JP2000240428A - Exhaust gas emission control device for internal combustion engine - Google Patents

Exhaust gas emission control device for internal combustion engine

Info

Publication number
JP2000240428A
JP2000240428A JP11045002A JP4500299A JP2000240428A JP 2000240428 A JP2000240428 A JP 2000240428A JP 11045002 A JP11045002 A JP 11045002A JP 4500299 A JP4500299 A JP 4500299A JP 2000240428 A JP2000240428 A JP 2000240428A
Authority
JP
Japan
Prior art keywords
reduction catalyst
reducing agent
amount
storage reduction
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11045002A
Other languages
Japanese (ja)
Other versions
JP3487209B2 (en
Inventor
Shinobu Ishiyama
忍 石山
Yukihiro Tsukasaki
之弘 塚崎
Atsushi Tawara
淳 田原
Masaaki Kobayashi
正明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04500299A priority Critical patent/JP3487209B2/en
Publication of JP2000240428A publication Critical patent/JP2000240428A/en
Application granted granted Critical
Publication of JP3487209B2 publication Critical patent/JP3487209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve the NOX purification efficiency of an NOX occlusion reduction catalyst. SOLUTION: An NOX occlusion reduction catalyst 7 is arranged in the exhaust passage 3 of an engine 1 to absorb NOX contained in exhaust gas of an engine under lean air-fuel ratio operation. When an NOX occlusion amount of the catalyst 7 attains a predetermined decision value, a reducing agent (diesel oil) is injected in an exhaust passage on the upper stream side of the catalyst 7 through a reducing agent feed nozzle 91 and NOX is emitted from the catalyst 7 for reduction purification. The decision value is set such that an emission amount of unpurified NOX due to exudation under absorption of NOX is decreased to a predetermined low value. This constitution, since emission of unpurified NOX through discharge or exudation owing to the increase of an occlusion NOX amount is suppressed to a low value, remarkably improves the NOX purification efficiency of the whole of the NOX occlusion reduction catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関し、詳細には流入する排気空燃比がリーンのと
きに排気中のNOX を吸収し、流入する排気中の酸素濃
度が低下したときに吸収したNOX を放出するNOX
蔵還元触媒を備えた内燃機関の排気浄化装置に関する。
Relates to an exhaust purifying apparatus of the present invention is an internal combustion engine TECHNICAL FIELD OF THE INVENTION The exhaust air-fuel ratio flows into the details absorbs NO X in the exhaust gas when the lean, the oxygen concentration in the inflowing exhaust gas drops The present invention relates to an exhaust gas purification device for an internal combustion engine provided with a NO X storage reduction catalyst that releases sometimes absorbed NO X.

【0002】[0002]

【従来の技術】流入する排気空燃比がリーンのときに排
気中のNOX を吸収し、流入する排気中の酸素濃度が低
下したときに吸収したNOX を放出するNOX 吸蔵還元
触媒が知られている。この種のNOX 吸蔵還元触媒を用
いた内燃機関の排気浄化装置の例としては、例えば特開
平6−200738号公報に記載されたものがある。
BACKGROUND ART exhaust air-fuel ratio of the inflowing absorbs NO X in the exhaust gas when the lean, NO X occluding and reducing catalyst the oxygen concentration in the inflowing exhaust gas to release NO X absorbed when reduced intellectual Have been. An example of an exhaust gas purifying apparatus for an internal combustion engine using this type of NO X storage reduction catalyst is described in, for example, Japanese Patent Application Laid-Open No. Hei 6-200738.

【0003】同公報の装置は、リーン空燃比で運転可能
な機関の排気通路にNOX 吸蔵還元触媒を配置し、機関
がリーン空燃比で運転されているときに排気中のNOX
を吸収させ、NOX 吸蔵還元触媒のNOX 吸収量が所定
値に到達したときにNOX 吸蔵還元触媒の上流側の排気
通路に配置した還元剤供給ノズルから還元剤として液体
または気体の炭化水素等を排気中に噴射するようにした
ものである。NOX 吸蔵還元触媒に排気とともに還元剤
が供給されると、還元剤のNOX 吸蔵還元触媒上での酸
化により排気中の酸素濃度が低下するためNOX 吸蔵還
元触媒からは吸収したNOX が放出される。また、放出
されたNOX は触媒上で排気中の還元剤と反応して還
元、浄化される。
In the device disclosed in the publication, a NO X storage reduction catalyst is disposed in an exhaust passage of an engine operable at a lean air-fuel ratio, and when the engine is operated at a lean air-fuel ratio, NO X in exhaust gas is discharged.
To absorb, the NO X storage NO X absorption amount of the reduction catalyst is a liquid or gas as a reducing agent from the reducing agent feed nozzle disposed on an upstream side of the exhaust passage of the NO X occluding and reducing catalyst when reaching a predetermined value hydrocarbon And the like are injected into the exhaust gas. When the reducing agent with the exhaust to the NO X occluding and reducing catalyst is supplied, NO X is oxygen concentration in the exhaust gas absorbed from the NO X storage reduction catalyst for reduction by oxidation on the NO X storage reduction catalyst reducing agent Released. Further, the released NO X reacts with the reducing agent in the exhaust gas on the catalyst to be reduced and purified.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記特開平
6−200738号公報の装置のように、ある時間間隔
でNOX 吸蔵還元触媒に還元剤を供給してNOX 吸蔵還
元触媒からのNOX の放出と還元浄化とを行うようにし
たときに、還元剤供給の時間間隔によっては全体として
のNOX の浄化率が良好にならない場合が生じる。
[SUMMARY OF THE INVENTION However, NO X from the JP-A as in the 6-200738 discloses a device, there by supplying reducing agent to the NO X occluding and reducing catalyst at the time intervals the NO X storage reduction catalyst When the emission of NO and the reduction and purification are performed, the overall NO X purification rate may not be improved depending on the time interval of the supply of the reducing agent.

【0005】通常、NOX 吸蔵還元触媒に還元剤を供給
してNOX 吸蔵還元触媒からのNO X の放出と還元浄化
とを行う操作(以下、「NOX 吸蔵還元触媒の再生操
作」と呼ぶ)は、NOX 吸蔵還元触媒に吸収されたNO
X 量がある一定レベルに到達したときに実行されるが、
このNOX 吸収量のレベルはNOX 吸蔵還元触媒が吸収
したNOX で飽和する吸収量(飽和量)を基準に定めら
れる。すなわち、NOX吸蔵還元触媒のNOX 吸収能力
を最大限に活用してNOX 吸蔵還元触媒の再生操作の実
行頻度を低く抑えるためには、できるだけ多くのNOX
がNOX 吸蔵還元触媒に吸収されてから再生操作を実行
することが好ましい。そこで、通常、再生操作を実行す
るNOX 吸収量のレベルはNOX 吸蔵還元触媒の飽和量
にある程度の余裕を見た比較的高いレベル(例えばNO
X 吸蔵還元触媒の飽和量の70パーセント程度)に設定
される。
Usually, NOXSupply reducing agent to storage reduction catalyst
NOXNO from storage reduction catalyst XRelease and reduction purification
(Hereinafter, “NOXRegeneration operation of storage reduction catalyst
Is called NO)XNO absorbed by the storage reduction catalyst
XExecuted when the volume reaches a certain level,
This NOXNO absorption levelXAbsorption reduction catalyst absorbs
NOXDetermined based on the amount of absorption (saturation)
It is. That is, NOXNO of storage reduction catalystXAbsorption capacity
Make the most of NOXActual operation of regeneration of storage reduction catalyst
To keep row frequency low, use as much NO as possibleX
Is NOXRegeneration operation is performed after absorption by the storage reduction catalyst
Is preferred. Therefore, usually, a playback operation is performed.
NOXNO absorption levelXSaturation amount of storage reduction catalyst
A relatively high level (eg, NO
X(About 70% of the saturation of the storage reduction catalyst)
Is done.

【0006】ところが、このようにNOX 吸蔵還元触媒
のNOX 吸収量が比較的高いレベルに到達するまで待っ
てNOX 吸蔵還元触媒の再生操作を実行した場合には全
体としてのNOX の浄化率を大幅に向上させることが困
難であることが判明している。例えば、従来NOX 吸蔵
還元触媒の再生操作時にはNOX 吸蔵還元触媒から放出
されたNOX は供給された還元剤により完全に浄化さ
れ、下流側には未浄化のNOX は放出されないと考えら
れていた。ところが、実際にはNOX 吸蔵還元触媒の再
生操作時に未浄化のままのNOX が触媒下流側に放出さ
れる場合があることが判明している。
However, when the regeneration operation of the NO X storage reduction catalyst is executed after waiting for the NO X absorption amount of the NO X storage reduction catalyst to reach a relatively high level, the overall purification of NO X It has proven difficult to significantly increase the rate. For example, during the regeneration operation of the conventional NO X storage reduction catalyst, it is considered that NO X released from the NO X storage reduction catalyst is completely purified by the supplied reducing agent, and unpurified NO X is not released downstream. I was However, in practice, it has been found that unpurified NO X may be released to the downstream side of the catalyst during the regeneration operation of the NO X storage reduction catalyst.

【0007】前述のように、還元剤が供給されるとNO
X 吸蔵還元触媒近傍の酸素濃度が低下しNOX 吸蔵還元
触媒からはNOX が放出される。ところが、触媒からの
NO X の放出速度は一定ではなく、酸素濃度が低下した
直後(還元剤供給開始直後)には急激に比較的多量のN
X が放出され、その後はほぼ一様な比較的低い放出速
度でNOX が放出されることが判明している。この、還
元剤供給開始直後にNOX 吸蔵還元触媒から吸収したN
X が急激に放出される現象を「NOX の吐き出し」と
呼ぶことにすると、NOX の吐き出しにおけるNOX
出量(放出速度)はNOX 吸蔵還元触媒のNOX 吸蔵
量、すなわちNOX 吸蔵還元触媒内に吸収されたNOX
の量が多い程大きくなる。このため、NOX 吸蔵還元触
媒の再生操作を比較的高いNOX 吸蔵量レベルで実行す
るようにしているとNOX の吐き出しにより放出された
多量の未浄化NOX により一時的に排気中の還元剤が不
足するようになり、還元剤供給開始直後に放出されたN
X が未浄化のままNOX 吸蔵還元触媒下流側に流出す
るようになる。NOX の吐き出しは還元剤供給開始後短
時間で終了し、その後はNOX 放出速度は比較的低い速
度になるため吐き出しが終了した後は排気中の還元剤が
不足することはなくなる。このため、NOX 吸蔵還元触
媒のNOX 吸蔵量が比較的高いレベルにあっても還元剤
供給開始後ある程度の時間が経過すれば未浄化のNOX
の流出は停止するようになるが、この場合、再生操作実
行毎にNOX 吸蔵還元触媒から未浄化のNOX が流出す
るため全体としての平均NOX 浄化率をある程度以上に
は上げることができない問題が生じる。
As mentioned above, when the reducing agent is supplied, NO
XOxygen concentration near the storage reduction catalyst decreases and NOXOcclusion reduction
NO from catalystXIs released. However, the catalyst
NO XRelease rate was not constant and oxygen concentration decreased
Immediately after (immediately after starting the supply of the reducing agent), a relatively large amount of N
OXIs released, after which the relatively low release rate is almost uniform
NO in degreesXHas been found to be released. This, return
NO immediately after starting supply of base agentXN absorbed from the storage reduction catalyst
OXIs rapidly released as "NOXVomiting "
To call it, NOXNO in spittingXRelease
The output (release speed) is NOXNO of storage reduction catalystXOcclusion
Quantity, ie NOXNO absorbed in the storage reduction catalystX
The larger the amount, the larger. Therefore, NOXOcclusion reduction
Medium regeneration operation with relatively high NOXPerform at the storage level
NO if you try toXReleased by the exhalation of
Large amount of unpurified NOXTemporarily reduces the amount of reducing agent in the exhaust
And the N released immediately after the start of the supply of the reducing agent.
OXIs unpurified and NOXOutflow downstream of the storage reduction catalyst
Become so. NOXIs short after starting the supply of reducing agent
Ends in hours, then NOXRelease rate is relatively low
After the end of the discharge, the reducing agent in the exhaust
There will be no shortage. Therefore, NOXOcclusion reduction
Medium NOXReducing agent even when the storage amount is at a relatively high level
After a certain period of time has passed since the start of supply, unpurified NOX
Will stop flowing.
NO for each lineXUnpurified NO from the storage reduction catalystXLeaks
Average NO as a wholeXPurification rate above a certain level
The problem that cannot be raised arises.

【0008】更に、NOX 吸蔵還元触媒では上記NOX
の吐き出し以外にも「NOX の染み出し」と称する現象
が発見されている。従来、NOX 吸蔵還元触媒はNOX
吸蔵量が飽和量に到達しない限り排気空燃比がリーンで
あれば排気中のNOX を吸収すると考えられていた。し
かし、実際にはNOX 吸蔵還元触媒のNOX 吸蔵量が増
大するにつれてNOX 吸蔵還元触媒のNOX 吸収能力は
徐々に低下することが判明している。このため、NOX
吸蔵還元触媒のNOX 吸蔵量が飽和量よりかなり低い状
態であっても、NOX 吸蔵還元触媒下流側には触媒に吸
収されなかったNOX が流出している。また、このNO
X 流出量はNOX 吸蔵還元触媒のNOX 吸蔵量が多くな
るにつれて増大し、NOX 吸蔵量が飽和量に到達すると
排気中のNOX はNOX 吸蔵還元触媒に全く吸収されず
に下流側に流出するようになる。このように、排気空燃
比がリーンのときにNOX 吸蔵量に応じた量のNOX
未浄化のまま触媒下流側に流出する現象を「NOX の染
み出し」と称する。
Further, in the NO X storage reduction catalyst, the above NO X
A phenomenon called "NO X seepage" has been discovered in addition to the exhalation. Conventionally, the NO X storage reduction catalyst is NO X
Storage amount exhaust air-fuel ratio unless reaching the saturation amount is believed to absorb NO X in the exhaust gas if lean. However, in practice it has been found that NO X absorbing capacity of the NO X occluding and reducing catalyst gradually decreases as the NO X storage amount of the NO X occluding and reducing catalyst is increased. Therefore, NO X
Also the NO X storage amount of storage reduction catalyst is a much lower than the saturation amount, NO X in the occluding and reducing catalyst downstream is not absorbed in the catalyst NO X is flowing. Also, this NO
X runoff increases as the NO X storage amount of the NO X occluding and reducing catalyst is increased, the downstream side in the NO X in the exhaust gas and the NO X storage amount reaches the saturation amount not at all absorbed in the NO X occluding and reducing catalyst To be leaked to In this way, when the exhaust air-fuel ratio is lean, a phenomenon in which an amount of NO X corresponding to the NO X storage amount flows out downstream of the catalyst without being purified is referred to as “NO X seepage”.

【0009】上述のように、NOX 吸蔵還元触媒の再生
時にNOX の吐き出しにより流出する未浄化のNO
X 量、及びリーン空燃比下でNOX の染み出しにより流
出する未浄化のNOX 量はともにNOX 吸蔵還元触媒の
NOX 吸蔵量に応じて増大する。このため、従来のよう
にNOX 吸蔵量が比較的高いレベルに到達したときにN
X 吸蔵還元触媒の再生操作を実行するようにした排気
浄化装置では、NOX の吐き出しと染み出しとにより放
出される未浄化のNOX のため、ある程度以上には全体
としてのNOX 浄化率を向上させることはできない。
As described above, NOXRegeneration of storage reduction catalyst
Sometimes NOXOf unpurified NO flowing out due to the discharge of water
XAnd NO under lean air-fuel ratioXFlow by oozing
Unpurified NO emittedXNO bothXOcclusion reduction catalyst
NOXIt increases according to the occlusion amount. For this reason,
NOXWhen the storage amount reaches a relatively high level, N
O XExhaust gas that performs the regeneration operation of the storage reduction catalyst
In the purifier, NOXRelease by spitting and seeping out
Unpurified NO issuedXBecause, to some extent over the whole
NO asXPurification rate cannot be improved.

【0010】本発明は上記問題に鑑み、NOX の吐き出
しまたは染み出しによるNOX 浄化率の低下を防止し、
大幅にNOX 浄化率を向上させることが可能な内燃機関
の排気浄化装置を提供することを目的としている。
[0010] The present invention has been made in view of the above problems, preventing deterioration of the NO X purification rate by discharging or exudation of the NO X,
And its object is to provide an exhaust purification system of an internal combustion engine that can significantly improve the NO X purification rate.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の発明に
よれば、内燃機関の排気通路に配置され流入する排気の
空燃比がリーンのときに排気中のNOX を吸収し、流入
する排気中の酸素濃度が低下したときに吸収したNOX
を放出するNOX 吸蔵還元触媒と、該NOX 吸蔵還元触
媒に流入する排気空燃比がリーンのときにNOX 吸蔵還
元触媒に還元剤を供給することにより、NOX 吸蔵還元
触媒に流入する排気中の酸素濃度を低下させるととも
に、放出されたNOX を還元浄化する還元剤供給装置と
を備えた内燃機関の排気浄化装置において、前記NOX
吸蔵還元触媒は、前記還元剤供給開始直後に、供給され
た還元剤によっては還元されない未浄化NOX を下流側
に放出し、該未浄化NOX 量はNOX 吸蔵還元触媒の吸
収したNOX 量に応じて増加し、前記還元剤供給装置
は、NOX 吸蔵還元触媒に吸収されたNOX 量が所定の
レベルに到達したときにNOX 吸蔵還元触媒に還元剤を
供給し、前記所定のNO X 吸収量レベルは、前記還元剤
供給開始時の前記NOX 吸蔵還元触媒からの未浄化NO
X 放出量が予め定めた値以下になるように設定されてい
ることを特徴とする内燃機関の排気浄化装置が提供され
る。
According to the first aspect of the present invention,
According to this, the exhaust gas flowing into the exhaust passage of the internal combustion engine is
NO in exhaust when air-fuel ratio is leanXAbsorb and inflow
Absorbed when the oxygen concentration in the exhaust gas decreasesX
Releases NOXThe storage reduction catalyst and the NOXOcclusion reduction
NO when the exhaust air-fuel ratio flowing into the medium is leanXOcclusion return
By supplying a reducing agent to the source catalyst, NOXOcclusion reduction
With reducing the oxygen concentration in the exhaust gas flowing into the catalyst
And the released NOXReducing agent supply device to reduce and purify
In the exhaust gas purifying apparatus for an internal combustion engine provided with:X
The storage reduction catalyst is supplied immediately after the start of the supply of the reducing agent.
Unpurified NO that is not reduced by the reducing agentXThe downstream side
And the unpurified NOXThe amount is NOXAbsorption of storage reduction catalyst
NO collectedXThe reducing agent supply device increases according to the amount
Is NOXNO absorbed by the storage reduction catalystXQuantity is predetermined
NO when level is reachedXUsing a reducing agent for the storage reduction catalyst
Supply the predetermined NO XThe absorption level is determined by the reducing agent
NO at the start of supplyXUnpurified NO from the storage reduction catalyst
XThe release amount is set to be less than the predetermined value.
An exhaust gas purification device for an internal combustion engine is provided.
You.

【0012】すなわち、請求項1に記載の発明ではNO
X 吸蔵還元触媒に吸収されたNOX量が所定レベルに到
達する毎にNOX 吸蔵還元触媒の再生操作が行われる。
しかし、この所定レベルは再生操作開始時のNOX の吐
き出しにより流出する未浄化のNOX 量が所定の低い値
に維持されるように、従来に較べてかなり低いレベルに
設定される。これにより、本発明では従来に比較して非
常に短い間隔で再生操作が実行されることになるが、再
生操作開始時の吐き出しによる未浄化のNOXの放出量
は極めて低い値に抑えられるため全体としてのNOX
浄化率を大幅に向上させることができる。なお、NOX
吸蔵還元触媒への還元剤の供給はNOX吸蔵還元触媒上
流側の排気通路に炭化水素(HC)等から成る還元剤を
噴射することによって行ってもよいし、機関を短時間リ
ッチ空燃比で運転することにより、排気中の未燃HC、
CO成分を増大させることによって行っても良い。
That is, according to the first aspect of the present invention, NO
Every time the amount of NO X absorbed by the X storage reduction catalyst reaches a predetermined level, a regeneration operation of the NO X storage reduction catalyst is performed.
However, this predetermined level is set to a considerably lower level than in the past so that the unpurified NO X amount flowing out by the discharge of NO X at the start of the regeneration operation is maintained at a predetermined low value. As a result, in the present invention, the regeneration operation is performed at a very short interval as compared with the related art, but the emission amount of unpurified NO X due to the discharge at the start of the regeneration operation is suppressed to an extremely low value. The overall NO X purification rate can be greatly improved. Note that NO X
The reducing agent supply to storage reduction catalyst may be performed by injecting a reducing agent consisting of the NO X storage reduction catalyst upstream of the exhaust passage to hydrocarbon (HC) and the like, in a short time a rich air-fuel ratio of the engine By driving, unburned HC in exhaust gas,
This may be done by increasing the CO component.

【0013】請求項2に記載の発明によれば、内燃機関
の排気通路に配置され流入する排気の空燃比がリーンの
ときに排気中のNOX を吸収し、流入する排気中の酸素
濃度が低下したときに吸収したNOX を放出するNOX
吸蔵還元触媒と、該NOX 吸蔵還元触媒に流入する排気
空燃比がリーンのときにNOX 吸蔵還元触媒に還元剤を
供給することにより、NOX 吸蔵還元触媒に流入する排
気中の酸素濃度を低下させるとともに、放出されたNO
X を還元浄化する還元剤供給装置とを備えた内燃機関の
排気浄化装置において、前記NOX 吸蔵還元触媒は、流
入する排気空燃比がリーンであっても吸収したNOX
に応じて増大する量の未浄化のNOX を下流側に放出
し、前記還元剤供給装置は、NOX 吸蔵還元触媒に吸収
されたNO X 量が所定のレベルに到達したときにNOX
吸蔵還元触媒に還元剤を供給し、前記所定のNOX 吸収
量レベルは、リーン空燃比排気下における前記NOX
蔵還元触媒からの未浄化NOX 放出量が予め定めた値以
下になるように設定されていることを特徴とする内燃機
関の排気浄化装置が提供される。
According to the invention described in claim 2, the internal combustion engine
The air-fuel ratio of the inflowing exhaust
Sometimes NO in exhaustXAbsorbs oxygen in the incoming exhaust
NO absorbed when the concentration decreasesXReleases NOX
The storage reduction catalyst and the NOXExhaust gas flowing into the storage reduction catalyst
NO when the air-fuel ratio is leanXUsing a reducing agent for the storage reduction catalyst
NO by supplyingXExhaust flowing into the storage reduction catalyst
Reduced oxygen concentration in air and released NO
XInternal combustion engine equipped with a reducing agent supply device for reducing and purifying
In the exhaust gas purification apparatus, the NOXThe storage reduction catalyst is
NO absorbed even if the incoming exhaust air-fuel ratio is leanXamount
Amount of unpurified NOXDischarge downstream
And the reducing agent supply device has NOXAbsorbed by storage reduction catalyst
NO XNO when quantity reaches a predetermined levelX
A reducing agent is supplied to the storage reduction catalyst, and the predetermined NOXabsorption
The amount level is determined by the above NO under lean air-fuel ratio exhaust.XSucking
Unpurified NO from storage reduction catalystXRelease amount is less than predetermined value
Internal combustion engine characterized by being set to be below
An exhaust purification system for a Seki is provided.

【0014】すなわち、請求項2に記載の発明において
もNOX 吸蔵還元触媒に吸収されたNOX 量が所定レベ
ルに到達する毎にNOX 吸蔵還元触媒の再生操作が行わ
れる。しかし、本発明ではこの所定レベルはNOX 吸蔵
還元触媒のNOX 吸蔵量の増大によるNOX の染み出し
により流出する未浄化のNOX 量が所定の低い値に維持
されるように、従来に較べてかなり低いレベルに設定さ
れる。これにより、本発明では従来に比較して非常に短
い間隔で再生操作が実行されることになるが、NOX
染み出しによる未浄化のNOX の放出量は極めて低い値
に抑えられるため全体としてのNOX の浄化率を大幅に
向上させることができる。なお、本発明においてもNO
X 吸蔵還元触媒への還元剤の供給は排気通路への還元剤
の噴射により、または機関を短時間リッチ空燃比で運転
することにより、行っても良い。
That is, also in the second aspect of the present invention, the regeneration operation of the NO X storage reduction catalyst is performed every time the NO X amount absorbed by the NO X storage reduction catalyst reaches a predetermined level. However, in the present invention, the predetermined level is conventionally set so that the unpurified NO X amount flowing out due to the exudation of NO X due to the increase in the NO X storage amount of the NO X storage reduction catalyst is maintained at a predetermined low value. It is set to a considerably lower level. As a result, in the present invention, the regeneration operation is performed at a very short interval as compared with the related art, but the amount of unpurified NO X released due to NO X seeping is suppressed to an extremely low value. As a result, the purification rate of NO X can be greatly improved. In the present invention, NO
The supply of the reducing agent to the X storage reduction catalyst may be performed by injecting the reducing agent into the exhaust passage or by operating the engine at a rich air-fuel ratio for a short time.

【0015】なお、NOX 吸蔵還元触媒の再生操作を開
始するNOX 吸蔵量のレベルは、請求項1の発明の吐き
出しによる未浄化NOX 量が所定値以下になる値、また
は本発明の染み出しによる未浄化NOX 量が所定値以下
になる値のいずれか低い方の値に設定するようにすれ
ば、より完全に未浄化のNOX の放出を低減することが
できる。
[0015] The level of the NO X storage amount at which the regeneration operation of the NO X storage reduction catalyst is started may be a value at which the unpurified NO X amount by discharging according to the first aspect of the present invention becomes equal to or less than a predetermined value, or the level of the stain according to the present invention. If the unpurified NO X amount by discharging is set to a lower value which is equal to or less than a predetermined value, the emission of unpurified NO X can be reduced more completely.

【0016】請求項3に記載の発明によれば、前記還元
剤供給装置は、前記NOX 吸蔵還元触媒の上流側の排気
通路に還元剤を噴射する還元剤供給ノズルを備え、NO
X 吸蔵還元触媒に流入する排気空燃比がリーンのときに
NOX 吸蔵還元触媒に吸収されたNOX 量が前記所定の
レベルに到達する毎に予め定めた量の還元剤を排気中に
供給する請求項1または請求項2に記載の内燃機関の排
気浄化装置が提供される。
According to the third aspect of the present invention, the reducing agent supply device includes a reducing agent supply nozzle for injecting a reducing agent into an exhaust passage on an upstream side of the NO X storage reduction catalyst.
When the exhaust air-fuel ratio flowing into the X storage reduction catalyst is lean, a predetermined amount of reducing agent is supplied into the exhaust each time the NO X amount absorbed by the NO X storage reduction catalyst reaches the predetermined level. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2 is provided.

【0017】すなわち、請求項3に記載の発明ではNO
X 吸蔵還元触媒への還元剤の供給はNOX 吸蔵還元触媒
上流側の排気通路に配置した還元剤供給ノズルから排気
中に還元剤を噴射することにより行われる。これによ
り、リッチ空燃比で運転することが困難なディーゼル機
関においてもNOX の浄化率を大幅に向上させることが
できる。
That is, in the third aspect of the invention, NO
The supply of the reducing agent to the X storage reduction catalyst is performed by injecting the reducing agent into the exhaust gas from a reducing agent supply nozzle disposed in the exhaust passage on the upstream side of the NO X storage reduction catalyst. This makes it possible to significantly improve the purification rate of the NO X even in difficult diesel engine be operated at a rich air-fuel ratio.

【0018】請求項4に記載の発明によれば、前記還元
剤供給ノズルからの還元剤の噴射量と噴射率とは、前記
還元剤の供給が行われる時間間隔に応じて設定されてい
る請求項3に記載の内燃機関の排気浄化装置が提供され
る。すなわち、請求項4に記載の発明では、再生操作の
実行間隔に応じて還元剤供給ノズルからの還元剤の噴射
率と噴射量とが設定される。本発明では、従来に較べて
短い間隔で再生操作が実行されることになるため、各再
生操作時に従来と同じ量の還元剤を噴射していたのでは
還元剤消費量が大幅に増大する。また、本発明ではNO
X 吸蔵還元触媒のNOX 吸蔵量が低いレベルにあるとき
に再生操作を行うため、再生操作に必要とされる還元剤
の量は少ない。このため、本発明では再生操作時に供給
する還元剤の量は再生操作の時間間隔に応じて、すなわ
ち再生操作時にNOX 吸蔵還元触媒に吸蔵されているN
X の量に応じて過不足が生じないように設定される。
また、これにより各再生操作時に還元剤供給ノズルから
噴射される還元剤の量は減少するが、この少ない量の還
元剤を長時間の間に排気に噴射したのでは、還元剤が排
気に希釈されてしまいNOX 吸蔵還元触媒の酸素濃度を
低下させる事ができない。そこで、本発明では、還元剤
供給ノズルからの還元剤の噴射率を噴射量に応じて(す
なわち再生操作の実行間隔に応じて)設定し、排気中の
還元剤濃度が充分に高く維持されるようにしている。こ
れにより、再生操作の時間間隔が短く設定されても還元
剤の消費量の増大が抑制されるとともに、NOX 吸蔵還
元触媒の完全な再生が行われる。
According to the fourth aspect of the present invention, the injection amount and the injection rate of the reducing agent from the reducing agent supply nozzle are set according to the time interval at which the supply of the reducing agent is performed. Item 3. An exhaust gas purification device for an internal combustion engine according to item 3 is provided. That is, in the invention according to claim 4, the injection rate and the injection amount of the reducing agent from the reducing agent supply nozzle are set according to the execution interval of the regeneration operation. In the present invention, since the regeneration operation is performed at a shorter interval than in the related art, if the same amount of the reducing agent is injected as in the related art during each regeneration operation, the consumption of the reducing agent is greatly increased. In the present invention, NO
Since the regeneration operation is performed when the NO X storage amount of the X storage reduction catalyst is at a low level, the amount of the reducing agent required for the regeneration operation is small. Therefore, in the present invention, the amount of the reducing agent supplied at the time of the regeneration operation depends on the time interval of the regeneration operation, that is, the amount of N stored in the NO X storage reduction catalyst at the time of the regeneration operation.
Depending on the amount of O X excess and deficiency is set so as not to cause.
This also reduces the amount of reducing agent injected from the reducing agent supply nozzle during each regeneration operation, but if this small amount of reducing agent is injected into the exhaust for a long time, the reducing agent is diluted into the exhaust. As a result, the oxygen concentration of the NO X storage reduction catalyst cannot be reduced. Therefore, in the present invention, the injection rate of the reducing agent from the reducing agent supply nozzle is set according to the injection amount (that is, according to the execution interval of the regeneration operation), and the concentration of the reducing agent in the exhaust gas is maintained sufficiently high. Like that. As a result, even if the time interval of the regeneration operation is set short, an increase in the consumption of the reducing agent is suppressed, and complete regeneration of the NO X storage reduction catalyst is performed.

【0019】[0019]

【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。図1は、本発明の排気浄化
装置の一実施形態の概略構成を示す図である。図1にお
いて、1は内燃機関を示す。本実施形態では、内燃機関
1としてディーゼル機関が使用されており、機関の各気
筒排気ポートは排気マニホルド31を介して共通の排気
通路3に接続されている。更に、排気通路3上には後述
するNOX 吸蔵還元触媒7が配置されている。図1に9
で示すのはNOX 吸蔵還元触媒7再生操作時にNOX
蔵還元触媒7に還元剤を供給する還元剤供給装置であ
る。還元剤供給装置は、NOX 吸蔵還元触媒7の排気入
口近傍に配置された還元剤供給ノズル91を備えNOX
吸蔵還元触媒7に流入する排気中に還元剤を噴射するこ
とによりNOX 吸蔵還元触媒7に流入する排気中の酸素
濃度を低下させ、触媒7から吸収したNOX を放出させ
るとともに、放出されたNOX を還元浄化する。後述す
るように、本実施形態では還元剤として機関1の燃料
(ディーゼル油)が使用される。還元剤供給装置9は、
図示しない機関燃料系統に接続され、燃料系統から供給
された加圧燃料を還元剤供給ノズル91から排気通路3
内に噴射する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of an embodiment of the exhaust gas purification apparatus of the present invention. In FIG. 1, reference numeral 1 denotes an internal combustion engine. In this embodiment, a diesel engine is used as the internal combustion engine 1, and each cylinder exhaust port of the engine is connected to a common exhaust passage 3 via an exhaust manifold 31. Further, a NO X storage reduction catalyst 7 described later is arranged on the exhaust passage 3. 9 in FIG.
Is a reducing agent supply device that supplies a reducing agent to the NO X storage reduction catalyst 7 during the NO X storage reduction catalyst 7 regeneration operation. The reducing agent supply device, comprising a the NO X storage reduction the reducing agent feed nozzle 91 disposed in an exhaust inlet near the catalyst 7 NO X
By injecting a reducing agent into the exhaust gas flowing into the storage reduction catalyst 7, the oxygen concentration in the exhaust gas flowing into the NO X storage reduction catalyst 7 is reduced, and the NO X absorbed from the catalyst 7 is released and released. to reduce and purify the NO X. As described below, in the present embodiment, the fuel (diesel oil) of the engine 1 is used as the reducing agent. The reducing agent supply device 9 includes:
The pressurized fuel supplied from the fuel system, which is connected to an engine fuel system (not shown),
Inject into.

【0020】図1に30で示すのは、機関1の電子制御
ユニット(ECU)である。本実施形態では、ECU3
0はRAM、ROM、CPUを備えた公知の構成のマイ
クロコンピュータとして構成され、機関1の燃料噴射
量、燃料噴射時期等の基本制御を行う他、還元剤供給装
置9を制御して後述するNOX 吸蔵還元触媒7からのN
X の放出及び還元浄化操作(NOX 吸蔵還元触媒の再
生操作)を実施する。
In FIG. 1, reference numeral 30 denotes an electronic control unit (ECU) of the engine 1. In the present embodiment, the ECU 3
Reference numeral 0 denotes a microcomputer having a known configuration including a RAM, a ROM, and a CPU. The microcomputer 0 performs basic control such as a fuel injection amount and a fuel injection timing of the engine 1 and also controls a reducing agent supply device 9 to be described below. N from X storage reduction catalyst 7
O X release and reduction purification operation (NO X catalyst regeneration operation of the reduction catalyst) is carried out.

【0021】本実施形態のNOX 吸蔵還元触媒7は、ア
ルミナ等の担体上に例えばカリウムK、ナトリウムNa
、リチウムLi 、セシウムCs のようなアルカリ金
属、バリウムBa 、カルシウムCa のようなアルカリ土
類、ランタンLa 、セリウムCe、イットリウムYのよ
うな希土類から選ばれた少なくとも一つの成分と、白金
Ptのような貴金属とを担持したものである。NOX
蔵還元触媒は流入する排気ガスの空燃比がリーンのとき
に、排気中のNOX (NO2 、NO)を硝酸イオンNO
3 - の形で吸収し、流入排気ガスの酸素濃度が低下する
と吸収したNOX を放出するNOX の吸放出作用を行
う。
The NO X storage-reduction catalyst 7 of the present embodiment comprises, for example, potassium K and sodium Na on a carrier such as alumina.
, Lithium Li, at least one component selected from alkali metals such as cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La, cerium Ce and yttrium Y, and platinum Pt. Noble metal is supported. The NO X storage reduction catalyst converts NO X (NO 2 , NO) in the exhaust gas into nitrate ions NO when the air-fuel ratio of the inflowing exhaust gas is lean.
3 - absorbed in the form of, performing absorption and release action of the NO X that releases NO X concentration of oxygen absorbed to decrease the inflow exhaust gas.

【0022】この吸放出のメカニズムについて、以下に
白金PtおよびバリウムBaを使用した場合を例にとっ
て説明するが他の貴金属、アルカリ金属、アルカリ土
類、希土類を用いても同様なメカニズムとなる。流入排
気中の酸素濃度が増大すると(すなわち排気の空燃比が
リーン空燃比になると)、これら酸素は白金Pt上にO
2 - またはO2-の形で付着し、排気中のNOX は白金P
t上のO2 - またはO2-と反応し、これによりNO2
生成される。また、流入排気中のNO2 及び上記により
生成したNO2 は白金Pt上で更に酸化されつつ触媒中
に吸収されて吸収剤として機能する酸化バリウムBaO
と結合しながら硝酸イオンNO3 - の形で触媒内に拡散
する。このため、リーン雰囲気下では排気中のNOX
NOX 吸蔵還元触媒内に硝酸塩の形で吸収されるように
なる。
The mechanism of the absorption and release will be described below by taking platinum Pt and barium Ba as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths. When the oxygen concentration in the inflowing exhaust gas increases (that is, when the air-fuel ratio of the exhaust gas becomes a lean air-fuel ratio), these oxygens become
2 - or deposited at O 2- form, NO X in the exhaust gas platinum P
O 2 on t - or react with O 2-, thereby NO 2 is produced. Further, barium oxide BaO NO 2 and NO 2 produced by the above in the inflowing exhaust gas is to function as an absorbent is absorbed by the catalyst while being further oxidized on the platinum Pt
Diffuses in the catalyst in the form of - bound nitrate ions NO 3 while the. Therefore, in a lean atmosphere, NO X in the exhaust gas is absorbed in the NO X storage reduction catalyst in the form of nitrate.

【0023】また、流入排気中の酸素濃度が低下すると
(すなわち、排気の空燃比が低下すると)、白金Pt上
でのNO2 生成量が減少するため反応が逆方向に進むよ
うになり、触媒内の硝酸イオンNO3 - はNO2 の形で
NOX 吸蔵還元触媒から放出されるようになる。この場
合、排気中にHC、CO等の成分が存在すると白金Pt
上でこれらの成分によりNO2 が還元される。
When the oxygen concentration in the inflowing exhaust gas decreases (ie, when the air-fuel ratio of the exhaust gas decreases), the amount of NO 2 generated on the platinum Pt decreases, so that the reaction proceeds in the reverse direction, and the catalyst proceeds. The nitrate ion NO 3 in the inside is released from the NO X storage reduction catalyst in the form of NO 2 . In this case, if components such as HC and CO are present in the exhaust gas, platinum Pt
Above, these components reduce NO 2 .

【0024】本実施形態では、機関1としてディーゼル
機関が使用されているため機関の排気空燃比はリーンで
あり、通常運転中は排気通路3のNOX 吸蔵還元触媒7
にはリーン空燃比の排気が流入し排気中のNOX がNO
X 吸蔵還元触媒7に吸収される。また、NOX 吸蔵還元
触媒7上流側の排気通路3に還元剤が供給されるとNO
X 吸蔵還元触媒7には還元剤を含んだ排気が流入し、還
元剤の一部はNOX 吸蔵還元触媒7の白金Pt上で酸素
と反応する。これにより、NOX 吸蔵還元触媒7の雰囲
気中の酸素濃度が低下するとともに、還元剤の酸化によ
り未燃HC、CO等の成分が発生する。還元剤の酸化に
よりNOX 吸蔵還元触媒7の雰囲気酸素濃度が低下する
と、上述したメカニズムによりNOX 吸蔵還元触媒7か
らNOXが放出され排気中のHC、CO成分により還元
される。
[0024] In this embodiment, the exhaust air-fuel ratio of the engine for diesel engine is used as the engine 1 is lean, the normal operation of the exhaust passage 3 NO X occluding and reducing catalyst 7
NO X in the exhaust gas flowing the exhaust of a lean air-fuel ratio in the NO
It is absorbed by the X storage reduction catalyst 7. When the reducing agent is supplied to the exhaust passage 3 on the upstream side of the NO X storage reduction catalyst 7, NO
The X occluding and reducing catalyst 7 flows is contained reductant exhaust, part of the reducing agent reacts with oxygen on the platinum Pt of the NO X occluding and reducing catalyst 7. Thereby, the oxygen concentration in the atmosphere of the NO X storage reduction catalyst 7 decreases, and components such as unburned HC and CO are generated by oxidation of the reducing agent. When the atmospheric oxygen concentration of the NO X occluding and reducing catalyst 7 by oxidation of the reducing agent decreases, HC of the NO X storage NO X from the reducing catalyst 7 is released in the exhaust by a mechanism mentioned above, it is reduced by CO component.

【0025】上記NOX 吸蔵還元触媒からのNOX の放
出、還元浄化操作(NOX 吸蔵還元触媒の再生操作)に
使用される還元剤としては、排気中でH2 等の還元成分
やHC、CO成分を生成するものが使用され、例えば水
素、一酸化炭素等の気体、プロパン、プロピレン、ブタ
ン等の液体又は気体の炭化水素、ガソリン、軽油、灯油
等の液体燃料等が使用できる。本実施形態では、内燃機
関1としてディーゼル機関が使用されているため、補
給、貯蔵の便を考慮して還元剤として機関1の燃料(デ
ィーゼル油)を使用するようにしている。還元剤供給装
置9は機関1の燃料ポンプ(図示せず)から供給された
燃料を遮断弁、流量調整弁(図示せず)を介して還元剤
供給ノズル91からNOX 吸蔵還元触媒7上流側の排気
通路に供給することによりNOX 吸蔵還元触媒7の再生
を行う。
[0025] The the NO X storage reduction and release of the NO X from the catalyst, the reducing agent used in the reduction purification operation (reproducing operation of the NO X occluding and reducing catalyst), the reducing components and HC such as H 2 in the exhaust, A substance that generates a CO component is used, and for example, a gas such as hydrogen and carbon monoxide, a liquid or gaseous hydrocarbon such as propane, propylene, and butane, and a liquid fuel such as gasoline, light oil, and kerosene can be used. In the present embodiment, since a diesel engine is used as the internal combustion engine 1, the fuel (diesel oil) of the engine 1 is used as a reducing agent in consideration of the convenience of replenishment and storage. The reducing agent supply device 9 receives the fuel supplied from the fuel pump (not shown) of the engine 1 from the reducing agent supply nozzle 91 via a shutoff valve and a flow control valve (not shown) to the upstream side of the NO X storage reduction catalyst 7. for reproducing of the NO X occluding and reducing catalyst 7 by supplying the exhaust passage.

【0026】上述のように、NOX 吸蔵還元触媒7は還
元剤供給装置9から還元剤が供給されていないときに
(すなわち流入する排気空燃比がリーンのときに)排気
中のNOX を吸収し、還元剤供給装置9から排気中に還
元剤が供給され流入する排気の酸素濃度が低下すると吸
収したNOX を放出、還元浄化する。このため、従来N
X 吸蔵還元触媒7が吸収したNOX で飽和しない限り
下流側には未浄化のNO X が放出されることはないと考
えられていた。
As described above, NOXStorage reduction catalyst 7 is returned
When the reducing agent is not supplied from the base agent supply device 9
(Ie when the incoming exhaust air-fuel ratio is lean)
NO inXAnd returned to the exhaust gas from the reducing agent supply device 9
When the oxygen concentration of the exhaust gas supplied and supplied decreases,
NO collectedXTo release and purify. For this reason, the conventional N
OXNO absorbed by the storage reduction catalyst 7XUnless saturated with
Unpurified NO downstream XWill not be released
Was obtained.

【0027】ところが、実際の運転ではNOX 吸蔵還元
触媒には前述した「NOX の吐き出し」と「NOX の染
み出し」と称する現象が生じるためNOX 吸蔵還元触媒
が吸収したNOX で飽和していない状態でも未浄化のN
X が下流側に放出される場合があることが判明してい
る。本明細書では、前述したようにNOX 吸蔵還元触媒
の再生操作初期にNOX 吸蔵還元触媒下流側に未浄化の
NOX が放出される現象を「NOX の吐き出し」と呼
び、NOX 吸蔵還元触媒が排気中のNOX を吸収中(す
なわち流入する排気空燃比がリーンのとき)にNOX
蔵還元触媒下流側に未浄化のNOX が放出される現象を
「NOX の染み出し」と呼び、両者を区別している。
[0027] However, in the actual operation saturated with NO X storage is the reduction catalyst described above "NO X of the discharge," said NO because the phenomenon occurs, which is referred to as "NO stains out of X" X occluding and reducing catalyst has absorbed NO X Unpurified N even if not
O X is it found that may be released to the downstream side. In this specification, referred to as "discharging of the NO X" a phenomenon that unpurified of the NO X is released into the NO X storage reduction catalyst downstream of the regeneration operation early of the NO X occluding and reducing catalyst as described above, the NO X storage The phenomenon that unpurified NO X is released downstream of the NO X storage reduction catalyst while the reduction catalyst is absorbing NO X in the exhaust gas (that is, when the inflowing exhaust air-fuel ratio is lean) is referred to as “NO X seepage”. To distinguish them.

【0028】NOX の吐き出しと染み出しが何故生じる
かの理由については現在のところ明確には判明していな
いが、以下に説明する現象によるものと推測されてい
る。まず、NOX の吐き出しの生じる理由について説明
する。前述のように、NOX 吸蔵還元触媒は吸収したN
X を硝酸塩の形で保持する。このとき、硝酸イオンは
NOX 吸蔵還元触媒中の吸収剤(例えばBaO)の表面
から内部に拡散により移動して硝酸塩を形成する。この
ため、NOX の吸収中には吸収剤表面の硝酸イオン濃度
は内部の硝酸イオン濃度より高くなっている。この状態
でNOX 吸蔵還元触媒の再生操作が開始され吸収剤表面
の雰囲気酸素濃度が急激に低下すると、吸収剤表面近傍
の高濃度の硝酸イオンがNO2 の形で一斉に吸収剤から
放出されるようになる。このため、再生操作開始直後に
は短時間で比較的多量のNOX がNOX 吸蔵還元触媒か
ら放出されるようになり、一時的な還元剤不足が生じ、
放出されたNOX の一部が未浄化のままNOX 吸蔵還元
触媒下流側に放出されるようになると考えられる。
The reason why the exhalation and exudation of NO X occurs is not clear at present, but is presumed to be due to the phenomenon described below. First, the reason why the discharge of NO X occurs will be described. As described above, the NO X storage reduction catalyst
The O X held in the form of nitrates. At this time, nitrate ions move by diffusion from the surface of the absorbent (eg, BaO) in the NO x storage reduction catalyst to form nitrate. For this reason, during the absorption of NO X , the nitrate ion concentration on the absorbent surface is higher than the internal nitrate ion concentration. In this state, when the regenerating operation of the NO X storage reduction catalyst is started and the atmospheric oxygen concentration on the surface of the absorbent rapidly decreases, high concentration nitrate ions near the surface of the absorbent are simultaneously released from the absorbent in the form of NO 2. Become so. Therefore, immediately after the start of the regeneration operation, a relatively large amount of NO X is released from the NO X storage reduction catalyst in a short time, and a temporary shortage of the reducing agent occurs.
Some of the released NO X is considered to be to be released leaving the NO X storage reduction catalyst downstream of unpurified.

【0029】吸収剤表面近傍の硝酸イオンが放出された
後は、吸収剤内部に保持された硝酸イオンが表面に移動
してNO2 の形で放出されるようになるが、この場合に
は吸収剤からのNO2 の放出速度は吸収剤内部での硝酸
イオンの移動速度に律速されるようになるため、放出速
度は比較的低くなり、還元剤の不足は生じない。このた
め、NOX 吸蔵還元触媒の再生操作開始直後に一時的に
未浄化のNOXが下流側に放出されるNOX の吐き出し
が生じるのである。
After the nitrate ions near the surface of the absorbent are released, the nitrate ions retained inside the absorbent move to the surface and are released in the form of NO 2. Since the release rate of NO 2 from the agent is determined by the moving speed of nitrate ions inside the absorbent, the release rate is relatively low, and there is no shortage of reducing agent. Therefore, it is the discharging of the NO X which the NO X storage reduction NO X temporarily unpurified immediately after the start of the regenerating operation of the catalyst is released to the downstream side is caused.

【0030】吐き出しにより放出されるNOX の量は、
吸収剤表面の硝酸イオン濃度が高いほど大きくなる。こ
のため、NOX 吸蔵還元触媒に吸収されたNOX 量(N
X吸蔵量)が多いほど吐き出しにより放出される未浄
化のNOX が増大するようになる。また、NOX の染み
出しはNOX 吸蔵還元触媒の吸収剤に吸収されたNOX
量の増大により吸収剤のNOX 吸蔵能力が低下するため
に生じると考えられる。上述したように、NOX 吸蔵還
元触媒の白金Pt上で生成された硝酸イオンは吸収剤表
面から内部に拡散により移動する。従って、NOX 吸蔵
還元触媒のNOX 吸蔵量が増大して吸収剤内部の硝酸イ
オン濃度が増大すると、内部に硝酸イオンが拡散しにく
くなり、吸収剤表面の硝酸イオン濃度が増大する。これ
により、白金Pt上でのNO2 →NO3 - の反応が生じ
にくくなり排気中のNOX がNOX 吸蔵還元触媒に吸収
されなくなる。このため、NOX 吸蔵還元触媒のNOX
吸収中にはNOX 吸蔵量が増大するにつれてNOX 吸蔵
還元触媒に吸収されず下流側に流出する未浄化のNOX
量が増大するようになる。
The amount of NO X released by the discharge is
It becomes larger as the concentration of nitrate ions on the surface of the absorbent is higher. Therefore, NO X occluding and reducing the amount of NO X absorbed in the catalyst (N
O X storage amount) unpurified of the NO X released by discharging the more is to increase. Further, oozing of the NO X is the NO X storage reduction NO X absorbed by the absorbent of the catalyst
It is considered that the increase in the amount causes a decrease in the NO X storage capacity of the absorbent. As described above, nitrate ions generated on platinum Pt of the NO X storage reduction catalyst move from the surface of the absorbent to the inside by diffusion. Therefore, when the NO X storage amount of the NO X storage reduction catalyst increases and the nitrate ion concentration inside the absorbent increases, the nitrate ion hardly diffuses inside, and the nitrate ion concentration on the absorbent surface increases. As a result, the reaction of NO 2 → NO 3 on the platinum Pt hardly occurs, and NO X in the exhaust gas is not absorbed by the NO X storage reduction catalyst. Therefore, of the NO X occluding and reducing catalyst NO X
Unpurified of the NO X during absorption flowing downstream without being absorbed in the NO X occluding and reducing catalyst as the NO X storage amount increases
The amount will increase.

【0031】また、NOX 吸蔵還元触媒の最大NOX
蔵量(飽和量)はリーン空燃比下においても空燃比が低
下するにつれて(リッチ側になるにつれて)低下する。
このため、NOX 吸蔵還元触媒に比較的多量のNOX
吸蔵されている場合、運転条件の変化により排気空燃比
が低下してNOX 吸蔵還元触媒の飽和量が低下した場合
には、飽和量を越える分の吸蔵NOX はNOX 吸蔵還元
触媒から放出されるようになる。従って、例え排気がリ
ーン空燃比でありNOX 吸蔵還元触媒がNOXを吸収中
であっても空燃比が低下するとNOX 吸蔵還元触媒から
飽和量を越えた分のNOX が放出されるようになる。こ
の場合、当然NOX 吸蔵還元触媒のNO X 吸蔵量が多い
程放出される未浄化のNOX 量も増大するようになる。
Also, NOXMaximum NO of storage reduction catalystXSucking
The storage amount (saturation amount) is low even under lean air-fuel ratio.
As it goes down (becomes richer), it goes down.
Therefore, NOXRelatively large amount of NO in storage reduction catalystXBut
If it is occluded, the exhaust air-fuel ratio will change due to changes in operating conditions.
Decreases and NOXWhen the saturation amount of the storage reduction catalyst decreases
Is the amount of stored NO that exceeds the saturation amount.XIs NOXOcclusion reduction
It is released from the catalyst. Therefore, even if the exhaust
NO is the air-fuel ratioXNO storage reduction catalystXAbsorbing
NO even if the air-fuel ratio dropsXFrom storage reduction catalyst
NO over the saturation amountXWill be released. This
Of course, NOXNO of storage reduction catalyst XLarge storage capacity
Unpurified NOXThe amount will also increase.

【0032】本実施形態では、NOX 吸蔵還元触媒のN
X 吸収中に生じる上記2つの種類の未浄化NOX 放出
を併せてNOX の染み出しと称している。ところで、N
X の吐き出しと染み出しとにより放出される未浄化の
NOX の量は、いずれもNOX 吸蔵還元触媒のNOX
蔵量が増大するにつれて多くなる。このため、従来のよ
うにNOX 吸蔵還元触媒のNOX 吸蔵量が比較的高い値
に到達する毎に再生操作を実行するようにしていたので
は、NOX の吐き出しと染み出しとにより放出される未
浄化のNOX 量が大きくなってしまい、全体としてのN
X 浄化率を充分に向上させることができない場合があ
る。
[0032] In the present embodiment, NO X in the storage reduction catalyst N
O X produced during the absorption the two types of unpurified NO X released together is referred to as the exudation of NO X. By the way, N
The amount of unpurified of the NO X released by and O X discharged and exudation are both increased as the NO X storage amount of the NO X occluding and reducing catalyst is increased. For this reason, if the regeneration operation is performed every time the NO X storage amount of the NO X storage reduction catalyst reaches a relatively high value as in the related art, NO X is discharged by exhalation and exudation. The unpurified NO X amount becomes large, and the N
The O X purification rate may not be able to sufficiently improve.

【0033】そこで、本実施形態では従来NOX 吸蔵還
元触媒のNOX 飽和量を基準にして設定されていた(例
えば飽和量の70パーセント)再生操作実行要否判定の
ためのNOX 吸蔵量を、NOX 吸蔵還元触媒からのNO
X の吐き出しまたは染み出しにより放出される未浄化の
NOX 量が所定値以下になるように低い値に設定するこ
とにより未浄化のNOX の放出を防止して、NOX 吸蔵
還元触媒の全体としてのNOX 浄化率を大幅に向上させ
ている。
Therefore, in the present embodiment, the NO X storage amount for determining whether or not the regeneration operation is necessary, which has been set based on the NO X saturation amount of the NO X storage reduction catalyst (for example, 70% of the saturation amount) in the past, is set. NO from the NO X storage reduction catalyst
To prevent the release of unpurified of the NO X by the amount of NO X unpurified released by X spitting or exudation is set to a low value to be equal to or less than the predetermined value, the whole of the NO X occluding and reducing catalyst the NO X purification rate as being greatly improved.

【0034】本実施形態では、予め実験によりNOX
蔵還元触媒のNOX 吸蔵量とNOXの吐き出し、染み出
しによる未浄化のNOX 放出量との関係を求めておく。
そして、この関係から両方の未浄化NOX 放出量の合計
が予め定めた値以下になるNOX 吸蔵量の最大値(再生
操作実行判定値)を定めておき、実際の運転ではNO X
の吸蔵量がこの再生操作実行判定値に到達する毎にNO
X 吸蔵還元触媒の再生操作を実行する。NOX の吐き出
しと染み出しとによる未浄化NOX の放出量の許容値
は、全体としてのNOX 浄化率(すなわち、ある期間に
おけるNOX 浄化率の平均値)が所望の値になるように
設定されるが、従来達成可能なNOX 浄化率より大幅に
高い浄化率を達成するために、本実施形態では未浄化の
NOX の放出量の許容値は極めて小さく設定される。こ
のため、本実施形態ではNOX 吸蔵還元触媒の再生操作
は極めて低い値(例えば飽和量の10パーセント以下の
程度)に設定され、従来に較べて極めて短い間隔でNO
X 吸蔵還元触媒の再生操作が実行されるようになる。こ
れにより、NOX 吸蔵還元触媒再生操作開始直後に吐き
出しにより放出される未浄化NOX 量、及びNOX 吸蔵
量の増大のためにNO X 吸収中に染み出しにより放出さ
れる未浄化NOX 量が低い値に抑制されるようになる。
また、機関運転条件の変化により排気空燃比が低下した
場合にも吸蔵NOX 量が飽和量を越えることがないた
め、空燃比変化による未浄化のNOX 放出も防止される
ようになる。
In this embodiment, NO is determined in advance by an experiment.XSucking
NO of storage reduction catalystXStorage amount and NOXVomiting, seeping out
Unpurified NOXFind the relationship with the amount of release.
From this relationship, both unpurified NOXTotal release
Is less than the predetermined valueXMaximum storage amount (regeneration
Operation execution determination value), and NO in actual operation. X
Every time the storage amount reaches the regeneration operation execution determination value.
XThe regeneration operation of the storage reduction catalyst is performed. NOXSpitting
Unpurified NO due to bleeding and seepageXEmission allowance
Is NO as a wholeXPurification rate (ie, over a period of time
NOX(The average value of the purification rate) to the desired value
Set, but conventionally achievable NOXGreater than purification rate
In order to achieve a high purification rate, in this embodiment, unpurified
NOXIs set very small. This
Therefore, in this embodiment, NOXRegeneration operation of storage reduction catalyst
Is a very low value (eg less than 10% of saturation)
), And NO at very short intervals compared to the past.
XThe regeneration operation of the storage reduction catalyst is performed. This
As a result, NOXSpitting immediately after the start of the storage reduction catalyst regeneration operation
Unpurified NO released by dischargingXQuantity, and NOXOcclusion
NO for increased volume XReleased by oozing during absorption
Unpurified NOXThe amount will be suppressed to a lower value.
In addition, the exhaust air-fuel ratio decreased due to changes in engine operating conditions.
NO NO OcclusionXThe amount does not exceed the saturation amount
Unpurified NO due to air-fuel ratio changeXRelease is also prevented
Become like

【0035】図2は本実施形態の排気浄化装置における
浄化率向上の効果を説明するタイミング図である。図2
の実線は、本実施形態の排気浄化装置のように短い間隔
で再生操作を実行した場合のNOX 吸蔵還元触媒7出口
における排気中のNOX 濃度を、点線は従来の排気浄化
装置のように比較的長い間隔で再生操作を実行した場合
のNOX 吸蔵還元触媒7出口における排気中のNOX
度をそれぞれ示している。また、図2の直線IはNOX
吸蔵還元触媒7に流入する排気中のNOX 濃度を示して
いる(図2では、流入排気中のNOX 濃度が一定の場合
を示す)。
FIG. 2 is a timing chart for explaining the effect of improving the purification rate in the exhaust gas purification apparatus of the present embodiment. FIG.
The solid line, the concentration of NO X in the exhaust gas in the NO X storage reduction catalyst 7 outlet when executing a reproduction operation at short intervals as an exhaust gas purifying apparatus of the present embodiment and the dotted line as in the conventional exhaust gas purifying device The graph shows the NO X concentration in the exhaust gas at the outlet of the NO X storage reduction catalyst 7 when the regeneration operation is performed at relatively long intervals. Further, the straight line I in FIG. 2 NO X
2 shows the NO X concentration in the exhaust gas flowing into the storage reduction catalyst 7 (FIG. 2 shows a case where the NO X concentration in the inflow exhaust gas is constant).

【0036】まず、従来の排気浄化装置(点線)の場合
について説明すると、従来は比較的NOX 吸蔵還元触媒
のNOX 吸蔵量が大きな値に増大するまで再生操作が実
行されない。このため、NOX 吸蔵還元触媒の吸蔵量が
増大するにつれて染み出しによる未浄化NOX 放出量が
増大し、図2点線にAで示すように出口排気ガス中のN
X 濃度が徐々に増大して行く。また、NOX 吸蔵量が
所定値(例えば飽和量の70パーセント程度)に到達す
ると、還元剤が供給されNOX 吸蔵還元触媒の再生操作
が実行されるが(図2点線、B点)、この場合も再生操
作実行時のNO X 吸蔵量が比較的大きいため、再生操作
開始時に吐き出しにより多量の未浄化NOX が放出され
てしまう(図2点線、C部分)。吐き出しによる未浄化
のNOXの放出は短時間で終了し、再生が完了するとN
X 吸蔵還元触媒の出口NOX 濃度は低下するが、その
後NOX 吸蔵量が増大するにつれて再び出口NOX 濃度
は増大する(図2点線、D部分)。このため従来の排気
浄化装置では、全体として図2点線の下側の部分の面積
に相当する比較的多量の未浄化NOX がNOX 吸蔵還元
触媒下流側に放出されてしまうことになり、全体として
のNOX 吸蔵還元触媒のNOX 浄化率は低くなってしま
う。
First, in the case of a conventional exhaust gas purification device (dotted line)
In the description below, conventionally, relatively NOXStorage reduction catalyst
NOXThe regeneration operation is performed until the storage amount increases to a large value.
Not done. Therefore, NOXThe storage amount of the storage reduction catalyst is
Unpurified NO due to exudation as it increasesXRelease
As shown by the dotted line A in FIG.
OXThe concentration gradually increases. NOXOcclusion amount
Reach a predetermined value (for example, about 70% of the saturation amount)
Then, the reducing agent is supplied and NOXRegeneration operation of storage reduction catalyst
Is executed (dotted line in FIG. 2, point B).
NO at the time of operation XRegeneration operation due to relatively large storage capacity
Exhausted large amount of unpurified NO at startXIs released
(Dotted line in FIG. 2, part C). Not purified by spitting
NOXRelease is completed in a short time, and when regeneration is completed, N
OXExit NO of storage reduction catalystXAlthough the concentration decreases, its
After NOXAs the storage amount increases, the outlet NOXconcentration
(Dotted line in FIG. 2, D portion). For this reason, conventional exhaust
In the purifier, the area of the lower part of the dotted line in FIG.
A relatively large amount of unpurified NO corresponding toXIs NOXOcclusion reduction
Will be released downstream of the catalyst,
NOXNO of storage reduction catalystXPurification rate is low
U.

【0037】これに対して、本実施形態の排気浄化装置
(図2実線)ではNOX 吸蔵還元触媒のNOX 吸蔵量が
極めて低い値に到達する毎に短い間隔で再生操作(図2
実線、B′点)が実行される。このため、NOX 吸収中
の染み出しによる未浄化のNOX 放出(図2実線、A′
部分)及び再生操作実行開始時の吐き出しによる未浄化
のNOX 放出(図2実線、C′)はともに小さな値にな
る。これにより、全体としてNOX 吸蔵還元触媒から放
出される未浄化のNOX 量は、図2実線下側部分の面積
に相当する極めて少ない量になり、従来の排気浄化装置
(図2、点線)に較べて大幅に全体としてのNOX 浄化
効率が向上するようになる。
[0037] In contrast, the exhaust gas purification device (Figure 2 solid lines), the reproduction operation at short intervals each time the NO X storage amount of the NO X occluding and reducing catalyst reaches a very low value of the present embodiment (FIG. 2
(Solid line, point B '). Therefore, NO X emission unpurified by exudation in NO X absorption (FIG. 2 solid line, A '
Part) and the release of unpurified NO X due to the discharge at the start of the regeneration operation (solid line in FIG. 2, C ′) both have small values. As a result, the unpurified NO X amount released from the NO X storage reduction catalyst as a whole becomes a very small amount corresponding to the area of the lower part of the solid line in FIG. 2, and the conventional exhaust gas purification device (dotted line in FIG. 2) is NO X purification efficiency of the entire significantly so improved as compared to.

【0038】図3は、本実施形態の上記NOX 吸蔵還元
触媒再生操作を説明するフローチャートである。本操作
は、ECU30により一定時間毎に実行されるルーチン
により実施される。図3において、ステップ301では
現在のNOX 吸蔵還元触媒7のNOX 吸蔵量CNOXが
算出される。
FIG. 3 is a flow chart for explaining the NO X storage reduction catalyst regeneration operation of the present embodiment. This operation is performed by a routine executed by the ECU 30 at regular intervals. In FIG. 3, in step 301, the current NO X storage amount CNOX of the NO X storage reduction catalyst 7 is calculated.

【0039】本実施形態では、NOX 吸蔵量CNOXは
機関の運転状態に基づいて算出される。機関から単位時
間(例えば図3の操作の実行間隔)あたりに発生するN
X量は、機関負荷条件(例えば燃料噴射量と回転数
と)により定まる。そこで、本実施形態では、予め機関
を負荷条件を変えて運転し、各負荷条件下でのNOX
生量を実測し、例えば燃料噴射量と回転数とを用いた数
値テーブルの形でECU30のROMに格納してある。
ステップ301では、操作実行毎にECU30により別
途実行される燃料噴射量演算ルーチンで算出される燃料
噴射量と、機関回転数とから上記数値テーブルを用いて
前回操作実行時から今回操作実行時までに機関から発生
したNOX 量を算出する。そして、この発生量に所定の
定数(排気中のNOX のうちNOX 吸蔵還元触媒7に吸
収されるNOX の割合)を乗じた値をCNOXに加算す
る。これにより、CNOXの値はNOX 吸蔵還元触媒7
に吸蔵されたNOX 量に対応した値となる。
[0039] In this embodiment, NO X storage amount CNOX is calculated based on the operating state of the engine. N generated per unit time (for example, the execution interval of the operation in FIG. 3) from the institution
O X amount is determined by the engine load conditions (e.g., the fuel injection amount and the rotation speed). Therefore, in this embodiment, pre-engine was operated by changing the load conditions, and measuring the NO X generation amount in each load conditions, for example, a fuel injection amount and the rotational speed and the ECU30 in the form of a numerical table using the It is stored in ROM.
In step 301, the fuel injection amount calculated by the fuel injection amount calculation routine separately executed by the ECU 30 every time the operation is performed, and the engine speed are used from the previous operation execution to the current operation execution by using the above numerical table. calculating the amount of NO X generated from the engine. Then, a value obtained by multiplying the generated amount by a predetermined constant (the ratio of NO X absorbed by the NO X storage reduction catalyst 7 to NO X in the exhaust gas) is added to CNOX. As a result, the value of CNOX is reduced to the NO X storage reduction catalyst 7.
Is a value corresponding to the NO X amount occluded in the fuel cell.

【0040】なお本実施形態では、燃料噴射量と回転数
とに応じて算出した値をNOX 吸蔵還元触媒7のNOX
吸蔵量CNOXとして用いているが、例えば、前回再生
操作実施後の燃料噴射量の積算値、回転数の積算値、あ
るいは機関が比較的高回転で定常運転されているような
場合には前回再生操作完了後の機関運転時間等をNO X
吸蔵量CNOXとして用いて計算を簡素化しても良い。
In this embodiment, the fuel injection amount and the rotational speed
The value calculated according toXNO of the storage reduction catalyst 7X
It is used as the storage amount CNOX.
After the operation, the integrated value of the fuel injection amount, the integrated value of the rotational speed,
Or the engine is running at a relatively high speed
In this case, the engine operating time after the previous regeneration operation X
The calculation may be simplified using the storage amount CNOX.

【0041】また、図2に示したようにNOX 吸蔵還元
触媒7のNOX 吸収中、NOX 吸蔵還元触媒7出口にお
ける排気中のNOX 濃度は染み出しのためNOX 吸蔵還
元触媒のNOX 吸蔵量に応じて増大していく。このた
め、例えばNOX 吸蔵還元触媒7出口に排気中のNOX
濃度を検出可能なNOX 濃度センサを配置して、NOX
濃度センサで検出したNOX 濃度をCNOXとして使用
するようにしても良い。上記により、NOX 吸蔵還元触
媒7のNOX 吸蔵量CNOXを算出後、ステップ303
では、算出したNOX 吸蔵量CNOXが所定値CNOX
0 に到達したか否かが判定される。ここで、CNOX0
は、NOX 吸蔵還元触媒7の染み出しにより放出される
未浄化NOX の量(NOX 吸蔵還元触媒7出口における
排気中のNOX 濃度)が予め定めた値以下になる最大N
X 吸蔵量、またはNOX 吸蔵還元触媒7再生操作開始
時に吐き出しにより放出される未浄化NOX の量(濃
度)が予め定めた量以下になる最大NOX 吸蔵量のうち
どちらか小さい値に設定される。なお、放出される未浄
化のNOX 量の許容値は、所望のNOX 浄化率から決定
される。また、CNOX0 の値は、実際のNOX 吸蔵還
元触媒7を用いた実験により決定することが好ましい。
Further, in the NO X absorption of the NO X occluding and reducing catalyst 7 as shown in FIG. 2, the NO X storage concentration of NO X reducing catalyst 7 in the exhaust at the outlet is NO in the NO X storage reduction catalyst for seepage X Increases according to the amount of occlusion. Thus, for example, the NO X storage reduction catalyst 7 NO X in the exhaust gas outlet
By placing detectable NO X concentration sensor concentrations, NO X
The NO X concentration detected by the concentration sensor may be used as CNOX. After calculating the NO X storage amount CNOX of the NO X storage reduction catalyst 7 as described above, step 303
Then, the calculated NO X storage amount CNOX becomes the predetermined value CNOX.
It is determined whether 0 has been reached. Here, CNOX 0
Is, NO X occluding amount of unpurified NO X emitted by reduction catalyst 7 exudation (NO X in occluding and reducing catalyst 7 in the exhaust gas at the outlet NO X concentration) maximum is below a predetermined value N
O X storage amount, or either smaller one of the NO X occluding and reducing catalyst 7 regeneration amount of unpurified NO X released by the operation at start discharging (concentration) up to the NO X storage amount becomes less than predetermined quantity Is set. The allowable value of the released unpurified NO X amount is determined from a desired NO X purification rate. Further, the value of CNOX 0 is preferably determined by an experiment using an actual NO X storage reduction catalyst 7.

【0042】ステップ303でCNOX≧CNOX0
あった場合にはステップ305で還元剤供給装置9の還
元剤供給ノズル91から所定量の燃料が噴射され、NO
X 吸蔵還元触媒7の再生が行われる。また、再生操作終
了後、ステップ305ではNOX 吸蔵量CNOXの値は
リセットされる。なお、還元剤供給ノズル91から噴射
する還元剤(本実施形態ではディーゼル油)の噴射量
は、NOX 吸蔵還元触媒のNOX 吸蔵量CNOXの全量
を浄化するのに充分な量のHC、CO成分を発生可能な
最小量に設定される。このように還元剤供給量を再生操
作実行時のNOX 吸蔵還元触媒のNOX 吸蔵量に応じて
設定することにより、本実施形態では一回の再生操作で
噴射される還元剤の量は低く抑えられる。このため、本
実施形態では極めて短い時間間隔で再生操作を行うにも
かかわらず、還元剤の消費量は従来に較べて僅かに(す
なわち、従来未浄化のまま放出されていたNOX を浄化
するのに使用される還元剤の量に相当する量だけ)増大
する程度になる。また、本実施形態では極めて短い時間
間隔で再生操作が実行されるため、短時間で所要量の還
元剤をノズル91から噴射する必要がある。また、1回
の再生操作で噴射される還元剤の量は比較的僅かなの
で、長い時間をかけてこの少量の還元剤を噴射したので
は、噴射された還元剤が排気により希釈されてしまい排
気中の還元剤濃度を充分に上昇させることができなくな
る。そこで、本実施形態では、還元剤供給ノズル91か
らの還元剤の噴射量は再生操作の実行間隔(再生操作開
始時のNOX 吸蔵量)に応じて設定し、更にノズル91
からの噴射率は噴射量及び再生操作実行間隔との両方を
考慮して設定するようにしている。これにより、1回の
再生操作で必要とされる量の還元剤を必要とされる濃度
でNOX 吸蔵還元触媒に流入する排気中に供給すること
が可能となる。
If CNOX ≧ CNOX 0 in step 303, a predetermined amount of fuel is injected from the reducing agent supply nozzle 91 of the reducing agent supply device 9 in step 305, and NO
The regeneration of the X storage reduction catalyst 7 is performed. Further, after the reproduction operation end, the value of the NO X storage amount CNOX step 305 is reset. Note that the injection amount of the reducing agent (diesel oil in the present embodiment) injected from the reducing agent supply nozzle 91 is a sufficient amount of HC and CO to purify the entire NO X storage amount CNOX of the NO X storage reduction catalyst. The component is set to the minimum amount that can be generated. By setting the supply amount of the reducing agent in accordance with the NO X storage amount of the NO X storage reduction catalyst at the time of performing the regeneration operation in this manner, in the present embodiment, the amount of the reducing agent injected in one regeneration operation is low. Can be suppressed. Therefore, despite performing playback operation in a very short time interval in the present embodiment, the consumption of the reducing agent is slightly over conventional (i.e., to purify NO X which have been released while the conventional unpurified (By an amount corresponding to the amount of reducing agent used). Further, in the present embodiment, since the regeneration operation is performed at extremely short time intervals, it is necessary to inject a required amount of the reducing agent from the nozzle 91 in a short time. In addition, since the amount of the reducing agent injected in one regeneration operation is relatively small, if the small amount of the reducing agent is injected over a long time, the injected reducing agent is diluted by the exhaust gas and the exhaust gas is exhausted. The concentration of the reducing agent therein cannot be sufficiently increased. Therefore, in this embodiment, the injection amount of the reducing agent from the reducing agent feed nozzle 91 is set in accordance with execution interval of the reproduction operation (reproduction operation at the start of the NO X storage amount), further nozzles 91
Is set in consideration of both the injection amount and the regeneration operation execution interval. As a result, it is possible to supply the required amount of reducing agent in the required concentration in the exhaust gas flowing into the NO X storage reduction catalyst in one regeneration operation.

【0043】なお、本実施形態では還元剤供給ノズル9
1から還元剤をNOX 吸蔵還元触媒に供給しているが、
排気による希釈を防止し充分な濃度の還元剤をNOX
蔵還元触媒7に到達させるためには還元剤供給ノズル9
1をNOX 吸蔵還元触媒7上流側にできるだけ近接した
位置に配置することが望ましい。
In this embodiment, the reducing agent supply nozzle 9
Although the reducing agent is supplied to the NO X storage reduction catalyst from 1,
In order to prevent dilution by exhaust gas and allow a sufficient concentration of the reducing agent to reach the NO X storage reduction catalyst 7, the reducing agent supply nozzle 9
It is desirable to dispose 1 at a position as close as possible to the upstream side of the NO X storage reduction catalyst 7.

【0044】[0044]

【発明の効果】各請求項に記載の発明によれば、NOX
吸蔵還元触媒からのNOX の吐き出しや染み出しによる
未浄化NOX のために排気浄化効率が低下することを防
止し、排気浄化効率を大幅に向上させることが可能とな
る共通の効果を奏する。
According to the invention described in each claim, NO X
Prevents decrease the exhaust purification efficiency for unpurified NO X by NO X out discharging and stains from storage-reduction catalyst exhibits the common effects that it is possible to greatly improve the exhaust purification efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明をディーゼル機関に適用した実施形態の
概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment in which the present invention is applied to a diesel engine.

【図2】本発明によるNOX 浄化率の向上の効果を説明
する図である。
FIG. 2 is a diagram illustrating the effect of improving the NO X purification rate according to the present invention.

【図3】本発明によるNOX 吸蔵還元触媒の再生操作の
一実施形態を説明するフローチャートである。
FIG. 3 is a flowchart illustrating an embodiment of a regeneration operation of the NO X storage reduction catalyst according to the present invention.

【符号の説明】[Explanation of symbols]

1…ディーゼル機関 3…排気通路 7…NOX 吸蔵還元触媒 9…還元剤供給装置 30…電子制御ユニット(ECU) 91…還元剤供給ノズル1 ... diesel engine 3 ... exhaust passage 7 ... NO X occluding and reducing catalyst 9 ... reducing agent supply device 30 ... electronic control unit (ECU) 91 ... reducing agent supply nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 淳 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 小林 正明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G091 AA12 AA18 AA28 AB06 BA14 BA33 CA18 CA19 CB02 CB08 DA01 DA02 DB06 DB08 DB10 EA01 EA08 EA30 EA33 FB10 FB11 FB12 FC02 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X HA37 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Tahara 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Masaaki Kobayashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F Terms (reference) 3G091 AA12 AA18 AA28 AB06 BA14 BA33 CA18 CA19 CB02 CB08 DA01 DA02 DB06 DB08 DB10 EA01 EA08 EA30 EA33 FB10 FB11 FB12 FC02 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB16X HA37

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配置され流入する
排気の空燃比がリーンのときに排気中のNOX を吸収
し、流入する排気中の酸素濃度が低下したときに吸収し
たNOX を放出するNOX 吸蔵還元触媒と、該NOX
蔵還元触媒に流入する排気空燃比がリーンのときにNO
X 吸蔵還元触媒に還元剤を供給することにより、NOX
吸蔵還元触媒に流入する排気中の酸素濃度を低下させる
とともに、放出されたNOX を還元浄化する還元剤供給
装置とを備えた内燃機関の排気浄化装置において、 前記NOX 吸蔵還元触媒は、前記還元剤供給開始直後
に、供給された還元剤によっては還元されない未浄化N
X を下流側に放出し、該未浄化NOX 量はNO X 吸蔵
還元触媒の吸収したNOX 量に応じて増加し、 前記還元剤供給装置は、NOX 吸蔵還元触媒に吸収され
たNOX 量が所定のレベルに到達したときにNOX 吸蔵
還元触媒に還元剤を供給し、 前記所定のNOX 吸収量レベルは、前記還元剤供給開始
時の前記NOX 吸蔵還元触媒からの未浄化NOX 放出量
が予め定めた値以下になるように設定されていることを
特徴とする内燃機関の排気浄化装置。
1. An inflow engine disposed in an exhaust passage of an internal combustion engine.
NO in exhaust when the air-fuel ratio of exhaust is leanXAbsorb
And absorbs when the oxygen concentration in the incoming exhaust falls.
NOXReleases NOXThe storage reduction catalyst and the NOXSucking
NO when the exhaust air-fuel ratio flowing into the storage reduction catalyst is lean
XBy supplying a reducing agent to the storage reduction catalyst, NOX
Decrease oxygen concentration in exhaust gas flowing into storage reduction catalyst
With the released NOXOf reducing agent to reduce and purify wastewater
The exhaust gas purifying apparatus for an internal combustion engine, comprising:XThe storage reduction catalyst is used immediately after the start of the supply of the reducing agent.
The unpurified N which is not reduced by the supplied reducing agent
OXTo the downstream side, and the unpurified NOXThe amount is NO XOcclusion
NO absorbed by the reduction catalystXThe reducing agent supply device increases according to the amount.XAbsorbed by the storage reduction catalyst
NOXNO when quantity reaches a predetermined levelXOcclusion
A reducing agent is supplied to the reduction catalyst, and the predetermined NOXThe absorption level is determined by
NO at the timeXUnpurified NO from the storage reduction catalystXRelease amount
Is set to be equal to or less than the predetermined value.
An exhaust purification device for an internal combustion engine.
【請求項2】 内燃機関の排気通路に配置され流入する
排気の空燃比がリーンのときに排気中のNOX を吸収
し、流入する排気中の酸素濃度が低下したときに吸収し
たNOX を放出するNOX 吸蔵還元触媒と、該NOX
蔵還元触媒に流入する排気空燃比がリーンのときにNO
X 吸蔵還元触媒に還元剤を供給することにより、NOX
吸蔵還元触媒に流入する排気中の酸素濃度を低下させる
とともに、放出されたNOX を還元浄化する還元剤供給
装置とを備えた内燃機関の排気浄化装置において、 前記NOX 吸蔵還元触媒は、流入する排気空燃比がリー
ンであっても吸収したNOX 量に応じて増大する量の未
浄化のNOX を下流側に放出し、 前記還元剤供給装置は、NOX 吸蔵還元触媒に吸収され
たNOX 量が所定のレベルに到達したときにNOX 吸蔵
還元触媒に還元剤を供給し、 前記所定のNOX 吸収量レベルは、リーン空燃比排気下
における前記NOX 吸蔵還元触媒からの未浄化NOX
出量が予め定めた値以下になるように設定されているこ
とを特徴とする内燃機関の排気浄化装置。
Wherein the air-fuel ratio of the exhaust gas is disposed in an exhaust passage of an internal combustion engine inlet absorbs NO X in the exhaust gas when the lean, the NO X in which the oxygen concentration in the exhaust gas absorbed when drops flowing The NO X storage reduction catalyst to be released and the NO X storage reduction catalyst when the exhaust air-fuel ratio flowing into the NO X storage reduction catalyst is lean
By supplying a reducing agent to the X storage reduction catalyst, NO X
With lowering the oxygen concentration in the exhaust gas flowing into the storage-reduction catalyst, in an exhaust gas purification apparatus for an internal combustion engine having a reducing agent supply device for reducing and purifying the released NO X, the NO X storage reduction catalyst flows Even if the exhaust air-fuel ratio is lean, the amount of unpurified NO X that increases in accordance with the absorbed NO X amount is released to the downstream side, and the reducing agent supply device is absorbed by the NO X storage reduction catalyst. When the NO X amount reaches a predetermined level, a reducing agent is supplied to the NO X storage reduction catalyst, and the predetermined NO X absorption level is equal to the unpurified NO X storage reduction catalyst under lean air-fuel ratio exhaust. exhaust purification system of an internal combustion engine, wherein a NO X emissions are set to be less than a predetermined value.
【請求項3】 前記還元剤供給装置は、前記NOX 吸蔵
還元触媒の上流側の排気通路に還元剤を噴射する還元剤
供給ノズルを備え、NOX 吸蔵還元触媒に流入する排気
空燃比がリーンのときにNOX 吸蔵還元触媒に吸収され
たNOX 量が前記所定のレベルに到達する毎に予め定め
た量の還元剤を排気中に供給する請求項1または請求項
2に記載の内燃機関の排気浄化装置。
Wherein the reducing agent feeder, the the NO X storage on the upstream side of the exhaust passage of the reduction catalyst with a reducing agent feed nozzle for injecting the reducing agent, the exhaust air-fuel ratio is lean flowing to the NO X occluding and reducing catalyst internal combustion engine according to claim 1 or claim 2 supplied to the exhaust a predetermined amount of reducing agent each time the NO X storage amount of NO X absorbed in the reduction catalyst reaches the predetermined level when the Exhaust purification equipment.
【請求項4】 前記還元剤供給ノズルからの還元剤の噴
射量と噴射率とは、前記還元剤の供給が行われる時間間
隔に応じて設定されている請求項3に記載の内燃機関の
排気浄化装置。
4. The exhaust gas of an internal combustion engine according to claim 3, wherein the injection amount and the injection rate of the reducing agent from the reducing agent supply nozzle are set in accordance with a time interval at which the supply of the reducing agent is performed. Purification device.
JP04500299A 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3487209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04500299A JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04500299A JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000240428A true JP2000240428A (en) 2000-09-05
JP3487209B2 JP3487209B2 (en) 2004-01-13

Family

ID=12707206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04500299A Expired - Lifetime JP3487209B2 (en) 1999-02-23 1999-02-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3487209B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038206A1 (en) 2003-10-17 2005-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine and method of exhaust purification for internal combustion engine
US7111456B2 (en) 2002-12-10 2006-09-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus for internal combustion engine
JP2009002225A (en) * 2007-06-21 2009-01-08 Hino Motors Ltd Exhaust emission control device
JP2009085018A (en) * 2007-09-27 2009-04-23 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
WO2009139071A1 (en) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111456B2 (en) 2002-12-10 2006-09-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus for internal combustion engine
WO2005038206A1 (en) 2003-10-17 2005-04-28 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine and method of exhaust purification for internal combustion engine
US7357901B2 (en) 2003-10-17 2008-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine and exhaust gas purification method for an internal combustion engine
JP2009002225A (en) * 2007-06-21 2009-01-08 Hino Motors Ltd Exhaust emission control device
JP2009085018A (en) * 2007-09-27 2009-04-23 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
US8402753B2 (en) 2007-09-27 2013-03-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
WO2009139071A1 (en) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine

Also Published As

Publication number Publication date
JP3487209B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP3228006B2 (en) Exhaust purification element deterioration detection device for internal combustion engine
JP3440654B2 (en) Exhaust gas purification device
JP3341284B2 (en) Exhaust gas purification device for internal combustion engine
KR100202995B1 (en) Method and apparatus for purifying exhaust gas
JP2586738B2 (en) Exhaust gas purification device for internal combustion engine
JP4983491B2 (en) Exhaust gas purification device for internal combustion engine
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
JPH10280987A (en) Exhaust emission control device for internal combustion engine
JP2006070834A (en) Exhaust gas purification method and exhaust gas purification system
JP2003148198A (en) Exhaust emission control device of internal combustion engine
KR20070064653A (en) Exhaust gas purification apparatus for internal combustion engine
JP2006322397A (en) Exhaust emission control device for internal combustion engine
JP2004251177A (en) METHOD FOR REGENERATING NOx CATALYST OF NOx PURIFYING SYSTEM AND NOx PURIFYING SYSTEM
JP2845056B2 (en) Exhaust gas purification device for internal combustion engine
JP2001303937A (en) Exhaust emission control device for internal combustion engine
JP2000240428A (en) Exhaust gas emission control device for internal combustion engine
JP3353650B2 (en) Catalyst poisoning regeneration equipment for internal combustion engines
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JPH11343836A (en) Exhaust emission control device for internal combustion engine
JP3514152B2 (en) Exhaust gas purification device for internal combustion engine
JP2000257417A (en) Exhaust emission control device for internal combustion engine
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP3633349B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term