduction catalyst 7, NO
The X occluding and reducing catalyst 7 flows is contained reductant exhaust, part of the reducing agent reacts with oxygen on the platinum Pt of the NO X occluding and reducing catalyst 7. As a result, the oxygen concentration in the atmosphere of the NO X storage reduction catalyst 7 decreases, and the components such as unburned HC and CO are generated due to the oxidation of the reducing agent. When the atmospheric oxygen concentration of the NO X occluding and reducing catalyst 7 by oxidation of the reducing agent decreases, HC of the NO X storage NO X from the reducing catalyst 7 is released in the exhaust by a mechanism mentioned above, it is reduced by CO component.

【0025】上記NOX 吸蔵還元触媒からのNOX の放
出、還元浄化操作(NOX 吸蔵還元触媒の再生操作)に
使用される還元剤としては、排気中でH2 等の還元成分
やHC、CO成分を生成するものが使用され、例えば水
素、一酸化炭素等の気体、プロパン、プロピレン、ブタ
ン等の液体又は気体の炭化水素、ガソリン、軽油、灯油
等の液体燃料等が使用できる。本実施形態では、内燃機
関1としてディーゼル機関が使用されているため、補
給、貯蔵の便を考慮して還元剤として機関1の燃料(デ
ィーゼル油)を使用するようにしている。還元剤供給装
置9は機関1の燃料ポンプ(図示せず)から供給された
燃料を遮断弁、流量調整弁(図示せず)を介して還元剤
供給ノズル91からNOX 吸蔵還元触媒7上流側の排気
通路に供給することによりNOX 吸蔵還元触媒7の再生
を行う。
As the reducing agent used for the release of NO X from the NO X storage reduction catalyst and the reduction purification operation (regeneration operation of the NO X storage reduction catalyst), a reducing component such as H 2 or HC in exhaust gas, A substance that produces a CO component is used, and for example, a gas such as hydrogen or carbon monoxide, a liquid or gaseous hydrocarbon such as propane, propylene, butane, or a liquid fuel such as gasoline, light oil, or kerosene can be used. In this embodiment, since the diesel engine is used as the internal combustion engine 1, the fuel (diesel oil) of the engine 1 is used as the reducing agent in consideration of the refueling and storage stools. The reducing agent supply device 9 is an upstream side of the NO X storage reduction catalyst 7 from the reducing agent supply nozzle 91 via a cutoff valve and a flow rate adjusting valve (not shown) for fuel supplied from a fuel pump (not shown) of the engine 1. The NO x storage reduction catalyst 7 is regenerated by supplying it to the exhaust passage.

【0026】上述のように、NOX 吸蔵還元触媒7は還
元剤供給装置9から還元剤が供給されていないときに
(すなわち流入する排気空燃比がリーンのときに)排気
中のNOX を吸収し、還元剤供給装置9から排気中に還
元剤が供給され流入する排気の酸素濃度が低下すると吸
収したNOX を放出、還元浄化する。このため、従来N
X 吸蔵還元触媒7が吸収したNOX で飽和しない限り
下流側には未浄化のNO X が放出されることはないと考
えられていた。
As mentioned above, NOXStorage reduction catalyst 7 is returned
When the reducing agent is not supplied from the original material supply device 9
Exhaust (that is, when the inflowing exhaust air-fuel ratio is lean)
NO inXAbsorbed and returned from the reducing agent supply device 9 to the exhaust gas
When the base agent is supplied and the oxygen concentration of the inflowing exhaust gas decreases,
NO collectedXRelease and purify by reduction. Therefore, the conventional N
OXNO absorbed by the storage reduction catalyst 7XUnless saturated with
Unpurified NO on the downstream side XThought not to be released
It was taken.

【0027】ところが、実際の運転ではNOX 吸蔵還元
触媒には前述した「NOX の吐き出し」と「NOX の染
み出し」と称する現象が生じるためNOX 吸蔵還元触媒
が吸収したNOX で飽和していない状態でも未浄化のN
X が下流側に放出される場合があることが判明してい
る。本明細書では、前述したようにNOX 吸蔵還元触媒
の再生操作初期にNOX 吸蔵還元触媒下流側に未浄化の
NOX が放出される現象を「NOX の吐き出し」と呼
び、NOX 吸蔵還元触媒が排気中のNOX を吸収中(す
なわち流入する排気空燃比がリーンのとき)にNOX
蔵還元触媒下流側に未浄化のNOX が放出される現象を
「NOX の染み出し」と呼び、両者を区別している。
[0027] However, in the actual operation saturated with NO X storage is the reduction catalyst described above "NO X of the discharge," said NO because the phenomenon occurs, which is referred to as "NO stains out of X" X occluding and reducing catalyst has absorbed NO X Unpurified N even when not performing
O X is it found that may be released to the downstream side. In this specification, referred to as "discharging of the NO X" a phenomenon that unpurified of the NO X is released into the NO X storage reduction catalyst downstream of the regeneration operation early of the NO X occluding and reducing catalyst as described above, the NO X storage during absorption reduction catalyst the NO X in the exhaust gas (i.e. exhaust gas air-fuel ratio of the inflowing when lean) "oozing of the NO X" a phenomenon in which NO X unpurified the NO X occluding and reducing catalyst downstream is released To distinguish between the two.

【0028】NOX の吐き出しと染み出しが何故生じる
かの理由については現在のところ明確には判明していな
いが、以下に説明する現象によるものと推測されてい
る。まず、NOX の吐き出しの生じる理由について説明
する。前述のように、NOX 吸蔵還元触媒は吸収したN
X を硝酸塩の形で保持する。このとき、硝酸イオンは
NOX 吸蔵還元触媒中の吸収剤(例えばBaO)の表面
から内部に拡散により移動して硝酸塩を形成する。この
ため、NOX の吸収中には吸収剤表面の硝酸イオン濃度
は内部の硝酸イオン濃度より高くなっている。この状態
でNOX 吸蔵還元触媒の再生操作が開始され吸収剤表面
の雰囲気酸素濃度が急激に低下すると、吸収剤表面近傍
の高濃度の硝酸イオンがNO2 の形で一斉に吸収剤から
放出されるようになる。このため、再生操作開始直後に
は短時間で比較的多量のNOX がNOX 吸蔵還元触媒か
ら放出されるようになり、一時的な還元剤不足が生じ、
放出されたNOX の一部が未浄化のままNOX 吸蔵還元
触媒下流側に放出されるようになると考えられる。
The reason why the NO x is exhaled and exuded is not clear at present, but it is presumed that it is due to the phenomenon described below. First, the reason why NO X is discharged will be described. As described above, the NO X storage reduction catalyst has absorbed N
The O X held in the form of nitrates. At this time, nitrate ions move by diffusion from the surface of the absorbent (eg, BaO) in the NO x storage reduction catalyst to the inside to form nitrate. For this reason, the nitrate ion concentration on the surface of the absorbent is higher than the internal nitrate ion concentration during the absorption of NO X. When the regeneration operation of the NO X storage reduction catalyst is started in this state and the atmospheric oxygen concentration on the surface of the absorbent drops sharply, the high-concentration nitrate ions near the surface of the absorbent are simultaneously released from the absorbent in the form of NO 2. Become so. Therefore, immediately after the start of the regeneration operation, a relatively large amount of NO X is released from the NO X storage reduction catalyst in a short time, causing a temporary shortage of the reducing agent,
Some of the released NO X is considered to be to be released leaving the NO X storage reduction catalyst downstream of unpurified.

【0029】吸収剤表面近傍の硝酸イオンが放出された
後は、吸収剤内部に保持された硝酸イオンが表面に移動
してNO2 の形で放出されるようになるが、この場合に
は吸収剤からのNO2 の放出速度は吸収剤内部での硝酸
イオンの移動速度に律速されるようになるため、放出速
度は比較的低くなり、還元剤の不足は生じない。このた
め、NOX 吸蔵還元触媒の再生操作開始直後に一時的に
未浄化のNOXが下流側に放出されるNOX の吐き出し
が生じるのである。
After the nitrate ions near the surface of the absorbent are released, the nitrate ions retained inside the absorbent move to the surface and are released in the form of NO 2. Since the rate of NO 2 release from the agent is controlled by the rate of movement of nitrate ions inside the absorbent, the rate of release is relatively low and there is no shortage of reducing agent. Therefore, it is the discharging of the NO X which the NO X storage reduction NO X temporarily unpurified immediately after the start of the regenerating operation of the catalyst is released to the downstream side is caused.

【0030】吐き出しにより放出されるNOX の量は、
吸収剤表面の硝酸イオン濃度が高いほど大きくなる。こ
のため、NOX 吸蔵還元触媒に吸収されたNOX 量(N
X吸蔵量)が多いほど吐き出しにより放出される未浄
化のNOX が増大するようになる。また、NOX の染み
出しはNOX 吸蔵還元触媒の吸収剤に吸収されたNOX
量の増大により吸収剤のNOX 吸蔵能力が低下するため
に生じると考えられる。上述したように、NOX 吸蔵還
元触媒の白金Pt上で生成された硝酸イオンは吸収剤表
面から内部に拡散により移動する。従って、NOX 吸蔵
還元触媒のNOX 吸蔵量が増大して吸収剤内部の硝酸イ
オン濃度が増大すると、内部に硝酸イオンが拡散しにく
くなり、吸収剤表面の硝酸イオン濃度が増大する。これ
により、白金Pt上でのNO2 →NO3 - の反応が生じ
にくくなり排気中のNOX がNOX 吸蔵還元触媒に吸収
されなくなる。このため、NOX 吸蔵還元触媒のNOX
吸収中にはNOX 吸蔵量が増大するにつれてNOX 吸蔵
還元触媒に吸収されず下流側に流出する未浄化のNOX
量が増大するようになる。
The amount of NO x released by exhalation is
The higher the nitrate ion concentration on the surface of the absorbent, the larger it becomes. Therefore, the amount of NO X absorbed by the NO X storage reduction catalyst (N
The larger the O X storage amount), the larger the amount of unpurified NO X that is released by the discharge. Further, oozing of the NO X is the NO X storage reduction NO X absorbed by the absorbent of the catalyst
It is considered that this occurs because the NO x storage capacity of the absorbent decreases as the amount increases. As described above, the nitrate ions generated on the platinum Pt of the NO X storage reduction catalyst move from the surface of the absorbent to the inside by diffusion. Therefore, when the NO x storage amount of the NO x storage reduction catalyst increases and the nitrate ion concentration inside the absorbent increases, it becomes difficult for the nitrate ions to diffuse inside, and the nitrate ion concentration on the absorbent surface increases. As a result, the reaction of NO 2 → NO 3 on platinum Pt is less likely to occur, and NO X in the exhaust gas is not absorbed by the NO X storage reduction catalyst. Therefore, the NO X storage reduction catalyst NO X
Unpurified of the NO X during absorption flowing downstream without being absorbed in the NO X occluding and reducing catalyst as the NO X storage amount increases
The quantity will increase.

【0031】また、NOX 吸蔵還元触媒の最大NOX
蔵量(飽和量)はリーン空燃比下においても空燃比が低
下するにつれて(リッチ側になるにつれて)低下する。
このため、NOX 吸蔵還元触媒に比較的多量のNOX
吸蔵されている場合、運転条件の変化により排気空燃比
が低下してNOX 吸蔵還元触媒の飽和量が低下した場合
には、飽和量を越える分の吸蔵NOX はNOX 吸蔵還元
触媒から放出されるようになる。従って、例え排気がリ
ーン空燃比でありNOX 吸蔵還元触媒がNOXを吸収中
であっても空燃比が低下するとNOX 吸蔵還元触媒から
飽和量を越えた分のNOX が放出されるようになる。こ
の場合、当然NOX 吸蔵還元触媒のNO X 吸蔵量が多い
程放出される未浄化のNOX 量も増大するようになる。
In addition, NOXMaximum NO of storage reduction catalystXSucking
Storage amount (saturation amount) is low even under lean air-fuel ratio
It decreases as it goes down (as it goes to the rich side).
Therefore, NOXA relatively large amount of NO in the storage reduction catalystXBut
If stored, the exhaust air-fuel ratio may change due to changes in operating conditions.
Is lowered and NOXWhen the saturation level of the storage reduction catalyst decreases
Is the stored NO that exceeds the saturation amount.XIs NOXStorage reduction
It will be released from the catalyst. Therefore, even if exhaust is
Air-fuel ratio and NOXStorage reduction catalyst is NOXAbsorbing
Even if the air-fuel ratio decreases, NOXFrom storage reduction catalyst
NO that exceeds saturationXWill be released. This
In case of, NOXNO of storage reduction catalyst XLarge storage capacity
Unpurified NO released as muchXThe quantity will also increase.

【0032】本実施形態では、NOX 吸蔵還元触媒のN
X 吸収中に生じる上記2つの種類の未浄化NOX 放出
を併せてNOX の染み出しと称している。ところで、N
X の吐き出しと染み出しとにより放出される未浄化の
NOX の量は、いずれもNOX 吸蔵還元触媒のNOX
蔵量が増大するにつれて多くなる。このため、従来のよ
うにNOX 吸蔵還元触媒のNOX 吸蔵量が比較的高い値
に到達する毎に再生操作を実行するようにしていたので
は、NOX の吐き出しと染み出しとにより放出される未
浄化のNOX 量が大きくなってしまい、全体としてのN
X 浄化率を充分に向上させることができない場合があ
る。
In this embodiment, N of the NO X storage reduction catalyst is used.
The above two types of unpurified NO x emissions that occur during O x absorption are collectively referred to as NO x leaching. By the way, N
The amount of unpurified of the NO X released by and O X discharged and exudation are both increased as the NO X storage amount of the NO X occluding and reducing catalyst is increased. Therefore, than had to perform a reproducing operation for each of the NO X storage amount of the NO X occluding and reducing catalyst as in the prior art to reach a relatively high value, it is released by the the exudation discharging of the NO X The amount of unpurified NO x becomes large and the total N
In some cases, the O x purification rate cannot be improved sufficiently.

【0033】そこで、本実施形態では従来NOX 吸蔵還
元触媒のNOX 飽和量を基準にして設定されていた(例
えば飽和量の70パーセント)再生操作実行要否判定の
ためのNOX 吸蔵量を、NOX 吸蔵還元触媒からのNO
X の吐き出しまたは染み出しにより放出される未浄化の
NOX 量が所定値以下になるように低い値に設定するこ
とにより未浄化のNOX の放出を防止して、NOX 吸蔵
還元触媒の全体としてのNOX 浄化率を大幅に向上させ
ている。
Therefore, in this embodiment, the NO X storage amount for determining whether or not the regeneration operation is necessary, which has been set based on the NO X saturation amount of the conventional NO X storage reduction catalyst (for example, 70% of the saturation amount). NO from NO x storage reduction catalyst
To prevent the release of unpurified of the NO X by the amount of NO X unpurified released by X spitting or exudation is set to a low value to be equal to or less than the predetermined value, the whole of the NO X occluding and reducing catalyst As a result, the NO x purification rate is greatly improved.

【0034】本実施形態では、予め実験によりNOX
蔵還元触媒のNOX 吸蔵量とNOXの吐き出し、染み出
しによる未浄化のNOX 放出量との関係を求めておく。
そして、この関係から両方の未浄化NOX 放出量の合計
が予め定めた値以下になるNOX 吸蔵量の最大値(再生
操作実行判定値)を定めておき、実際の運転ではNO X
の吸蔵量がこの再生操作実行判定値に到達する毎にNO
X 吸蔵還元触媒の再生操作を実行する。NOX の吐き出
しと染み出しとによる未浄化NOX の放出量の許容値
は、全体としてのNOX 浄化率(すなわち、ある期間に
おけるNOX 浄化率の平均値)が所望の値になるように
設定されるが、従来達成可能なNOX 浄化率より大幅に
高い浄化率を達成するために、本実施形態では未浄化の
NOX の放出量の許容値は極めて小さく設定される。こ
のため、本実施形態ではNOX 吸蔵還元触媒の再生操作
は極めて低い値(例えば飽和量の10パーセント以下の
程度)に設定され、従来に較べて極めて短い間隔でNO
X 吸蔵還元触媒の再生操作が実行されるようになる。こ
れにより、NOX 吸蔵還元触媒再生操作開始直後に吐き
出しにより放出される未浄化NOX 量、及びNOX 吸蔵
量の増大のためにNO X 吸収中に染み出しにより放出さ
れる未浄化NOX 量が低い値に抑制されるようになる。
また、機関運転条件の変化により排気空燃比が低下した
場合にも吸蔵NOX 量が飽和量を越えることがないた
め、空燃比変化による未浄化のNOX 放出も防止される
ようになる。
In this embodiment, NO is previously determined by an experiment.XSucking
NO of storage reduction catalystXStorage amount and NOXExhalation, exudation
Unpurified NO due to shiiXFind the relationship with the amount released.
And from this relationship both unpurified NOXTotal amount released
Is less than or equal to a predetermined value NOXMaximum storage capacity (regeneration
Operation execution judgment value) is set, and NO in actual driving. X
NO is stored every time the stored amount reaches the judgment value for execution of the regeneration operation.
XThe regeneration operation of the storage reduction catalyst is executed. NOXSpit out
Unpurified NO due to exudationXEmission allowance
Is NO as a wholeXPurification rate (ie in a certain period
NO inXSo that the average value of the purification rate) becomes the desired value
Set, but conventionally achievable NOXGreater than purification rate
In order to achieve a high purification rate, unpurified in this embodiment.
NOXThe allowable value of the release amount of is set to be extremely small. This
Therefore, in this embodiment, NOXRegeneration operation of storage reduction catalyst
Is a very low value (eg less than 10% of saturation)
Is set to about), and NO is set at an extremely short interval compared to the past.
XThe regeneration operation of the storage reduction catalyst comes to be executed. This
By this, NOXSuction immediately after starting the regeneration operation of the storage reduction catalyst
Unpurified NO released by dischargeXQuantity and NOXOcclusion
NO to increase quantity XReleased by exudation during absorption
Unpurified NOXThe amount will be suppressed to a low value.
In addition, the exhaust air-fuel ratio decreased due to changes in engine operating conditions.
In case of occlusion NOXAmount did not exceed saturation
Therefore, unpurified NO due to changes in the air-fuel ratioXRelease is also prevented
Like

【0035】図2は本実施形態の排気浄化装置における
浄化率向上の効果を説明するタイミング図である。図2
の実線は、本実施形態の排気浄化装置のように短い間隔
で再生操作を実行した場合のNOX 吸蔵還元触媒7出口
における排気中のNOX 濃度を、点線は従来の排気浄化
装置のように比較的長い間隔で再生操作を実行した場合
のNOX 吸蔵還元触媒7出口における排気中のNOX
度をそれぞれ示している。また、図2の直線IはNOX
吸蔵還元触媒7に流入する排気中のNOX 濃度を示して
いる(図2では、流入排気中のNOX 濃度が一定の場合
を示す)。
FIG. 2 is a timing chart for explaining the effect of improving the purification rate in the exhaust purification system of this embodiment. Figure 2
The solid line indicates the NO X concentration in the exhaust gas at the outlet of the NO X storage reduction catalyst 7 when the regeneration operation is executed at short intervals as in the exhaust gas purification apparatus of the present embodiment, and the dotted line indicates the NO X concentration in the exhaust gas purification apparatus of the related art. The respective NO x concentrations in the exhaust gas at the outlet of the NO x storage reduction catalyst 7 when the regeneration operation is executed at relatively long intervals are shown. The straight line I in FIG. 2 is NO x.
The NO x concentration in the exhaust gas flowing into the storage reduction catalyst 7 is shown (FIG. 2 shows the case where the NO x concentration in the exhaust gas is constant).

【0036】まず、従来の排気浄化装置(点線)の場合
について説明すると、従来は比較的NOX 吸蔵還元触媒
のNOX 吸蔵量が大きな値に増大するまで再生操作が実
行されない。このため、NOX 吸蔵還元触媒の吸蔵量が
増大するにつれて染み出しによる未浄化NOX 放出量が
増大し、図2点線にAで示すように出口排気ガス中のN
X 濃度が徐々に増大して行く。また、NOX 吸蔵量が
所定値(例えば飽和量の70パーセント程度)に到達す
ると、還元剤が供給されNOX 吸蔵還元触媒の再生操作
が実行されるが(図2点線、B点)、この場合も再生操
作実行時のNO X 吸蔵量が比較的大きいため、再生操作
開始時に吐き出しにより多量の未浄化NOX が放出され
てしまう(図2点線、C部分)。吐き出しによる未浄化
のNOXの放出は短時間で終了し、再生が完了するとN
X 吸蔵還元触媒の出口NOX 濃度は低下するが、その
後NOX 吸蔵量が増大するにつれて再び出口NOX 濃度
は増大する(図2点線、D部分)。このため従来の排気
浄化装置では、全体として図2点線の下側の部分の面積
に相当する比較的多量の未浄化NOX がNOX 吸蔵還元
触媒下流側に放出されてしまうことになり、全体として
のNOX 吸蔵還元触媒のNOX 浄化率は低くなってしま
う。
First, in the case of the conventional exhaust emission control device (dotted line)
The conventional method is relatively NO.XStorage reduction catalyst
NOXThe regenerating operation continues until the occlusion amount increases to a large value.
Not done. Therefore, NOXThe storage amount of the storage reduction catalyst
Unpurified NO due to seepage as it increasesXThe amount released
As shown by A in the dashed line in FIG.
OXThe concentration gradually increases. Also, NOXStorage capacity
Reach a specified value (for example, about 70% of saturation)
Then, the reducing agent is supplied and NOXRegeneration operation of storage reduction catalyst
Is executed (dotted line in Fig. 2, point B), but in this case also
NO when executing the work XRegeneration operation due to relatively large storage capacity
A large amount of unpurified NO due to spitting at the startXIs released
(Fig. 2, dotted line, part C). Unpurified by spitting
NOXIs released in a short time, and when the regeneration is completed, N
OXOutlet NO of storage reduction catalystXThe concentration decreases, but that
After NOXThe outlet NO again as the storage amount increasesXconcentration
Increases (dotted line in FIG. 2, part D). Because of this, conventional exhaust
In the purification device, the area of the lower part of the dotted line in FIG. 2 as a whole
Relatively large amount of unpurified NO equivalent toXIs NOXStorage reduction
It will be released to the downstream side of the catalyst, and as a whole
NOXNO of storage reduction catalystXThe purification rate will be low
U

【0037】これに対して、本実施形態の排気浄化装置
(図2実線)ではNOX 吸蔵還元触媒のNOX 吸蔵量が
極めて低い値に到達する毎に短い間隔で再生操作(図2
実線、B′点)が実行される。このため、NOX 吸収中
の染み出しによる未浄化のNOX 放出(図2実線、A′
部分)及び再生操作実行開始時の吐き出しによる未浄化
のNOX 放出(図2実線、C′)はともに小さな値にな
る。これにより、全体としてNOX 吸蔵還元触媒から放
出される未浄化のNOX 量は、図2実線下側部分の面積
に相当する極めて少ない量になり、従来の排気浄化装置
(図2、点線)に較べて大幅に全体としてのNOX 浄化
効率が向上するようになる。
[0037] In contrast, the exhaust gas purification device (Figure 2 solid lines), the reproduction operation at short intervals each time the NO X storage amount of the NO X occluding and reducing catalyst reaches a very low value of the present embodiment (FIG. 2
The solid line, point B ') is executed. For this reason, unpurified NO X release due to seepage during NO X absorption (solid line in FIG. 2, A ′)
(Part) and the unpurified NO x emission (solid line in FIG. 2, C ′) due to the discharge at the start of execution of the regeneration operation both have small values. As a result, the amount of unpurified NO X released from the NO X storage reduction catalyst as a whole becomes an extremely small amount corresponding to the area of the lower portion of the solid line in FIG. 2, and the conventional exhaust purification device (FIG. 2, dotted line). As a result, the NO x purification efficiency as a whole will be greatly improved.

【0038】図3は、本実施形態の上記NOX 吸蔵還元
触媒再生操作を説明するフローチャートである。本操作
は、ECU30により一定時間毎に実行されるルーチン
により実施される。図3において、ステップ301では
現在のNOX 吸蔵還元触媒7のNOX 吸蔵量CNOXが
算出される。
FIG. 3 is a flow chart for explaining the operation of regenerating the NO X storage reduction catalyst of the present embodiment. This operation is performed by a routine executed by the ECU 30 at regular intervals. In FIG. 3, in step 301, the current NO X storage amount CNOX of the NO X storage reduction catalyst 7 is calculated.

【0039】本実施形態では、NOX 吸蔵量CNOXは
機関の運転状態に基づいて算出される。機関から単位時
間(例えば図3の操作の実行間隔)あたりに発生するN
X量は、機関負荷条件(例えば燃料噴射量と回転数
と)により定まる。そこで、本実施形態では、予め機関
を負荷条件を変えて運転し、各負荷条件下でのNOX
生量を実測し、例えば燃料噴射量と回転数とを用いた数
値テーブルの形でECU30のROMに格納してある。
ステップ301では、操作実行毎にECU30により別
途実行される燃料噴射量演算ルーチンで算出される燃料
噴射量と、機関回転数とから上記数値テーブルを用いて
前回操作実行時から今回操作実行時までに機関から発生
したNOX 量を算出する。そして、この発生量に所定の
定数(排気中のNOX のうちNOX 吸蔵還元触媒7に吸
収されるNOX の割合)を乗じた値をCNOXに加算す
る。これにより、CNOXの値はNOX 吸蔵還元触媒7
に吸蔵されたNOX 量に対応した値となる。
In this embodiment, the NO X storage amount CNOX is calculated based on the operating state of the engine. N generated from the engine per unit time (for example, the operation execution interval of FIG. 3)
The O X amount is determined by the engine load condition (for example, the fuel injection amount and the rotation speed). Therefore, in the present embodiment, the engine is operated under different load conditions in advance, the NO X generation amount under each load condition is measured, and the ECU 30 is operated in the form of a numerical table using, for example, the fuel injection amount and the rotation speed. It is stored in ROM.
In step 301, from the fuel injection amount calculated in the fuel injection amount calculation routine executed separately by the ECU 30 each time the operation is executed, and the engine speed from the previous operation execution time to the current operation execution time using the above numerical value table. calculating the amount of NO X generated from the engine. Then, a value obtained by multiplying the generated amount by a predetermined constant (a ratio of NO X absorbed in the NO X storage reduction catalyst 7 in NO X in the exhaust gas) is added to CNOX. As a result, the value of CNOX is reduced by the NO X storage reduction catalyst 7
The value corresponds to the amount of NO X stored in the.

【0040】なお本実施形態では、燃料噴射量と回転数
とに応じて算出した値をNOX 吸蔵還元触媒7のNOX
吸蔵量CNOXとして用いているが、例えば、前回再生
操作実施後の燃料噴射量の積算値、回転数の積算値、あ
るいは機関が比較的高回転で定常運転されているような
場合には前回再生操作完了後の機関運転時間等をNO X
吸蔵量CNOXとして用いて計算を簡素化しても良い。
In this embodiment, the fuel injection amount and the rotation speed are set.
The value calculated according toXNO of the storage reduction catalyst 7X
Although used as the storage amount CNOX, for example, the previous playback
The cumulative value of the fuel injection amount after the operation, the cumulative value of the number of revolutions,
Or the engine is running at a relatively high speed
In this case, the engine operating time after completion of the previous regeneration operation is NO. X
The storage amount may be used as CNOX to simplify the calculation.

【0041】また、図2に示したようにNOX 吸蔵還元
触媒7のNOX 吸収中、NOX 吸蔵還元触媒7出口にお
ける排気中のNOX 濃度は染み出しのためNOX 吸蔵還
元触媒のNOX 吸蔵量に応じて増大していく。このた
め、例えばNOX 吸蔵還元触媒7出口に排気中のNOX
濃度を検出可能なNOX 濃度センサを配置して、NOX
濃度センサで検出したNOX 濃度をCNOXとして使用
するようにしても良い。上記により、NOX 吸蔵還元触
媒7のNOX 吸蔵量CNOXを算出後、ステップ303
では、算出したNOX 吸蔵量CNOXが所定値CNOX
0 に到達したか否かが判定される。ここで、CNOX0
は、NOX 吸蔵還元触媒7の染み出しにより放出される
未浄化NOX の量(NOX 吸蔵還元触媒7出口における
排気中のNOX 濃度)が予め定めた値以下になる最大N
X 吸蔵量、またはNOX 吸蔵還元触媒7再生操作開始
時に吐き出しにより放出される未浄化NOX の量(濃
度)が予め定めた量以下になる最大NOX 吸蔵量のうち
どちらか小さい値に設定される。なお、放出される未浄
化のNOX 量の許容値は、所望のNOX 浄化率から決定
される。また、CNOX0 の値は、実際のNOX 吸蔵還
元触媒7を用いた実験により決定することが好ましい。
Further, in the NO X absorption of the NO X occluding and reducing catalyst 7 as shown in FIG. 2, the NO X storage concentration of NO X reducing catalyst 7 in the exhaust at the outlet is NO in the NO X storage reduction catalyst for seepage X It increases according to the amount of occlusion. Thus, for example, the NO X storage reduction catalyst 7 NO X in the exhaust gas outlet
By placing detectable NO X concentration sensor concentrations, NO X
The NO X concentration detected by the concentration sensor may be used as CNOX. From the above, after calculating the NO X storage amount CNOX of the NO X storage reduction catalyst 7, step 303
Then, the calculated NO X storage amount CNOX is the predetermined value CNOX.
It is determined whether 0 has been reached. Here, CNOX 0
Is the maximum N at which the amount of unpurified NO X released by the exudation of the NO X storage reduction catalyst 7 (NO X concentration in the exhaust gas at the outlet of the NO X storage reduction catalyst 7) becomes a predetermined value or less.
The smaller one of the O X storage amount or the maximum NO X storage amount at which the amount (concentration) of the unpurified NO X released by discharge at the start of the regeneration operation of the NO X storage reduction catalyst 7 becomes a predetermined amount or less. Is set. The allowable value of the unpurified NO X amount released is determined from the desired NO X purification rate. Further, the value of CNOX 0 is preferably determined by an experiment using an actual NO X storage reduction catalyst 7.

【0042】ステップ303でCNOX≧CNOX0
あった場合にはステップ305で還元剤供給装置9の還
元剤供給ノズル91から所定量の燃料が噴射され、NO
X 吸蔵還元触媒7の再生が行われる。また、再生操作終
了後、ステップ305ではNOX 吸蔵量CNOXの値は
リセットされる。なお、還元剤供給ノズル91から噴射
する還元剤(本実施形態ではディーゼル油)の噴射量
は、NOX 吸蔵還元触媒のNOX 吸蔵量CNOXの全量
を浄化するのに充分な量のHC、CO成分を発生可能な
最小量に設定される。このように還元剤供給量を再生操
作実行時のNOX 吸蔵還元触媒のNOX 吸蔵量に応じて
設定することにより、本実施形態では一回の再生操作で
噴射される還元剤の量は低く抑えられる。このため、本
実施形態では極めて短い時間間隔で再生操作を行うにも
かかわらず、還元剤の消費量は従来に較べて僅かに(す
なわち、従来未浄化のまま放出されていたNOX を浄化
するのに使用される還元剤の量に相当する量だけ)増大
する程度になる。また、本実施形態では極めて短い時間
間隔で再生操作が実行されるため、短時間で所要量の還
元剤をノズル91から噴射する必要がある。また、1回
の再生操作で噴射される還元剤の量は比較的僅かなの
で、長い時間をかけてこの少量の還元剤を噴射したので
は、噴射された還元剤が排気により希釈されてしまい排
気中の還元剤濃度を充分に上昇させることができなくな
る。そこで、本実施形態では、還元剤供給ノズル91か
らの還元剤の噴射量は再生操作の実行間隔(再生操作開
始時のNOX 吸蔵量)に応じて設定し、更にノズル91
からの噴射率は噴射量及び再生操作実行間隔との両方を
考慮して設定するようにしている。これにより、1回の
再生操作で必要とされる量の還元剤を必要とされる濃度
でNOX 吸蔵還元触媒に流入する排気中に供給すること
が可能となる。
If CNOX ≧ CNOX 0 in step 303, a predetermined amount of fuel is injected from the reducing agent supply nozzle 91 of the reducing agent supply device 9 in step 305, and NO
The X storage reduction catalyst 7 is regenerated. Further, after the regeneration operation is completed, in step 305, the value of the NO X storage amount CNOX is reset. The injection amount of the reducing agent (diesel oil in this embodiment) injected from the reducing agent supply nozzle 91 is sufficient to purify the total amount of the NO X storage amount CNOX of the NO X storage reduction catalyst HC, CO. It is set to the minimum amount that can produce the component. In this way, by setting the reducing agent supply amount according to the NO X storage amount of the NO X storage reduction catalyst at the time of executing the regeneration operation, the amount of the reducing agent injected in one regeneration operation is low in the present embodiment. It can be suppressed. For this reason, in the present embodiment, although the regenerating operation is performed at an extremely short time interval, the reducing agent consumption is slightly smaller than that in the conventional case (that is, the NO X that has been conventionally discharged without being purified is purified. The amount of reducing agent used to increase the amount). Further, in the present embodiment, since the regeneration operation is executed at an extremely short time interval, it is necessary to inject the required amount of reducing agent from the nozzle 91 in a short time. Further, since the amount of reducing agent injected in one regeneration operation is relatively small, injecting this small amount of reducing agent over a long period of time causes the injected reducing agent to be diluted by the exhaust gas and exhausted. It becomes impossible to sufficiently increase the concentration of the reducing agent therein. Therefore, in the present embodiment, the injection amount of the reducing agent from the reducing agent supply nozzle 91 is set according to the execution interval of the regeneration operation (NO X storage amount at the start of the regeneration operation), and the nozzle 91
The injection rate is set in consideration of both the injection amount and the regeneration operation execution interval. This makes it possible to supply the required amount of reducing agent in one regeneration operation at the required concentration into the exhaust gas flowing into the NO X storage reduction catalyst.

【0043】なお、本実施形態では還元剤供給ノズル9
1から還元剤をNOX 吸蔵還元触媒に供給しているが、
排気による希釈を防止し充分な濃度の還元剤をNOX
蔵還元触媒7に到達させるためには還元剤供給ノズル9
1をNOX 吸蔵還元触媒7上流側にできるだけ近接した
位置に配置することが望ましい。
In this embodiment, the reducing agent supply nozzle 9
Although the reducing agent is supplied to the NO X storage reduction catalyst from 1,
In order to prevent the dilution due to the exhaust gas and reach the NO x storage reduction catalyst 7 with a sufficient concentration of the reducing agent, the reducing agent supply nozzle 9
It is desirable to arrange 1 at a position as close as possible to the upstream side of the NO X storage reduction catalyst 7.

【0044】[0044]

【発明の効果】各請求項に記載の発明によれば、NOX
吸蔵還元触媒からのNOX の吐き出しや染み出しによる
未浄化NOX のために排気浄化効率が低下することを防
止し、排気浄化効率を大幅に向上させることが可能とな
る共通の効果を奏する。
According to the invention described in each claim, NO X
It is possible to prevent the exhaust purification efficiency from being lowered due to the unpurified NO x due to the discharge or ooze of NO x from the storage reduction catalyst, and it is possible to significantly improve the exhaust purification efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をディーゼル機関に適用した実施形態の
概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment in which the present invention is applied to a diesel engine.

【図2】本発明によるNOX 浄化率の向上の効果を説明
する図である。
FIG. 2 is a diagram for explaining the effect of improving the NO x purification rate according to the present invention.

【図3】本発明によるNOX 吸蔵還元触媒の再生操作の
一実施形態を説明するフローチャートである。
FIG. 3 is a flowchart illustrating an embodiment of a regeneration operation of the NO X storage reduction catalyst according to the present invention.

【符号の説明】[Explanation of symbols]

1…ディーゼル機関 3…排気通路 7…NOX 吸蔵還元触媒 9…還元剤供給装置 30…電子制御ユニット(ECU) 91…還元剤供給ノズルDESCRIPTION OF SYMBOLS 1 ... Diesel engine 3 ... Exhaust passage 7 ... NO X storage reduction catalyst 9 ... Reductant supply device 30 ... Electronic control unit (ECU) 91 ... Reductant supply nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 正明 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平10−2213(JP,A) 特開 平10−71325(JP,A) 特開 平6−200738(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Kobayashi 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (56) References JP 10-2213 (JP, A) JP 10-71325 (JP, A) JP-A-6-200738 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/36

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関の排気通路に配置され流入する
排気の空燃比がリーンのときに排気中のNOXを吸収
し、流入する排気中の酸素濃度が低下したときに吸収し
たNOXを放出するNOX吸蔵還元触媒と、該NOX吸蔵
還元触媒に流入する排気空燃比がリーンのときにNOX
吸蔵還元触媒に還元剤を供給することにより、NOX
蔵還元触媒に流入する排気中の酸素濃度を低下させると
ともに、放出されたNOXを還元浄化する還元剤供給装
置とを備えた内燃機関の排気浄化装置において、 前記NOX吸蔵還元触媒は、前記還元剤供給開始直後
に、供給された還元剤によっては還元されない未浄化N
Xを下流側に放出し、該未浄化NOXNOX吸蔵還
元触媒の吸収したNOX量に応じて増加する、NO X の吐
き出しを生じ、 前記還元剤供給装置は、NOX吸蔵還元触媒に吸収され
たNOX量が所定のレベルに到達したときにNOX吸蔵還
元触媒に還元剤を供給し、 前記所定のNOX吸収量レベルは、前記還元剤供給開始
時の前記NOX吸蔵還元触媒からのNO X の吐き出しによ
り流出する未浄化NOX放出量が予め定めた値以下にな
るように設定されていることを特徴とする内燃機関の排
気浄化装置。
1. A fuel ratio of the exhaust gas is disposed in an exhaust passage of an internal combustion engine inlet absorbs NO X in the exhaust gas when the lean, the NO X in which the oxygen concentration in the exhaust gas absorbed when drops flowing and the NO X storage reduction catalyst to release, NO X when the exhaust air-fuel ratio is lean flowing into the the NO X storage reduction catalyst
By supplying a reducing agent to the storage reduction catalyst, the oxygen concentration in the exhaust gas flowing into the NO x storage reduction catalyst is reduced, and a reducing agent supply device for reducing and purifying the released NO x is provided for an internal combustion engine. In the exhaust emission control device, the NO x storage reduction catalyst is an unpurified N that is not reduced by the supplied reducing agent immediately after starting the supply of the reducing agent.
The O X discharged to the downstream side, yet-purifying amount of NO X is increased in response to the absorbed amount of NO X in the NO X storage reduction catalyst, of the NO X discharge failure
When the amount of NO x absorbed by the NO x storage reduction catalyst reaches a predetermined level, the reducing agent supply device supplies the reducing agent to the NO x storage reduction catalyst, and the predetermined NO x absorption level, the discharging of the NO X from the the NO X storage reduction catalyst at the start the reducing agent supply
Ri exhaust purifying apparatus for an internal combustion engine unpurified NO X release amount is characterized in that it is set to be less than a predetermined value flowing.
【請求項2】 内燃機関の排気通路に配置され流入する
排気の空燃比がリーンのときに排気中のNOXを吸収
し、流入する排気中の酸素濃度が低下したときに吸収し
たNOXを放出するNOX吸蔵還元触媒と、該NOX吸蔵
還元触媒に流入する排気空燃比がリーンのときにNOX
吸蔵還元触媒に還元剤を供給することにより、NOX
蔵還元触媒に流入する排気中の酸素濃度を低下させると
ともに、放出されたNOXを還元浄化する還元剤供給装
置とを備えた内燃機関の排気浄化装置において、 前記NOX吸蔵還元触媒は、流入する排気空燃比がリー
ンであっても吸収したNOX量に応じて増大する量の未
浄化のNOXを下流側に放出するNO X の染み出しを生
、 前記還元剤供給装置は、NOX吸蔵還元触媒に吸収され
たNOX量が所定のレベルに到達したときにNOX吸蔵還
元触媒に還元剤を供給し、 前記所定のNOX吸収量レベルは、リーン空燃比排気下
における前記NOX吸蔵還元触媒からのNO X の染み出し
により流出する未浄化NOX放出量が予め定めた値以下
になるように設定されていることを特徴とする内燃機関
の排気浄化装置。
Wherein the air-fuel ratio of the exhaust gas is disposed in an exhaust passage of an internal combustion engine inlet absorbs NO X in the exhaust gas when the lean, the NO X in which the oxygen concentration in the exhaust gas absorbed when drops flowing and the NO X storage reduction catalyst to release, NO X when the exhaust air-fuel ratio is lean flowing into the the NO X storage reduction catalyst
By supplying a reducing agent to the storage reduction catalyst, the oxygen concentration in the exhaust gas flowing into the NO x storage reduction catalyst is reduced, and a reducing agent supply device for reducing and purifying the released NO x is provided for an internal combustion engine. in the exhaust purification apparatus, wherein the NO X storage reduction catalyst of the NO X to release the unpurified of the NO X amount which increases with the amount of NO X exhaust air-fuel ratio is absorbed even lean flowing into the downstream side Bleed out
Flip, the reducing agent supply device, the NO X storage amount of NO X absorbed in the reduction catalyst supplies the reducing agent to the NO X occluding and reducing catalyst when reaching a predetermined level, the predetermined of the NO X absorption level It is exuded of the NO X from the the NO X storage reduction catalyst under a lean air-fuel ratio exhaust
Exhaust purification system of an internal combustion engine, characterized in that unpurified NO X emissions flowing out is set to be less than a predetermined value by.
【請求項3】 前記還元剤供給装置は、前記NOX吸蔵
還元触媒の上流側の排気通路に還元剤を噴射する還元剤
供給ノズルを備え、NOX吸蔵還元触媒に流入する排気
空燃比がリーンのときにNOX吸蔵還元触媒に吸収され
たNOX量が前記所定のレベルに到達する毎に予め定め
た量の還元剤を排気中に供給する請求項1または請求項
2に記載の内燃機関の排気浄化装置。
Wherein the reducing agent feeder, the the NO X storage on the upstream side of the exhaust passage of the reduction catalyst with a reducing agent feed nozzle for injecting the reducing agent, the exhaust air-fuel ratio is lean flowing to the NO X occluding and reducing catalyst 3. The internal combustion engine according to claim 1 or 2, wherein a predetermined amount of reducing agent is supplied into the exhaust gas every time the amount of NO x absorbed by the NO x storage reduction catalyst reaches the predetermined level. Exhaust purification device.
【請求項4】 前記還元剤供給ノズルからの還元剤の噴
射量と噴射率とは、前記還元剤の供給が行われる時間間
隔に応じて設定されている請求項3に記載の内燃機関の
排気浄化装置。
4. The exhaust gas of an internal combustion engine according to claim 3, wherein an injection amount and an injection rate of the reducing agent from the reducing agent supply nozzle are set according to a time interval in which the reducing agent is supplied. Purification device.
JP04500299A 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3487209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04500299A JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04500299A JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000240428A JP2000240428A (en) 2000-09-05
JP3487209B2 true JP3487209B2 (en) 2004-01-13

Family

ID=12707206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04500299A Expired - Lifetime JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3487209B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385593B2 (en) 2002-12-10 2009-12-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3903977B2 (en) 2003-10-17 2007-04-11 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine and exhaust purification method for internal combustion engine
JP2009002225A (en) * 2007-06-21 2009-01-08 Hino Motors Ltd Exhaust emission control device
JP5045339B2 (en) 2007-09-27 2012-10-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2009139071A1 (en) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine

Also Published As

Publication number Publication date
JP2000240428A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP3228006B2 (en) Exhaust purification element deterioration detection device for internal combustion engine
JP3440654B2 (en) Exhaust gas purification device
JP2586738B2 (en) Exhaust gas purification device for internal combustion engine
JP4034375B2 (en) Exhaust gas purification device for internal combustion engine
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
JP2003148198A (en) Exhaust emission control device of internal combustion engine
WO1993025806A1 (en) Exhaust emission control system for internal combustion engine
JPH08260949A (en) Deterioration detecting device for nox absorbent
JP4192905B2 (en) Exhaust gas purification device for internal combustion engine
JP4462107B2 (en) Exhaust gas purification device for internal combustion engine
US7168242B2 (en) NOx catalyst regeneration method for NOx purifying system and NOx purifying system
US20050144934A1 (en) Nox purging system and method of reactivating deteriorated catalyst therein
JP3624815B2 (en) Exhaust gas purification device for internal combustion engine
JP3487209B2 (en) Exhaust gas purification device for internal combustion engine
JP3436134B2 (en) Exhaust gas purification device for internal combustion engine
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP4120563B2 (en) Exhaust gas purification device for internal combustion engine
JP4093302B2 (en) NOx purification system catalyst deterioration judgment method and NOx purification system
JPH1113456A (en) Catalyst poisoning regenerator for internal combustion engine
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
JP3633349B2 (en) Exhaust gas purification device for internal combustion engine
JP2000145433A (en) Exhaust gas purifier for internal combustion engines
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JP2891057B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term