JPH0666130A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH0666130A
JPH0666130A JP4217021A JP21702192A JPH0666130A JP H0666130 A JPH0666130 A JP H0666130A JP 4217021 A JP4217021 A JP 4217021A JP 21702192 A JP21702192 A JP 21702192A JP H0666130 A JPH0666130 A JP H0666130A
Authority
JP
Japan
Prior art keywords
adsorbent
air
fuel ratio
exhaust gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4217021A
Other languages
Japanese (ja)
Other versions
JP2800579B2 (en
Inventor
Junichi Yokoyama
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4217021A priority Critical patent/JP2800579B2/en
Publication of JPH0666130A publication Critical patent/JPH0666130A/en
Application granted granted Critical
Publication of JP2800579B2 publication Critical patent/JP2800579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To prevent deterioration of conversion efficiency of a catalyst and grasp the abnormality of an adsorber when combustible gas is separated from the adsorber. CONSTITUTION:Abnormality occurrence at an adsorber 7 is judged when an engine cooling water temperature and an adsorber temperature are respectively judged to be a specified value or lower based on detection signals output from a water temperature sensor 14 and an adsorber temperature sensor 15, and when an air-fuel ratio on downstream is smaller than an air-fuel ratio on upstream by a specified value or more based on detection signals output from a downstream oxygen density sensor 10 and an upstream oxygen density sensor 9. An air-fuel ratio of an engine 1 is controlled based on detection signals from the downstream oxygen density sensor 10 at the introduction time of exhaust into the adsorber 7, and the air-fuel ratio at an inlet side of a catalyst 4 is properly controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に、機関低温時の未燃HC等の未燃ガスの
低減を主とした排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an exhaust gas purifying apparatus mainly for reducing unburned gas such as unburned HC at low engine temperature.

【0002】[0002]

【従来の技術】従来、内燃機関の排気浄化装置として、
排気通路に触媒を配設し、この触媒の化学吸着作用によ
り排気中の未燃ガスの酸化反応を促進して、排気を浄化
するようにしたものが広く知られている。しかし、この
ような排気浄化装置にあっては、機関の始動時等、排気
温度が低いときは触媒が活性化温度まで上昇せず、排気
浄化作用が著しく低下するため、排気を充分に浄化する
ことができない。
2. Description of the Related Art Conventionally, as an exhaust gas purification device for an internal combustion engine,
It is widely known that a catalyst is arranged in the exhaust passage, and the chemical adsorption of the catalyst promotes the oxidation reaction of unburned gas in the exhaust to purify the exhaust. However, in such an exhaust gas purification device, when the exhaust gas temperature is low such as when the engine is started, the catalyst does not rise to the activation temperature and the exhaust gas purification action is significantly reduced, so the exhaust gas is sufficiently purified. I can't.

【0003】このため、触媒による排気浄化能力が不十
分となる特定運転領域では、排気ガスの未燃ガス、例え
ば未燃HCを吸着剤に吸着させるようにして、運転状態
によらず排気を良好に浄化するようにした技術が提案さ
れている(特開昭63−68713号公報参照)。かか
る技術は、具体的には、触媒上流側の排気通路を、互い
に並列な本通路とバイパス通路とにより構成し、バイパ
ス通路に吸着剤を配設する。そして、エンジンからの排
気流れを、排気温度に応じて、前記バイパス通路側と本
通路側とに切り換える切換弁を設けた構成である。
For this reason, in a specific operation region where the exhaust gas purification capability of the catalyst is insufficient, the unburned gas of the exhaust gas, for example, unburned HC is adsorbed by the adsorbent so that the exhaust gas is satisfactorily irrespective of the operating state. There has been proposed a technique for purifying it (see Japanese Patent Application Laid-Open No. 63-68713). In this technique, specifically, the exhaust passage on the upstream side of the catalyst is configured by the main passage and the bypass passage that are parallel to each other, and the adsorbent is arranged in the bypass passage. The exhaust flow from the engine is provided with a switching valve that switches between the bypass passage side and the main passage side according to the exhaust temperature.

【0004】この技術においては、エンジンの始動後で
吸着剤の脱離温度(吸着成分の脱離が開始される温度)
未満の領域では、排気をバイパス通路側に流すことによ
って、排気中の未燃ガスを吸着剤に吸着させる。排気温
度が上昇した後は、排気を本通路側に流すことによっ
て、吸着剤の脱離を防止する。更に、排気温度が触媒に
よる浄化作用が活発となる温度まで上昇した後は触媒の
みによって十分に排気を浄化させるようにしている。
又、触媒が活性化した後所定時間排気をバイパス通路側
に流して、吸着剤から未燃ガスを脱離させつつこの脱離
された未燃ガスを触媒で浄化して、吸着剤の再生を行う
ようにしている。
In this technique, the desorption temperature of the adsorbent after the engine is started (the temperature at which desorption of adsorbed components is started)
In the region of less than, the unburned gas in the exhaust is adsorbed by the adsorbent by causing the exhaust to flow to the bypass passage side. After the temperature of the exhaust gas rises, the exhaust gas is caused to flow toward the main passage to prevent desorption of the adsorbent. Further, after the exhaust gas temperature rises to a temperature at which the purification action by the catalyst becomes active, the exhaust gas is sufficiently purified by the catalyst alone.
Also, after the catalyst is activated, exhaust gas is flown to the bypass passage side for a predetermined time to desorb the unburned gas from the adsorbent and the desorbed unburned gas is purified by the catalyst to regenerate the adsorbent. I am trying to do it.

【0005】[0005]

【発明が解決しようとする課題】ところで、かかる従来
の排気浄化装置を備えた内燃機関において、吸着剤に対
する空燃比センサとしての酸素濃度センサの設置位置に
依って、次のような問題点が生起する。即ち、吸着剤の
上流側の排気通路に酸素濃度センサを配設した場合は次
のような問題が発生する。
In an internal combustion engine equipped with such a conventional exhaust gas purification device, the following problems occur depending on the installation position of the oxygen concentration sensor as the air-fuel ratio sensor with respect to the adsorbent. To do. That is, when the oxygen concentration sensor is arranged in the exhaust passage on the upstream side of the adsorbent, the following problems occur.

【0006】排気を全量バイパス通路側に流して、吸着
剤から未燃ガスを脱離させる際、脱離した未燃ガスによ
って空燃比がリッチ化するが、吸着剤の上流側の排気通
路に酸素濃度センサを配設してあるので、触媒入口の空
燃比を正しく制御できず、触媒の転化効率が悪化し、排
気浄化性能に支障を来す。一方、吸着剤の下流側の排気
通路に酸素濃度センサを配設した場合は次のような問題
が発生する。
When all the exhaust gas is flowed to the bypass passage side to desorb the unburned gas from the adsorbent, the air-fuel ratio is enriched by the desorbed unburned gas, but oxygen is introduced into the exhaust passage upstream of the adsorbent. Since the concentration sensor is provided, the air-fuel ratio at the catalyst inlet cannot be controlled correctly, the conversion efficiency of the catalyst deteriorates, and exhaust purification performance is hindered. On the other hand, when the oxygen concentration sensor is arranged in the exhaust passage on the downstream side of the adsorbent, the following problems occur.

【0007】吸着剤入口の空燃比を検知できず、吸着剤
による未燃ガスの吸着状態、吸着剤に吸着された未燃ガ
スの脱離状態の異常を把握することができない。そこ
で、本発明は以上のような従来の問題点に鑑み、吸着剤
から未燃ガスを脱離させるに際して、触媒の転化効率が
悪化するのを防止し、排気浄化性能を向上することを目
的とする。
Since the air-fuel ratio at the adsorbent inlet cannot be detected, it is not possible to grasp the abnormal state of the unburned gas adsorbed by the adsorbent and the desorbed state of the unburned gas adsorbed by the adsorbent. In view of the above conventional problems, the present invention aims to improve the exhaust purification performance by preventing the conversion efficiency of the catalyst from deteriorating when desorbing the unburned gas from the adsorbent. To do.

【0008】又、吸着剤による未燃ガスの吸着状態、吸
着剤に吸着された未燃ガスの脱離状態の異常を把握し得
るようにすることを目的とする。
Another object of the present invention is to make it possible to grasp the abnormality of the adsorbed state of the unburned gas and the desorbed state of the unburned gas adsorbed by the adsorbent.

【0009】[0009]

【課題を解決するための手段】このため、本発明は、図
1に示すように、排気通路に排気浄化用の触媒と該触媒
の上流側に位置して未燃ガスを吸着する吸着剤とを介装
すると共に、吸着剤の上流側の排気通路と吸着剤下流側
で触媒の上流側の排気通路とに夫々排気通路内排気の空
燃比を検出する上流側及び下流側空燃比検出手段と、機
関温度を検出する機関温度検出手段と、を含む機関運転
状態検出手段と、機関運転状態の少なくとも前記空燃比
及び機関温度に基づいて前記吸着剤が異常であるか否か
を判定する吸着剤異常判定手段と、を含んで構成した。
Therefore, according to the present invention, as shown in FIG. 1, an exhaust gas purification catalyst and an adsorbent located upstream of the catalyst for adsorbing unburned gas are provided. And an upstream and downstream air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust gas in the exhaust passage in the exhaust passage on the upstream side of the adsorbent and the exhaust passage on the upstream side of the catalyst on the downstream side of the adsorbent, respectively. And an adsorbent for determining whether or not the adsorbent is abnormal based on at least the air-fuel ratio and the engine temperature in an engine operating state, and an engine temperature detecting means for detecting the engine temperature. And an abnormality determining means.

【0010】前記吸着剤異常判定手段は、機関温度が所
定温度以下であると判定され、かつ下流側空燃比が上流
側空燃比よりも所定値以上小さいと判定された際に、吸
着剤が異常であると判定する構成とすることができる。
或いは、吸着剤の温度を検出する吸着剤温度検出手段を
設け、機関温度及び吸着剤温度が夫々所定温度以下であ
ると判定され、かつ下流側空燃比が上流側空燃比よりも
所定値以上小さいと判定された際に、吸着剤が異常であ
ると判定する構成とすることができる。
The adsorbent abnormality determining means determines that the adsorbent is abnormal when it is determined that the engine temperature is lower than or equal to a predetermined temperature and the downstream air-fuel ratio is smaller than the upstream air-fuel ratio by a predetermined value or more. It can be configured to determine that
Alternatively, an adsorbent temperature detecting means for detecting the temperature of the adsorbent is provided, and it is determined that the engine temperature and the adsorbent temperature are respectively below a predetermined temperature, and the downstream air-fuel ratio is smaller than the upstream air-fuel ratio by a predetermined value or more. When it is determined that the adsorbent is abnormal, it can be configured.

【0011】前記触媒上流側の排気通路を互いに並列な
主排気通路と吸着剤が介装されたバイパス通路とにより
構成し、主排気通路とバイパス通路とを選択的に排気を
流通するように通路を切り換える通路切換手段と、前記
吸着剤異常判定手段により吸着剤の異常が判定された際
に、バイパス通路への排気の流入を遮断して主排気通路
に排気を流通するように通路切換手段を制御する制御手
段を設けることができる。
The exhaust passage on the upstream side of the catalyst is composed of a main exhaust passage and a bypass passage in which an adsorbent is interposed in parallel with each other, and the main exhaust passage and the bypass passage are arranged so as to selectively circulate exhaust gas. And a passage switching means for interrupting the inflow of exhaust gas to the bypass passage and flowing the exhaust gas to the main exhaust passage when the adsorbent abnormality determination means determines that the adsorbent is abnormal. Control means may be provided for controlling.

【0012】吸着剤への排気導入時或いは2次空気供給
手段により2次空気を吸着剤上流側の排気通路に供給し
ている際に、下流側空燃比検出手段から出力される検出
信号に基づいて機関の空燃比を制御する空燃比制御手段
を設けることができる。
Based on the detection signal output from the downstream side air-fuel ratio detecting means when the exhaust air is introduced into the adsorbent or when the secondary air is being supplied to the exhaust passage on the upstream side of the adsorbent by the secondary air supply means. An air-fuel ratio control means for controlling the air-fuel ratio of the engine can be provided.

【0013】[0013]

【作用】かかる構成においては、例えば、機関温度が所
定温度以下であると判定され、かつ下流側空燃比が上流
側空燃比よりも所定値以上小さいと判定された際、或い
は、機関温度及び吸着剤温度が夫々所定温度以下である
と判定され、かつ下流側空燃比が上流側空燃比よりも所
定値以上小さいと判定された際に、吸着剤が異常である
と判定される。
In this configuration, for example, when it is determined that the engine temperature is lower than or equal to the predetermined temperature and the downstream air-fuel ratio is lower than the upstream air-fuel ratio by a predetermined value or more, or the engine temperature and the adsorption The adsorbent is determined to be abnormal when it is determined that the agent temperatures are lower than or equal to the predetermined temperatures and the downstream side air-fuel ratio is smaller than the upstream side air-fuel ratio by a predetermined value or more.

【0014】特に、吸着剤への排気導入時或いは2次空
気供給手段により2次空気を吸着剤上流側の排気通路に
供給している際に、下流側空燃比検出手段から出力され
る検出信号に基づいて機関の空燃比が制御され、触媒入
口側の空燃比が適正に制御されるため、触媒における転
化効率を改善することができ、排気浄化性能を向上する
ことができる。
Particularly, when the exhaust air is introduced into the adsorbent or when the secondary air is being supplied to the exhaust passage on the upstream side of the adsorbent by the secondary air supply means, the detection signal output from the downstream air-fuel ratio detecting means. Since the air-fuel ratio of the engine is controlled based on the above, and the air-fuel ratio on the catalyst inlet side is appropriately controlled, the conversion efficiency in the catalyst can be improved and the exhaust purification performance can be improved.

【0015】又、吸着剤の異常が判定された際に、バイ
パス通路への排気の流入が遮断され、吸着剤のこれ以上
の劣化を防止できると共に、バイパス通路分の熱容量を
低減して、触媒の早期活性化の促進を図ることができ
る。
Further, when it is determined that the adsorbent is abnormal, the inflow of exhaust gas into the bypass passage is blocked, and further deterioration of the adsorbent can be prevented, and the heat capacity of the bypass passage can be reduced to reduce the catalyst. The early activation of can be promoted.

【0016】[0016]

【実施例】以下、添付された図面を参照して本発明を詳
述する。本発明の一実施例のシステム構成を示す図2に
おいて、エンジン1のエキゾーストマニホールド2に連
結される排気通路3には、排気浄化用の触媒4が介装さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. In FIG. 2 showing the system configuration of an embodiment of the present invention, an exhaust gas purification catalyst 4 is provided in an exhaust passage 3 connected to an exhaust manifold 2 of an engine 1.

【0017】前記触媒4の上流側の排気通路3は、互い
に並列な主排気通路5とバイパス通路6とにより構成さ
れており、バイパス通路6には排気中の未燃ガス、例え
ば未燃HC等を吸着する吸着剤7が介装される。前記主
排気通路5とバイパス通路6を選択的に排気が流通する
ように流路を切り換える切換手段が設けられている。
The exhaust passage 3 on the upstream side of the catalyst 4 is composed of a main exhaust passage 5 and a bypass passage 6 which are parallel to each other. In the bypass passage 6, unburned gas in the exhaust gas, for example, unburned HC etc. An adsorbent 7 for adsorbing is absorbed. Switching means is provided for switching the flow path so that the exhaust gas selectively flows through the main exhaust passage 5 and the bypass passage 6.

【0018】本実施例においては、前記主排気通路5か
らのバイパス通路6の分岐部に切換手段としての切換弁
8を介装する。この切換弁8は、閉、開の2つの弁開度
に制御可能であり、閉では、主排気通路5を開放してバ
イパス通路6を閉塞し、排気の全量を主排気通路5に流
す。開では、主排気通路5を閉塞してバイパス通路6を
開放し、排気の全量をバイパス通路6に流す。
In the present embodiment, a switching valve 8 as switching means is provided at a branch portion of the bypass passage 6 extending from the main exhaust passage 5. The switching valve 8 can be controlled to have two valve openings, closed and open. When the switching valve 8 is closed, the main exhaust passage 5 is opened and the bypass passage 6 is closed so that the entire amount of exhaust gas flows into the main exhaust passage 5. When opened, the main exhaust passage 5 is closed and the bypass passage 6 is opened, and the entire amount of exhaust gas is allowed to flow into the bypass passage 6.

【0019】前記切換弁8上流側の排気通路3には上流
側空燃比検出手段としての上流側酸素濃度センサ9が介
装され、吸着剤7下流側のバイパス通路6には下流側空
燃比検出手段としての下流側酸素濃度センサ10が介装
される。一方、コントロールユニット11には、エンジ
ン回転数を検出する回転センサ12と、吸入空気流量検
出手段としてのエアフローメータ13と、エンジン冷却
水温度を検出する機関温度検出手段としての水温センサ
14と、吸着剤の温度を検出する吸着剤温度検出手段と
しての吸着剤温度センサ15と、前記上流側酸素濃度セ
ンサ9と、下流側酸素濃度センサ10とから夫々出力さ
れる検出信号が入力されており、該コントロールユニッ
ト13は、これら各センサから出力される検出信号に基
づいて図3のフローチャートに示すような内容の各種制
御を実行する。
An upstream oxygen concentration sensor 9 as an upstream air-fuel ratio detecting means is provided in the exhaust passage 3 upstream of the switching valve 8, and a downstream air-fuel ratio is detected in the bypass passage 6 downstream of the adsorbent 7. A downstream oxygen concentration sensor 10 as a means is provided. On the other hand, the control unit 11 includes a rotation sensor 12 for detecting an engine speed, an air flow meter 13 as an intake air flow rate detecting means, a water temperature sensor 14 as an engine temperature detecting means for detecting an engine cooling water temperature, and an adsorption. The detection signals output from the adsorbent temperature sensor 15 as the adsorbent temperature detecting means for detecting the temperature of the agent, the upstream oxygen concentration sensor 9, and the downstream oxygen concentration sensor 10, respectively, are input. The control unit 13 executes various controls having the contents shown in the flowchart of FIG. 3 based on the detection signals output from these sensors.

【0020】フローチャートにおいて、ステップ1(図
ではS1と略記する。以下、同様)においては、後述の
N値を0にセットすると共に、後述のM値をバックアッ
プメモリから読み込む(イニシャル=0)、ステップ2
では、実際の吸着剤温度TAと吸着剤耐熱温度taとを
比較し、TA<taと判定されたならば、ステップ3に
進んで、切換弁8を開状態に制御し、バイパス通路6を
開くと共に主排気通路5を閉じて排気の全量がバイパス
通路6に流れるようにして制御し(吸着剤7の吸着行程
又は脱離行程)、ステップ4に進む。TA≧taと判定
されたならば、ステップ5に進んで、切換弁8を閉状態
に制御し、バイパス通路6を閉じると共に主排気通路5
を開いて排気の全量が主排気通路5に流れるようにして
制御し、ステップ6に進む。
In step 1 (abbreviated as S1 in the figure; the same applies hereinafter) in the flowchart, the N value described below is set to 0, and the M value described below is read from the backup memory (initial = 0), Two
Then, the actual adsorbent temperature TA is compared with the adsorbent heat resistant temperature ta, and if it is determined that TA <ta, the routine proceeds to step 3, where the switching valve 8 is controlled to the open state and the bypass passage 6 is opened. At the same time, the main exhaust passage 5 is closed so that the entire amount of exhaust gas flows to the bypass passage 6 and controlled (adsorption process or desorption process of the adsorbent 7), and the process proceeds to step 4. If it is determined that TA ≧ ta, the routine proceeds to step 5, where the switching valve 8 is controlled to the closed state, the bypass passage 6 is closed, and the main exhaust passage 5 is closed.
Is controlled so that the entire amount of exhaust gas flows into the main exhaust passage 5, and the routine proceeds to step 6.

【0021】ステップ4では、実際のエンジン冷却水温
度Twと極低温温度toとを比較し、Tw<toと判定
されたならば、ステップ7に進み、Tw≧toと判定さ
れたならば、ステップ8に進む。ステップ7では、エン
ジン冷却水温度Twとエンジン回転数Neと吸入空気量
Qaの関数により空燃比(A/F)を制御し(空燃比フ
ィードバック制御定数α=1をクランプ)、ステップ2
に戻る。
In step 4, the actual engine cooling water temperature Tw is compared with the cryogenic temperature to, and if Tw <to is determined, the process proceeds to step 7, and if Tw ≧ to is determined, the step is performed. Go to 8. In step 7, the air-fuel ratio (A / F) is controlled by a function of the engine cooling water temperature Tw, the engine speed Ne and the intake air amount Qa (clamping the air-fuel ratio feedback control constant α = 1), and step 2
Return to.

【0022】即ち、次式に基づいて燃料噴射量(Ti)
が演算され、空燃比が制御される。 Ti=基本噴射量(Tp)×各種補正係数(Co)+電
力補正分(Ts) 但し、Tp=K・Qa/Ne(Kは定数),Co=1+
水温増量補正係数Ktw ステップ8では、下流側酸素濃度センサ10の暖機が終
了したか否かを判定し、暖機が未終了では、前記ステッ
プ7に進み、暖機終了ではステップ9に進んで、下流側
酸素濃度センサ10から出力される信号に基づいて空燃
比を制御し、ステップ10に進む。
That is, the fuel injection amount (Ti) is calculated based on the following equation.
Is calculated and the air-fuel ratio is controlled. Ti = basic injection amount (Tp) × variation correction coefficient (Co) + electric power correction amount (Ts) where Tp = K · Qa / Ne (K is a constant), Co = 1 +
Water temperature increase correction coefficient Ktw In step 8, it is determined whether or not the warm-up of the downstream oxygen concentration sensor 10 is completed. If the warm-up has not been completed, the process proceeds to step 7, and if the warm-up is completed, the process proceeds to step 9. The air-fuel ratio is controlled based on the signal output from the downstream oxygen concentration sensor 10, and the process proceeds to step 10.

【0023】即ち、次式に基づいて燃料噴射量(Ti)
が演算され、空燃比が制御される。 Ti=基本噴射量(Tp)×各種補正係数(Co)×空
燃比フィードバック制御定数(α)+電力補正分(T
s) 前記ステップ10では、上流側酸素濃度センサ9の暖機
が終了したか否かを判定し、暖機が未終了では、前記ス
テップ2に戻り、暖機終了ではステップ11に進んで、
所定の超空燃比リッチ回数Nをカウントし(N=N+
1)、ステップ12に進む。
That is, the fuel injection amount (Ti) is calculated based on the following equation.
Is calculated and the air-fuel ratio is controlled. Ti = basic injection amount (Tp) x various correction coefficients (Co) x air-fuel ratio feedback control constant (α) + power correction amount (T
s) In step 10, it is determined whether or not the warm-up of the upstream oxygen concentration sensor 9 is completed. If the warm-up has not been completed, the process returns to step 2, and if the warm-up is completed, the process proceeds to step 11.
The predetermined super air-fuel ratio rich number N is counted (N = N +
1) Go to step 12.

【0024】ステップ12では、超空燃比リッチ回数N
と設定値Aとを比較し、N≠Aであれば、ステップ13
に進み、下流側酸素濃度センサ10から出力される信号
により空燃比(A/F=Y)を計算し、ステップ14に
進んで、上流側酸素濃度センサ9から出力される信号に
より空燃比(A/F=X)を計算する。ステップ15で
は、ステップ13及びステップ14で計算した空燃比Y
とXの差ΔXを計算(Y−X=ΔX)し、ステップ16
に進んで、計算したΔXと設定値X1とを比較し、ΔX
≧X1であれば、吸着剤による未燃ガスの吸着行程であ
ると判定され、ステップ17で前記所定の超空燃比リッ
チ回数Nのカウント値を0にリセットする。ΔX<X1
であれば、ステップ18に進み、計算したΔXと別の設
定値−X2とを比較し、ΔX≧−X2であれば、吸着剤
による未燃ガスの脱離行程であると判定され、ステップ
19で前記所定の超空燃比リッチ回数Nのカウント値を
0にリセットする。ΔX<−X2であれば、所定の超空
燃比リッチ状態であると判断し(吸着剤の異常の可能性
有り)、ステップ2に戻る。尚、この所定の超空燃比リ
ッチ状態であるとの判定により、次の制御のステップ1
1で所定の超空燃比リッチ回数Nがカウントされる(N
=N+1)。
In step 12, the number N of times of rich air-fuel ratio is increased.
And set value A are compared, and if N ≠ A, step 13
Then, the air-fuel ratio (A / F = Y) is calculated from the signal output from the downstream oxygen concentration sensor 10, and the operation proceeds to step 14, where the air-fuel ratio (A / F = Y) is calculated from the signal output from the upstream oxygen concentration sensor 9. Calculate / F = X). At step 15, the air-fuel ratio Y calculated at step 13 and step 14
And the difference ΔX between X and Y is calculated (Y−X = ΔX), and step 16
And compare the calculated ΔX with the set value X1, and
If ≧ X1, it is determined that it is the adsorption process of the unburned gas by the adsorbent, and the count value of the predetermined super air-fuel ratio rich number N is reset to 0 in step 17. ΔX <X1
If so, the process proceeds to step 18, the calculated ΔX is compared with another set value −X2, and if ΔX ≧ −X2, it is determined that it is a desorption process of unburned gas by the adsorbent, and step 19 Then, the count value of the predetermined super air-fuel ratio rich number N is reset to zero. If ΔX <−X2, it is determined that the predetermined super air-fuel ratio is in a rich state (there is a possibility that the adsorbent is abnormal), and the process returns to step 2. It is to be noted that when it is determined that the predetermined super air-fuel ratio is in a rich state, the next control step 1
At 1, the predetermined number N of times the rich air-fuel ratio is rich is counted (N
= N + 1).

【0025】このように所定の超空燃比リッチ状態であ
るとの判定が繰り返しなされ、ステップ12の判定で、
超空燃比リッチ回数Nが設定値Aに達すると(N=
A)、ステップ20において、超空燃比リッチ回数Nが
設定値Aに達した回数M即ち、所定の超空燃比リッチ状
態となる履歴をカウントし(M=M+1)、ステップ2
1でこのM値をバックアップメモリに書き込む。
In this way, the determination of the predetermined super air-fuel ratio rich state is repeated, and in the determination of step 12,
When the super air-fuel ratio rich count N reaches the set value A (N =
A) In step 20, the number M of times the super air-fuel ratio rich number N has reached the set value A, that is, the history of a predetermined super air-fuel ratio rich state is counted (M = M + 1), and step 2
At 1, the M value is written in the backup memory.

【0026】ステップ22では、超空燃比リッチ回数N
が設定値Aに達した回数Mと設定値Bとを比較し、超空
燃比リッチ回数Nが設定値Aに達した回数Mが設定値B
に達すると(M=B)、吸着剤の異常と判断して、ステ
ップ23に進んで、自動車等に装備した警告用の赤ラン
プを点灯する。Mが設定値Bに達しなければ(M≠
B)、ステップ2に戻る。
In step 22, the number N of times of rich air-fuel ratio is increased.
Is compared with the set value B, and the number M of times the super air-fuel ratio rich number N has reached the set value A is the set value B.
When (M = B) is reached, it is determined that the adsorbent is abnormal, and the routine proceeds to step 23, where the red lamp for warning equipped on the automobile or the like is turned on. If M does not reach the set value B (M ≠
B), return to step 2.

【0027】ここで、前記超空燃比リッチ回数Nのカウ
ント、個々の運転状態での空燃比超リッチ状態を積算す
るものであるが、運転者の運転の仕方によっては、異常
でなくとも、所定の空燃比超リッチ状態となる可能性が
ある。例えば、数回の短距離の運転で、吸着剤が脱離温
度に達せず、脱離行程に移らず、吸着行程のみが行わ
れ、その後高速運転が行われた場合では、所定の空燃比
超リッチ状態となる可能性がある。
Here, the count of the number N of times of the super air-fuel ratio rich and the count of the air-fuel ratio super-rich state in each operating state are integrated, but depending on the driving method of the driver, even if there is no abnormality, a predetermined value is determined. There is a possibility that the air-fuel ratio will become excessively rich. For example, when the adsorbent does not reach the desorption temperature, does not shift to the desorption stroke, and only the adsorption stroke is performed after a few short-distance operations, and then the high-speed operation is performed, the specified air-fuel ratio is exceeded. It may become rich.

【0028】しかし、上記のフローチャートにおける作
用によると、上記のような運転でも、超空燃比リッチ回
数Nのカウントは行われるものの、エンジンの停止によ
って、Nのカウント値はクリアされる。一方、超空燃比
リッチ回数Nが設定値Aに達した回数Mは、エンジンの
停止後も上記のようにバックアップメモリに記憶される
ものであり、超空燃比リッチ回数Nが設定値Aに達する
毎に積算され、所定の空燃比超リッチ状態となる履歴を
カウントするものであるから、この超空燃比リッチ回数
Nが設定値Aに達した回数Mに基づいて、吸着剤7の真
の異常を確実に判定できるのである。
However, according to the operation in the above flow chart, even when the above operation is performed, the super air-fuel ratio rich number N is counted, but the count value of N is cleared by stopping the engine. On the other hand, the number M of times the super air-fuel ratio rich number N reaches the set value A is stored in the backup memory as described above even after the engine is stopped, and the super air-fuel ratio rich number N reaches the set value A. The history of the predetermined air-fuel ratio super rich state is counted for each time, so that the true abnormality of the adsorbent 7 is determined based on the number M of times when the super air-fuel ratio rich number N reaches the set value A. Can be reliably determined.

【0029】一方、切換弁8を閉状態に制御し、排気の
全量が主排気通路に流れるようにしたステップ5の後の
ステップ6でも、エンジン冷却水温度Twと極低温温度
toとを比較し、Tw<toと判定されたならば、前記
ステップ7に進み、Tw≧toと判定されたならば、ス
テップ24進み、上流側酸素濃度センサ9の暖機が終了
したか否かを判定し、暖機が未終了では、前記ステップ
7に進み、暖機終了ではステップ25に進んで、上流側
酸素濃度センサ9から出力される信号に基づいて空燃比
を制御し、ステップ2に戻る。
On the other hand, the engine cooling water temperature Tw and the cryogenic temperature to are also compared in step 6 after step 5 in which the switching valve 8 is controlled to be closed so that the entire amount of exhaust gas flows to the main exhaust passage. , Tw <to, the process proceeds to step 7, and if Tw ≧ to, the process proceeds to step 24 to determine whether or not the warm-up of the upstream oxygen concentration sensor 9 is completed. If the warm-up has not been completed, the routine proceeds to step 7, and if the warm-up has been completed, the routine proceeds to step 25, the air-fuel ratio is controlled based on the signal output from the upstream oxygen concentration sensor 9, and the routine returns to step 2.

【0030】尚、上記のフローチャートにおいて、ステ
ップ11〜23は、本発明の請求項1における吸着剤異
常判定手段に相当する。又、ステップ9は、本発明の請
求項5における空燃比制御手段に相当する。かかる構成
によると、ステップ11〜23の制御から明らかなよう
に、吸着剤及びエンジン冷却水温度が所定温度よりも低
く、かつ、ステップの制御から明らかなように、下流側
酸素濃度センサの出力が上流側酸素濃度センサの出力よ
りも所定値以上小さい超空燃比リッチ状態となる回数N
が設定値Aに達した回数Mが設定値Bに達したことによ
り、吸着剤の吸・脱離状態の異常を判定することができ
る。
In the above flow chart, steps 11 to 23 correspond to the adsorbent abnormality determining means in claim 1 of the present invention. Further, step 9 corresponds to the air-fuel ratio control means in claim 5 of the present invention. According to such a configuration, as is clear from the control in steps 11 to 23, the adsorbent and engine cooling water temperatures are lower than the predetermined temperature, and as is clear from the step control, the output of the downstream oxygen concentration sensor is The number N of times when the super air-fuel ratio rich state is smaller than the output of the upstream oxygen concentration sensor by a predetermined value or more
When the number M of times when has reached the set value A reaches the set value B, it is possible to determine the abnormality of the adsorption / desorption state of the adsorbent.

【0031】又、ステップ9の制御から明らかなよう
に、吸着剤の温度が脱離温度に達して、空燃比がリッチ
化した場合には、吸着剤下流側の酸素濃度センサ10に
より、触媒4入口側の空燃比が適正に制御されるため、
触媒4における転化効率を改善することができ、排気浄
化性能を向上することができる。次に、本発明の他の実
施例について説明する。
Further, as is clear from the control in step 9, when the temperature of the adsorbent reaches the desorption temperature and the air-fuel ratio becomes rich, the catalyst 4 is detected by the oxygen concentration sensor 10 on the downstream side of the adsorbent. Since the air-fuel ratio on the inlet side is properly controlled,
The conversion efficiency in the catalyst 4 can be improved and the exhaust gas purification performance can be improved. Next, another embodiment of the present invention will be described.

【0032】この実施例のシステム構成は図2に示した
実施例と同じであり、図2に示した実施例とは制御内容
が図4のフローチャートのように異なる。即ち、このフ
ローチャートにおいて、図3のフローチャートとは、ス
テップ1´及びステップ26を追加し、ステップ23の
制御内容とその後の制御を変更した点が異なっている。
The system configuration of this embodiment is the same as that of the embodiment shown in FIG. 2, and the control content is different from that of the embodiment shown in FIG. 2 as shown in the flowchart of FIG. That is, this flowchart is different from the flowchart of FIG. 3 in that steps 1 ′ and step 26 are added, and the control content of step 23 and the subsequent control are changed.

【0033】即ち、ステップ23において、赤ランプを
点灯すると共に、赤ランプが点灯状態であることをメモ
リに書き込み、ステップ5に進ませる。ステップ5にお
いては、切換弁8を閉状態に制御し、バイパス通路6を
閉じると共に主排気通路5を開いて排気の全量が主排気
通路に流れるようにして制御するため、吸着剤7の異常
時には、吸着剤7への排気の流入が阻止される。
That is, in step 23, the red lamp is turned on, the fact that the red lamp is turned on is written in the memory, and the process proceeds to step 5. In step 5, the switching valve 8 is controlled to be closed, the bypass passage 6 is closed, and the main exhaust passage 5 is opened so that the entire amount of exhaust gas flows to the main exhaust passage. Therefore, when the adsorbent 7 is abnormal, Inflow of exhaust gas to the adsorbent 7 is blocked.

【0034】又、ステップ1におけるN=0,M値読み
込みの制御の前のステップ1´と、ステップ7及びステ
ップ25における空燃比制御の後に追加したステップ2
6において、赤ランプが点灯しているか否かを判定す
る。夫々赤ランプが点灯していなければ、ステップ2に
戻り、点灯していれば(吸着剤の異常時)、ステップ5
に進んで、吸着剤7への排気の流入を阻止するべくバイ
パス通路6には排気を流通させないようにする。
Further, step 1'before the control of reading N = 0, M value in step 1 and step 2 added after the air-fuel ratio control in step 7 and step 25.
At 6, it is determined whether or not the red lamp is lit. If the red lamps are not lit, return to step 2, and if they are lit (when the adsorbent is abnormal), step 5
Then, in order to prevent the exhaust gas from flowing into the adsorbent 7, the exhaust gas is prevented from flowing through the bypass passage 6.

【0035】尚、上記のフローチャートにおいて、ステ
ップ5は、本発明の請求項4における制御手段に相当す
る。かかる構成によると、ステップ5の制御から明らか
なように、吸着剤7の異常時には、吸着剤7をバイパス
して主排気通路5に排気を流すことにより、吸着剤7の
これ以上の劣化を防止できると共に、バイパス通路6分
の熱容量を低減して、触媒4の早期活性化の促進を図る
ことができる。
In the above flowchart, step 5 corresponds to the control means in claim 4 of the present invention. According to this configuration, as is clear from the control in step 5, when the adsorbent 7 is abnormal, the adsorbent 7 is bypassed and the exhaust gas is allowed to flow into the main exhaust passage 5, thereby preventing the adsorbent 7 from further deterioration. At the same time, the heat capacity of the bypass passage 6 can be reduced to promote early activation of the catalyst 4.

【0036】次に、本発明の更に他の実施例について説
明する。この実施例のシステム構成は図2に示した実施
例と同じであり、図2に示した実施例とは制御内容が図
5のフローチャートに示すように異なる。即ち、ステッ
プ1におけるN=0,M値読み込みの制御の後に、ステ
ップ1´´において、赤ランプが点灯しているか否かを
判定する。赤ランプが点灯していなければ、ステップ2
に進み、点灯していれば(吸着剤の異常時)、ステップ
5に進んで、切換弁8を閉じて、吸着剤7への排気の流
入を阻止するべくバイパス通路6には排気を流通させな
いようにする。
Next, another embodiment of the present invention will be described. The system configuration of this embodiment is the same as that of the embodiment shown in FIG. 2, and the control content is different from that of the embodiment shown in FIG. 2 as shown in the flowchart of FIG. That is, after the control of reading N = 0 and M values in step 1, it is determined in step 1 ″ whether or not the red lamp is on. If the red lamp is not on, step 2
If it is turned on (when the adsorbent is abnormal), the process proceeds to step 5, the switching valve 8 is closed and the exhaust gas is not circulated in the bypass passage 6 to prevent the exhaust gas from flowing into the adsorbent 7. To do so.

【0037】ステップ2においては、吸着剤温度TAと
吸着剤耐熱温度taとを比較し、TA<taと判定され
たならば、ステップ2´に進み、TA≧taと判定され
たならば、ステップ5に進む。ステップ2´では、超空
燃比リッチ回数Nが設定値Aに達した回数Mと設定値C
及び設定値Bとを比較する。即ち、C≦M<Bであるか
否か判定する。C≦M<Bであると判定された場合は、
吸着剤7が異常と判断されないまでも、吸着剤7の劣化
若しくは異常傾向があると判断できるので、ステップ3
´に進んで、切換弁8を半開制御、つまり、バイパス通
路6と主排気通路5を夫々半開して、排気が主排気通路
5とバイパス通路6とに振り分けられるように制御し、
ステップ3´´に進んで、黄ランプを点灯する。
In step 2, the adsorbent temperature TA is compared with the adsorbent heat resistant temperature ta, and if it is judged that TA <ta, the process proceeds to step 2 ', and if it is judged that TA≥ta, then step Go to 5. In step 2 ′, the number M of times the super air-fuel ratio rich number N reaches the set value A and the set value C
And the set value B are compared. That is, it is determined whether or not C ≦ M <B. When it is determined that C ≦ M <B,
Even if the adsorbent 7 is not determined to be abnormal, it can be determined that the adsorbent 7 is deteriorated or has an abnormal tendency.
Proceeding to ', the switching valve 8 is controlled to be half-opened, that is, the bypass passage 6 and the main exhaust passage 5 are each half-opened, and the exhaust is controlled to be distributed to the main exhaust passage 5 and the bypass passage 6,
Proceed to step 3 ″ to turn on the yellow lamp.

【0038】かかる構成によると、ステップ3´の制御
から明らかなように、吸着剤7の劣化若しくは異常傾向
がある場合には、吸着剤7への接触排気量を低減するた
め、機関冷間時のエミッションの悪化を防止することが
できると共に、吸着剤7の異常状態に応じて、吸着剤7
への排気流量が制御され、吸着剤7の劣化の進行度合い
を最小限に抑えることができ、黄ランプの点灯により注
意を喚起することができる。
According to this structure, as is clear from the control in step 3 ', when the adsorbent 7 has a deterioration or an abnormal tendency, the amount of exhaust gas contacting the adsorbent 7 is reduced so that the engine is cold. Emission of the adsorbent 7 can be prevented, and the adsorbent 7
The flow rate of exhaust gas to the chamber is controlled, the degree of progress of deterioration of the adsorbent 7 can be minimized, and the yellow lamp can be turned on to call attention.

【0039】尚、上記の実施例においては、切換弁8を
半開制御するようにしたが、必ずしも半開である必要は
なく、中途開度に制御しても良い。又、黄ランプの点灯
制御は特に付加しなくとも良い。次に、本発明の更に他
の実施例について説明する。この実施例のシステム構成
を示す図6において、エンジン1のエキゾーストマニホ
ールド2に連結される排気通路3には、上流側触媒2
0、吸着剤7、下流側触媒4が、上流から下流にかけて
順に介装される。
Although the switching valve 8 is controlled to be half-opened in the above embodiment, it does not necessarily have to be half-opened and may be controlled to an intermediate opening. The yellow lamp lighting control need not be added. Next, still another embodiment of the present invention will be described. In FIG. 6 showing the system configuration of this embodiment, the upstream side catalyst 2 is provided in the exhaust passage 3 connected to the exhaust manifold 2 of the engine 1.
0, the adsorbent 7, and the downstream catalyst 4 are sequentially provided from upstream to downstream.

【0040】そして、2次空気を上流側触媒20と上流
側酸素濃度センサ9との間の排気通路3に導入する2次
空気供給手段19が設けられている。この2次空気供給
手段19は、電動エアポンプ16等の空気供給源と、該
電動エアポンプ16に接続されると共に排気通路3に連
通接続される2次空気供給管17と、該2次空気供給管
17に介装される開閉弁18とから構成され、開閉弁1
8の開閉制御によって2次空気の供給・遮断を制御でき
る。尚、電動エアポンプ16から供給される2次空気量
は回転数によらず一定量である。
A secondary air supply means 19 for introducing secondary air into the exhaust passage 3 between the upstream catalyst 20 and the upstream oxygen concentration sensor 9 is provided. The secondary air supply means 19 includes an air supply source such as the electric air pump 16, a secondary air supply pipe 17 connected to the electric air pump 16 and connected to the exhaust passage 3 for communication, and the secondary air supply pipe. The on-off valve 1 comprises an on-off valve 18 installed in
By the opening / closing control of 8, it is possible to control the supply / cutoff of the secondary air. The amount of secondary air supplied from the electric air pump 16 is a constant amount regardless of the rotation speed.

【0041】一方、コントロールユニット11には、エ
ンジン回転数を検出する回転センサ12と、吸入空気流
量検出手段としてのエアフローメータ13と、エンジン
冷却水温度を検出する水温センサ14と、前記上流側酸
素濃度センサ9と、下流側酸素濃度センサ10とから夫
々出力される検出信号が入力されており、該コントロー
ルユニット13は、これら各センサから出力される検出
信号に基づいて図7のフローチャートに示すような内容
の各種制御を実行する。
On the other hand, the control unit 11 includes a rotation sensor 12 for detecting the engine speed, an air flow meter 13 as an intake air flow rate detecting means, a water temperature sensor 14 for detecting the engine cooling water temperature, and the upstream oxygen. The detection signals output from the concentration sensor 9 and the downstream oxygen concentration sensor 10 are input, and the control unit 13 is based on the detection signals output from these sensors as shown in the flowchart of FIG. Various controls with various contents are executed.

【0042】フローチャートにおいて、ステップ31に
おいては、超空燃比リッチ回数N値を0にセットすると
共に、超空燃比リッチ回数Nが設定値Aに達した回数M
値をバックアップメモリから読み込み、ステップ32で
は、実際のエンジン冷却水温度Twと極低温温度toと
を比較し、Tw<toと判定されたならば、ステップ3
3に進み、Tw≧toと判定されたならば、ステップ3
4に進む。
In the flowchart, in step 31, the super air-fuel ratio rich number N is set to 0 and the number M of times the super air-fuel ratio rich number N reaches the set value A.
The value is read from the backup memory, and in step 32, the actual engine cooling water temperature Tw is compared with the cryogenic temperature to, and if it is determined that Tw <to, step 3 is performed.
3. If it is determined that Tw ≧ to, go to step 3,
Go to 4.

【0043】ステップ33では、後述する吸着剤7の異
常を報知する赤ランプが点灯しているか否かを判定し、
点灯していれば、ステップ35に進んで、2次空気供給
手段19の開閉弁18を閉じて2次空気の供給を遮断
し、ステップ36に進んで、エンジン冷却水温度Twと
エンジン回転数Neと吸入空気量Qaの関数により空燃
比(A/F)を制御し(空燃比フィードバック制御定数
α=1をクランプ)、ステップ32に戻る。点灯してい
なければ、ステップ37に進む。このステップ37で
は、上流側酸素濃度センサ9の暖機が終了したか否かを
判定し、暖機が未終了では、前記ステップ35に進み、
2次空気の供給を遮断する。暖機終了ではステップ38
に進んで、今度は下流側酸素濃度センサ10の暖機が終
了したか否かを判定し、暖機が未終了では、前記ステッ
プ35に進み、2次空気の供給を遮断する。暖機終了で
はステップ39に進む。ステップ39では、超空燃比リ
ッチ回数Nをカウントする(N=N+1)し、ステップ
40に進む。
At step 33, it is judged whether or not a red lamp for notifying the abnormality of the adsorbent 7 described later is turned on,
If the light is on, the routine proceeds to step 35, where the on-off valve 18 of the secondary air supply means 19 is closed to shut off the supply of the secondary air, and the routine proceeds to step 36, where the engine cooling water temperature Tw and the engine speed Ne. The air-fuel ratio (A / F) is controlled by the function of the intake air amount Qa (clamping the air-fuel ratio feedback control constant α = 1), and the process returns to step 32. If it is not lit, the process proceeds to step 37. In this step 37, it is judged whether or not the warm-up of the upstream oxygen concentration sensor 9 has been completed. If the warm-up has not been completed, the routine proceeds to step 35,
Shut off the supply of secondary air. Step 38 at the end of warm-up
Next, it is determined whether or not the warming-up of the downstream oxygen concentration sensor 10 is completed. If the warming-up is not completed, the process proceeds to step 35 to shut off the supply of the secondary air. Upon completion of warming up, the process proceeds to step 39. At step 39, the number N of times of rich air-fuel ratio is counted (N = N + 1), and the routine proceeds to step 40.

【0044】ステップ40では、超空燃比リッチ回数N
と設定値Aとを比較し、N≠Aであれば、ステップ41
に進み、N=Aであれば、ステップ48に進む。ステッ
プ41では、下流側酸素濃度センサ10から出力される
信号により空燃比(A/F=Y)を計算し、ステップ4
2に進んで、上流側酸素濃度センサ9から出力される信
号により空燃比(A/F=X)を計算する。
At step 40, the number N of times of rich air-fuel ratio is increased.
And set value A are compared, and if N ≠ A, step 41
And if N = A, proceed to step 48. In step 41, the air-fuel ratio (A / F = Y) is calculated from the signal output from the downstream oxygen concentration sensor 10, and step 4
2, the air-fuel ratio (A / F = X) is calculated from the signal output from the upstream oxygen concentration sensor 9.

【0045】ステップ43では、ステップ41及びステ
ップ42で計算した空燃比YとXの差ΔXを計算(Y−
X=ΔX)し、ステップ44に進んで、計算したΔXと
設定値X1とを比較し、ΔX≧X1であれば、吸着剤7
による未燃ガスの吸着行程であると判定され、ステップ
45で前記所定の超空燃比リッチ回数Nのカウント値を
0にリセットする。ΔX<X1であれば、ステップ46
に進み、計算したΔXと別の設定値−X2とを比較し、
ΔX≧−X2であれば、吸着剤7による未燃ガスの脱離
行程であると判定され、ステップ47で前記所定の超空
燃比リッチ回数Nのカウント値を0にリセットする。Δ
X<−X2であれば、所定の超空燃比リッチ状態である
と判断し(吸着剤の異常の可能性有り)、ステップ35
に進む。尚、この所定の超空燃比リッチ状態であるとの
判定により、後の制御のステップ39で所定の超空燃比
リッチ回数Nがカウントされる(N=N+1)。
In step 43, the difference ΔX between the air-fuel ratios Y and X calculated in step 41 and step 42 is calculated (Y−
X = ΔX), the process proceeds to step 44, the calculated ΔX is compared with the set value X1, and if ΔX ≧ X1, the adsorbent 7
Is determined to be the adsorption process of the unburned gas, and the count value of the predetermined super air-fuel ratio rich number N is reset to 0 in step 45. If ΔX <X1, step 46
And compare the calculated ΔX with another set value −X2,
If ΔX ≧ −X2, it is determined that the unburned gas is desorbed by the adsorbent 7, and in step 47, the count value of the predetermined super air-fuel ratio rich number N is reset to zero. Δ
If X <-X2, it is determined that the predetermined super air-fuel ratio is in a rich state (the adsorbent may be abnormal), and step 35
Proceed to. It is to be noted that the predetermined super air-fuel ratio rich number N is counted (N = N + 1) in step 39 of the subsequent control based on the determination that the predetermined super air-fuel ratio is in the rich state.

【0046】このように所定の超空燃比リッチ状態であ
るとの判定が繰り返しなされ、ステップ40の判定で、
超空燃比リッチ回数Nが設定値Aに達すると(N=
A)、ステップ48において、超空燃比リッチ回数Nが
設定値Aに達した回数M即ち、所定の超空燃比リッチ状
態となる履歴をカウントする(M=M+1)。このM値
をバックアップメモリに書き込む。
In this way, the determination of the predetermined super air-fuel ratio rich state is repeated, and in the determination of step 40,
When the super air-fuel ratio rich count N reaches the set value A (N =
A) In step 48, the number M of times the super air-fuel ratio rich number N reaches the set value A, that is, the history of the predetermined super air-fuel ratio rich state is counted (M = M + 1). This M value is written in the backup memory.

【0047】ステップ50では、超空燃比リッチ回数N
が設定値Aに達した回数Mと設定値Bとを比較し、超空
燃比リッチ回数Nが設定値Aに達した回数Mが設定値B
に達すると(M=B)、吸着剤の異常と判断して、ステ
ップ51に進んで、自動車等に装備した赤ランプを点灯
し、赤ランプが点灯状態であることをメモリに書き込
み、ステップ35に進んで、2次空気の供給を遮断す
る。Mが設定値Bに達しなければ(M≠B)、赤ランプ
を点灯せずに、ステップ35に進んで、2次空気の供給
を遮断する。
In step 50, the number N of times of rich air-fuel ratio is increased.
Is compared with the set value B, and the number M of times the super air-fuel ratio rich number N has reached the set value A is the set value B.
When (M = B) is reached (M = B), it is determined that the adsorbent is abnormal, the process proceeds to step 51, the red lamp equipped on the automobile or the like is turned on, and the fact that the red lamp is turned on is written to the memory, and step 35 Then, the supply of secondary air is cut off. If M does not reach the set value B (M ≠ B), the red lamp is not turned on, the process proceeds to step 35, and the supply of the secondary air is cut off.

【0048】一方、ステップ32で、Tw≧toと判定
された後のステップ34では、エンジン冷却水温度Tw
と2次空気遮断温度t1 とを比較し、Tw≦t1 と判定
されたならば、ステップ52に進み、2次空気供給手段
19の開閉弁18を開いて2次空気を導入し、触媒2
0,4の早期活性化を図る。Tw>t1 と判定されたな
らば、ステップ53に進み、2次空気を遮断する。
On the other hand, at step 34 after it is judged at step 32 that Tw ≧ to, the engine cooling water temperature Tw is reached.
And the secondary air cutoff temperature t 1 are compared, and if it is determined that Tw ≦ t 1 , the process proceeds to step 52, the opening / closing valve 18 of the secondary air supply means 19 is opened to introduce the secondary air, and the catalyst is Two
Aim for early activation of 0 and 4. If it is determined that Tw> t 1 , the process proceeds to step 53 to shut off the secondary air.

【0049】ステップ54では、上流側酸素濃度センサ
9の暖機が終了したか否かを判定し、暖機が未終了で
は、ステップ55に進み、エンジン冷却水温度Twとエ
ンジン回転数Neと吸入空気量Qaの関数により空燃比
(A/F)を制御し(空燃比フィードバック制御定数α
=1をクランプ)、ステップ32に戻る。ステップ54
で暖機終了と判定されると、ステップ56に進み、今度
は、下流側酸素濃度センサ10の暖機が終了したか否か
を判定し、暖機が未終了では、ステップ57に進んで、
上流側酸素濃度センサ9から出力される信号に基づいて
空燃比を制御し、ステップ32に戻る。
In step 54, it is determined whether or not the warm-up of the upstream oxygen concentration sensor 9 has been completed. If the warm-up has not been completed, the routine proceeds to step 55, in which the engine cooling water temperature Tw, the engine speed Ne and the intake air are taken. The air-fuel ratio (A / F) is controlled by a function of the air amount Qa (air-fuel ratio feedback control constant α
= 1 is clamped), and the process returns to step 32. Step 54
If it is determined that the warm-up has ended, the process proceeds to step 56, this time it is determined whether or not the warm-up of the downstream side oxygen concentration sensor 10 has ended, and if the warm-up has not ended, the process proceeds to step 57,
The air-fuel ratio is controlled based on the signal output from the upstream oxygen concentration sensor 9, and the process returns to step 32.

【0050】この場合、次式に基づいて燃料噴射量(T
i)が演算されるが、 Ti=基本噴射量(Tp)×各種補正係数(Co)×空
燃比フィードバック制御定数(α)+電力補正分(T
s) 各種補正係数(Co)に2次空気導入補正係数(K
2 )を付加する。つまり、本実施例においては、両酸
素濃度センサ9に影響を与えない部位に2次空気を導入
しているため、2次空気の導入時は、触媒20に対する
空燃比が目標値からずれる。具体的には、2次空気の導
入時は、酸素濃度センサ9部で理論空燃比にフィードバ
ック制御されても、触媒20入口ではリーン化傾向を示
す。
In this case, the fuel injection amount (T
i) is calculated, but Ti = basic injection amount (Tp) × variation correction coefficient (Co) × air-fuel ratio feedback control constant (α) + power correction amount (T)
s) The secondary air introduction correction coefficient (K
O 2 ) is added. That is, in this embodiment, since the secondary air is introduced into the portion that does not affect both oxygen concentration sensors 9, the air-fuel ratio for the catalyst 20 deviates from the target value when the secondary air is introduced. Specifically, when the secondary air is introduced, even if the oxygen concentration sensor 9 is feedback-controlled to the stoichiometric air-fuel ratio, it shows a lean tendency at the inlet of the catalyst 20.

【0051】2次空気は上述したように電動エアポンプ
16により回転によらず一定量供給されるため、触媒2
0入口の空燃比への2次空気の影響は排気流量(つま
り、吸入空気流量Qa)が多くなるほど小さい。従っ
て、上流側酸素濃度センサ9による空燃比制御時の2次
空気導入の際は、図8に示すように、吸入空気流量Qa
に基づいて予め設定された2次空気導入補正係数(KO
2 )を参照し、この2次空気導入補正係数(KO2 )を
付加して、酸素濃度センサ9部の空燃比をリッチ側に多
少シフトさせる。2次空気遮断時は、2次空気導入補正
係数(KO2 )=0とする。
As described above, since the secondary air is supplied by the electric air pump 16 in a constant amount regardless of rotation, the catalyst 2
The influence of the secondary air on the air-fuel ratio at the 0 inlet becomes smaller as the exhaust flow rate (that is, the intake air flow rate Qa) increases. Therefore, when introducing the secondary air during the air-fuel ratio control by the upstream oxygen concentration sensor 9, as shown in FIG.
The secondary air introduction correction coefficient (KO
2 ), the secondary air introduction correction coefficient (KO 2 ) is added to slightly shift the air-fuel ratio of the oxygen concentration sensor 9 to the rich side. When the secondary air is shut off, the secondary air introduction correction coefficient (KO 2 ) is set to 0.

【0052】前記ステップ56において、暖機終了と判
定されると、ステップ58に進んで、下流側酸素濃度セ
ンサ10から出力される信号に基づいて空燃比を制御
し、ステップ32に戻る。尚、上記のフローチャートに
おいて、ステップ58は、本発明の請求項6における空
燃比制御手段に相当する。
When it is determined in step 56 that the warm-up has ended, the routine proceeds to step 58, where the air-fuel ratio is controlled based on the signal output from the downstream oxygen concentration sensor 10, and the routine returns to step 32. In the above flowchart, step 58 corresponds to the air-fuel ratio control means in claim 6 of the present invention.

【0053】かかる構成によると、エンジン冷却水温度
が所定温度よりも低く、かつ、下流側酸素濃度センサ9
の出力が上流側酸素濃度センサ10の出力よりも所定値
以上小さい超空燃比リッチ状態となる回数Nが設定値A
に達した回数Mに達したことにより、吸着剤の吸・脱離
状態の異常を判定することができる。又、ステップ52
の制御から明らかなように、エンジンの冷間時に2次空
気を吸着剤7上流から導入しているため、触媒20,4
の酸化作用が活発化し、触媒20,4の温度の上昇を迅
速に図れるため、触媒20,4の早期活性化を図ること
ができると共に、2次空気を吸着剤7上流から導入して
いるときに、吸着剤7下流側の酸素濃度センサ9によ
り、触媒4入口側の空燃比が適正に制御されるため、触
媒4における転化効率を改善することができ、冷間時の
排気エミッション低減を図ることができる。
According to this structure, the engine cooling water temperature is lower than the predetermined temperature and the downstream oxygen concentration sensor 9
The output N of the super air-fuel ratio rich state is smaller than the output of the upstream side oxygen concentration sensor 10 by a predetermined value or more.
Since the number of times M has reached M, it is possible to determine an abnormality in the adsorption / desorption state of the adsorbent. Also, step 52
As is clear from the control of No. 2, since the secondary air is introduced from the upstream of the adsorbent 7 when the engine is cold, the catalysts 20, 4
Since the oxidizing action of the catalyst is activated and the temperature of the catalysts 20 and 4 can be quickly increased, the catalysts 20 and 4 can be activated early and the secondary air is introduced from the upstream of the adsorbent 7. In addition, since the oxygen concentration sensor 9 on the downstream side of the adsorbent 7 appropriately controls the air-fuel ratio on the inlet side of the catalyst 4, the conversion efficiency in the catalyst 4 can be improved, and exhaust emission reduction during cold can be achieved. be able to.

【0054】尚、冷却水温が極低温の時は、2次空気を
遮断するようにしており、触媒20,4が冷却されてし
まうことがない。更に、エンジン暖機後であると判定さ
れた際に、2次空気を遮断するようにしているため、触
媒20,4の温度上昇を抑制でき、空燃比変動を防止で
きる。尚、以上のように、特定の実施例を参照して本発
明を説明したが、本発明はこれに限定されるものではな
く、当該技術分野における熟練者等により、本発明に添
付された特許請求の範囲から逸脱することなく、種々の
変更及び修正が可能であるとの点に留意すべきである。
When the temperature of the cooling water is extremely low, the secondary air is shut off so that the catalysts 20 and 4 will not be cooled. Further, when it is determined that the engine has been warmed up, the secondary air is shut off, so that the temperature rise of the catalysts 20, 4 can be suppressed and the air-fuel ratio fluctuation can be prevented. Although the present invention has been described with reference to the specific embodiments as described above, the present invention is not limited to this, and the patents attached to the present invention by a person skilled in the art or the like. It should be noted that various changes and modifications can be made without departing from the scope of the claims.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
機関運転状態の少なくとも前記空燃比及び機関温度に基
づいて吸着剤が異常であるか否かを判定するように構成
したから、例えば、機関温度が所定温度以下であると判
定され、かつ下流側空燃比が上流側空燃比よりも所定値
以上小さいと判定された際、或いは、機関温度及び吸着
剤温度が夫々所定温度以下であると判定され、かつ下流
側空燃比が上流側空燃比よりも所定値以上小さいと判定
された際に、吸着剤が異常であると判定することによ
り、吸着剤の吸着・脱離状態の異常を容易に把握するこ
とができる。
As described above, according to the present invention,
Since it is configured to determine whether or not the adsorbent is abnormal based on at least the air-fuel ratio and the engine temperature in the engine operating state, for example, the engine temperature is determined to be below a predetermined temperature, and the downstream air When it is determined that the fuel ratio is smaller than the upstream side air-fuel ratio by a predetermined value or more, or it is determined that the engine temperature and the adsorbent temperature are each lower than a predetermined temperature, and the downstream side air-fuel ratio is set to a predetermined value lower than the upstream side air-fuel ratio. By determining that the adsorbent is abnormal when it is determined to be smaller than the value, it is possible to easily grasp the abnormality of the adsorption / desorption state of the adsorbent.

【0056】特に、吸着剤への排気導入時或いは2次空
気を吸着剤上流側の排気通路に供給している際に、下流
側空燃比検出手段から出力される検出信号に基づいて機
関の空燃比を制御する構成とすれば、触媒入口側の空燃
比が適正に制御され、触媒における転化効率を改善する
ことができ、排気浄化性能を向上することができる。
又、触媒上流側の排気通路を互いに並列な主排気通路と
吸着剤が介装されたバイパス通路とにより構成し、吸着
剤異常判定手段により吸着剤の異常が判定された際に、
バイパス通路への排気の流入を遮断して主排気通路に排
気を流通するように構成すれば、吸着剤の劣化進行を防
止できると共に、バイパス通路分の熱容量を低減して、
触媒の早期活性化の促進を図ることができる。
In particular, when the exhaust gas is introduced into the adsorbent or when the secondary air is being supplied to the exhaust passage on the upstream side of the adsorbent, the air condition of the engine is detected based on the detection signal output from the downstream side air-fuel ratio detecting means. With the configuration in which the fuel ratio is controlled, the air-fuel ratio on the catalyst inlet side is appropriately controlled, the conversion efficiency of the catalyst can be improved, and the exhaust gas purification performance can be improved.
Further, the exhaust passage on the upstream side of the catalyst is constituted by a main exhaust passage and a bypass passage in which an adsorbent is interposed in parallel, and when the adsorbent abnormality is determined by the adsorbent abnormality determination means,
If the exhaust gas is blocked from flowing into the bypass passage and the exhaust gas is passed through the main exhaust passage, deterioration of the adsorbent can be prevented and the heat capacity of the bypass passage can be reduced.
It is possible to promote early activation of the catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る内燃機関の排気浄化装置の構成
FIG. 1 is a configuration diagram of an exhaust gas purification device for an internal combustion engine according to the present invention.

【図2】 同上の装置の一実施例を示すシステム図FIG. 2 is a system diagram showing an embodiment of the same device.

【図3】 同上実施例の作用を説明するフローチャートFIG. 3 is a flowchart for explaining the operation of the above embodiment.

【図4】 他の実施例の作用を説明するフローチャートFIG. 4 is a flowchart for explaining the operation of another embodiment.

【図5】 更に他の実施例の作用を説明するフローチャ
ート
FIG. 5 is a flowchart for explaining the operation of still another embodiment.

【図6】 更に他の実施例を示すシステム図FIG. 6 is a system diagram showing still another embodiment.

【図7】 同上の更に他の実施例の作用を説明するフロ
ーチャート
FIG. 7 is a flowchart for explaining the operation of another embodiment of the above.

【図8】 吸入空気流量Qaに応じた2次空気導入補正
係数(KO2 )の特性図
FIG. 8 is a characteristic diagram of a secondary air introduction correction coefficient (KO 2 ) according to the intake air flow rate Qa.

【符号の説明】[Explanation of symbols]

1 エンジン 3 排気通路 4 触媒 7 吸着剤7 9 上流側酸素濃度センサ9 10 下流側酸素濃度センサ10 11 コントロールユニット11 14 水温センサ 15 吸着剤温度センサ 19 2次空気供給手段 1 Engine 3 Exhaust Passage 4 Catalyst 7 Adsorbent 7 9 Upstream Oxygen Concentration Sensor 9 10 Downstream Oxygen Concentration Sensor 10 11 Control Unit 11 14 Water Temperature Sensor 15 Adsorbent Temperature Sensor 19 Secondary Air Supply Means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 N F02B 77/08 M 7541−3G F02D 41/14 310 A 8011−3G 41/22 305 Z 8011−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location F01N 3/24 N F02B 77/08 M 7541-3G F02D 41/14 310 A 8011-3G 41/22 305 Z 8011-3G

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 排気通路に排気浄化用の触媒と該触媒の
上流側に位置して未燃ガスを吸着する吸着剤とを介装す
ると共に、吸着剤の上流側の排気通路と吸着剤下流側で
触媒の上流側の排気通路とに夫々排気通路内排気の空燃
比を検出する上流側及び下流側空燃比検出手段と、機関
温度を検出する機関温度検出手段と、を含む機関運転状
態検出手段と、機関運転状態の少なくとも前記空燃比及
び機関温度に基づいて前記吸着剤が異常であるか否かを
判定する吸着剤異常判定手段と、を含んで構成したこと
を特徴とする内燃機関の排気浄化装置。
1. An exhaust gas purification catalyst and an adsorbent located upstream of the catalyst for adsorbing unburned gas are provided in the exhaust passage, and the exhaust passage upstream of the adsorbent and the adsorbent downstream. On the upstream side of the catalyst, upstream and downstream air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas in the exhaust passage, and engine temperature detection means for detecting the engine temperature, the engine operating state detection Means, and an adsorbent abnormality determination means for determining whether or not the adsorbent is abnormal based on at least the air-fuel ratio and the engine temperature in an engine operating state, of an internal combustion engine characterized by including Exhaust purification device.
【請求項2】 前記吸着剤異常判定手段は、機関温度が
所定温度以下であると判定され、かつ下流側空燃比が上
流側空燃比よりも所定値以上小さいと判定された際に、
吸着剤が異常であると判定する構成である請求項1記載
の内燃機関の排気浄化装置。
2. The adsorbent abnormality determination means, when it is determined that the engine temperature is equal to or lower than a predetermined temperature and the downstream air-fuel ratio is smaller than the upstream air-fuel ratio by a predetermined value or more,
The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is configured to determine that the adsorbent is abnormal.
【請求項3】 吸着剤の温度を検出する吸着剤温度検出
手段を設け、前記吸着剤異常判定手段を、機関温度及び
吸着剤温度が夫々所定温度以下であると判定され、かつ
下流側空燃比が上流側空燃比よりも所定値以上小さいと
判定された際に、吸着剤が異常であると判定する構成と
した請求項1記載の内燃機関の排気浄化装置。
3. An adsorbent temperature detecting means for detecting the temperature of the adsorbent is provided, and the adsorbent abnormality determining means determines that the engine temperature and the adsorbent temperature are lower than a predetermined temperature, respectively, and the downstream air-fuel ratio. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the adsorbent is determined to be abnormal when it is determined that is smaller than the upstream side air-fuel ratio by a predetermined value or more.
【請求項4】 触媒上流側の排気通路を互いに並列な主
排気通路と吸着剤が介装されたバイパス通路とにより構
成し、主排気通路とバイパス通路とを選択的に排気を流
通するように通路を切り換える通路切換手段と、前記吸
着剤異常判定手段により吸着剤の異常が判定された際
に、バイパス通路への排気の流入を遮断して主排気通路
に排気を流通するように通路切換手段を制御する制御手
段を設けてなる請求項1〜3のうちいずれか一つに記載
の内燃機関の排気浄化装置。
4. The exhaust passage on the upstream side of the catalyst is constituted by a main exhaust passage and a bypass passage in which an adsorbent is interposed in parallel with each other, and exhaust gas is selectively circulated through the main exhaust passage and the bypass passage. A passage switching means for switching the passage, and a passage switching means for interrupting the inflow of exhaust gas to the bypass passage and flowing the exhaust gas to the main exhaust passage when the adsorbent abnormality determination means determines that the adsorbent is abnormal. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 3, further comprising control means for controlling the exhaust gas.
【請求項5】 吸着剤への排気導入時、下流側空燃比検
出手段から出力される検出信号に基づいて機関の空燃比
を制御する空燃比制御手段を設けてなる請求項1〜4の
うちいずれか一つに記載の内燃機関の排気浄化装置。
5. The air-fuel ratio control means for controlling the air-fuel ratio of the engine based on the detection signal output from the downstream side air-fuel ratio detection means when introducing the exhaust gas to the adsorbent. An exhaust emission control device for an internal combustion engine according to any one of claims.
【請求項6】 2次空気を吸着剤上流側の排気通路に供
給する2次空気供給手段を設け、2次空気を吸着剤上流
側の排気通路に供給している際に、下流側空燃比検出手
段から出力される検出信号に基づいて機関の空燃比を制
御する空燃比制御手段を設けたことを特徴とする請求項
1〜4のうちいずれか一つに記載の内燃機関の排気浄化
装置。
6. A downstream air-fuel ratio when the secondary air is supplied to the exhaust passage on the upstream side of the adsorbent, and the secondary air is supplied to the exhaust passage on the upstream side of the adsorbent. An exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, further comprising: an air-fuel ratio control means for controlling an air-fuel ratio of the engine based on a detection signal output from the detection means. .
JP4217021A 1992-08-14 1992-08-14 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP2800579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4217021A JP2800579B2 (en) 1992-08-14 1992-08-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4217021A JP2800579B2 (en) 1992-08-14 1992-08-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0666130A true JPH0666130A (en) 1994-03-08
JP2800579B2 JP2800579B2 (en) 1998-09-21

Family

ID=16697592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4217021A Expired - Fee Related JP2800579B2 (en) 1992-08-14 1992-08-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2800579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765369A (en) * 1994-07-27 1998-06-16 Nippondenso Co., Ltd. Exhaust gas purifying apparatus
FR2793841A1 (en) * 1998-12-24 2000-11-24 Toyota Motor Co Ltd DIAGNOSTIC METHOD AND DEVICE FOR AN ADSORBENT
EP1795723A3 (en) * 2005-12-07 2009-03-25 Nissan Motor Company Limited Exhaust system
US9391256B2 (en) 2010-12-07 2016-07-12 Epcos Ag Electroacoustic transducer with reduced losses due to transverse emission and improved performance due to suppression of transverse modes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765369A (en) * 1994-07-27 1998-06-16 Nippondenso Co., Ltd. Exhaust gas purifying apparatus
FR2793841A1 (en) * 1998-12-24 2000-11-24 Toyota Motor Co Ltd DIAGNOSTIC METHOD AND DEVICE FOR AN ADSORBENT
EP1795723A3 (en) * 2005-12-07 2009-03-25 Nissan Motor Company Limited Exhaust system
US7748213B2 (en) 2005-12-07 2010-07-06 Nissan Motor Co., Ltd. Exhaust system
US9391256B2 (en) 2010-12-07 2016-07-12 Epcos Ag Electroacoustic transducer with reduced losses due to transverse emission and improved performance due to suppression of transverse modes

Also Published As

Publication number Publication date
JP2800579B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
KR960004832B1 (en) Engine exhaust gas purification apparatus
EP1148215B1 (en) Exhaust emission control device of internal combustion engine
JP2001214734A (en) Exhaust emission control device for internal combustion engine
JPH05231138A (en) Exhaust emission control device for automobile
JP3154110B2 (en) Engine emission control device
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JPH0674019A (en) Exhaust emission control device
JP2000110553A (en) Exhaust gas emission control device of internal combustion engine
JPH0693845A (en) Exhaust emission control device for engine
JPH0417710A (en) Purifying device of engine exhaust gas
JP3128873B2 (en) Exhaust gas purification device for internal combustion engine
JP2800581B2 (en) Exhaust gas purification device for internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JP2850664B2 (en) Exhaust gas purification device for internal combustion engine
JPH0658139A (en) Adsorbing device for internal combustion engine
JP2950077B2 (en) Exhaust gas purification device for internal combustion engine
JPH0726947A (en) Exhaust gas purifying device for engine
JPH0674020A (en) Exhaust emission control device
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JPH0988563A (en) Exhaust device for internal combustion engine
JP2850657B2 (en) Exhaust gas purification device for internal combustion engine
JP3401955B2 (en) Exhaust gas purification device for internal combustion engine
JP2005163724A (en) Exhaust emission control device for internal combustion engine
JPH0666133A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees