JPH05231138A - Exhaust emission control device for automobile - Google Patents

Exhaust emission control device for automobile

Info

Publication number
JPH05231138A
JPH05231138A JP4033729A JP3372992A JPH05231138A JP H05231138 A JPH05231138 A JP H05231138A JP 4033729 A JP4033729 A JP 4033729A JP 3372992 A JP3372992 A JP 3372992A JP H05231138 A JPH05231138 A JP H05231138A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
lean
switching valve
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4033729A
Other languages
Japanese (ja)
Inventor
Daisuke Mitsuhayashi
大介 三林
Tadashi Hirako
廉 平子
Yoshiro Danno
喜朗 団野
Kazuo Koga
一雄 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP4033729A priority Critical patent/JPH05231138A/en
Priority to US08/019,902 priority patent/US5349816A/en
Priority to DE69304562T priority patent/DE69304562T2/en
Priority to EP93102682A priority patent/EP0556854B1/en
Priority to KR1019930002368A priority patent/KR960007969B1/en
Publication of JPH05231138A publication Critical patent/JPH05231138A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the purification efficiency and durability of a lean NOx catalyst for each operation condition of an engine, when a forestage catalyst and a rearstage catalyst containing the lean NOx catalyst at least at a part behind the forestage catalyst are arranged on an exhaust passage. CONSTITUTION:A forestage catalyst 9 in close to the combustion chamber 10 of an internal combustion engine E and a rear stage catalyst 10 including a lean NOx catalyst 22 behind are provide. The forestage catalyst 9 is constituted so as to carry out the exhaust gas purification in the initial stage of the start of the engine operation, and in particular, in an exhaust passage 2, the first bypass passage 202 which makes a detour around only the forestage catalyst 9 and converges with the exhaust passage 2 and the second bypass passage which makes a detour only around the lean NOx catalyst 22 in the rear stage catalyst and converges with the exhaust passage 2 are formed. The first selector valve 11 for controlling the exhaust gas flow rate which flows into the first bypass passage 202 or the forestage catalyst 9 is installed. The second selector valve 27 for controlling the exhaust gas flow rate which flows into the second bypass passage 32 or the lean NOx catalyst 22 is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気路に配備
され、特に、内燃機関の排気路上で燃焼室に近接される
前段触媒とその後方に配備される後段触媒とを備えた自
動車の排ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided in an exhaust passage of an internal combustion engine, and more particularly, in an automobile equipped with a front-stage catalyst located close to a combustion chamber on the exhaust passage of the internal-combustion engine and a rear-stage catalyst provided behind the combustion chamber. Exhaust gas purification device

【0002】[0002]

【従来の技術】従来、自動車の排ガス浄化装置は自動車
の内燃機関が発生する排ガスを無害化して大気中に放出
するもので、自然環境を保護する上で重要な役割を持っ
ている。この排ガス浄化装置、例えば三元触媒は酸化還
元の両触媒を備え、空燃比をストイキオを含む狭いウイ
ンド域に保持することにより、酸化触媒が排気中のC
O,HCを、還元触媒が排気中のNOXをそれぞれ無害
成分に変換するように作用している。
2. Description of the Related Art Conventionally, an automobile exhaust gas purifying apparatus detoxifies exhaust gas generated by an internal combustion engine of an automobile and discharges it into the atmosphere, and has an important role in protecting the natural environment. This exhaust gas purifying device, for example, a three-way catalyst, is equipped with both redox catalysts, and the air-fuel ratio is maintained in a narrow window region including stoichio, so that the oxidation catalyst can remove C
The reducing catalyst acts on O and HC so as to convert NO X in the exhaust gas into harmless components.

【0003】ところでガソリンエンジンの低燃費化にリ
ーンバーン化(希薄燃焼化)が有効な手段であることは
広く知られ、リーンバーンエンジンを搭載した自動車が
多数発表されている。しかし理論空燃比での燃焼時に排
ガス浄化手段として有効な三元触媒は、酸素過剰下(リ
ーン空燃比)である希薄燃焼時では適確な触媒作用を発
揮出来ず、各種の排ガス規制を満足することが困難と成
っている。この問題を解決する技術として、希薄燃焼時
に排ガス中の窒素酸化物(NOX)を浄化することが可
能なリーンNOX触媒が提案されており、その一例が特
開昭60ー125250号公報に開示されている。
By the way, it is widely known that lean burn (lean combustion) is an effective means for reducing fuel consumption of a gasoline engine, and many automobiles equipped with a lean burn engine have been announced. However, the three-way catalyst, which is effective as an exhaust gas purifying means during combustion at the stoichiometric air-fuel ratio, cannot exhibit an appropriate catalytic action during lean combustion under excess oxygen (lean air-fuel ratio) and satisfies various exhaust gas regulations. It has become difficult. As a technique for solving this problem, the nitrogen oxides in the exhaust gas during lean-burn (NO X) have been proposed that can lean NO X catalyst to purify, one example in JP 60 over 125,250 that It is disclosed.

【0004】このリーンNOX触媒は、特に、高温での
劣化が大きいという点と、NOXの浄化にHC成分を必
要とするという点及びリッチ雰囲気やストイキオ雰囲気
での劣化が大きく、実車装備の上で問題を残している。
なお、図3に示すように排ガス中のHC/CO比が所定
値以上ないと、NOX浄化率(ηNOX)が十分に高まらず
正常作動出来ない。このため、このリーンNOX触媒と
三元触媒とを排気路に順次配設する場合、リーンNOX
触媒を三元触媒の上流に配設する必要がある。
[0004] The lean NO X catalyst, in particular, and that a large deterioration at high temperatures, the deterioration in terms and rich atmosphere or stoichiometric atmosphere that requires HC component to purification of the NO X is large, the actual vehicle equipped Leaving the problem above.
As shown in FIG. 3, unless the HC / CO ratio in the exhaust gas exceeds a predetermined value, the NO x purification rate (η NOx ) does not rise sufficiently and normal operation cannot be performed. Therefore, when sequentially arranged and the lean NO X catalyst and the three-way catalyst in an exhaust passage, the lean NO X
It is necessary to arrange the catalyst upstream of the three-way catalyst.

【0005】更に、車両の始動初期の排ガス浄化率を早
期に向上させるには、触媒の活性完了温度に達する時間
を早く(ライトオフを早く)する必要が有る。このた
め、従来、容量の比較的小さな前段触媒(ウォームアッ
プ触媒)をエンジンの燃焼室の排気ポートの近傍に装備
し、その後方に主の後段触媒を配することが行われてい
る。これによって、三元触媒で構成される前段触媒が排
気ポートの近傍で早期に加熱され、容量も小型のため比
較的早く活性完了温度に達し、エンジン始動初期の排気
の浄化率を短時間に高率化するようにしている。
Further, in order to improve the exhaust gas purification rate in the early stage of starting the vehicle at an early stage, it is necessary to shorten the time to reach the activation completion temperature of the catalyst (light off earlier). For this reason, conventionally, a pre-stage catalyst (warm-up catalyst) having a relatively small capacity is installed near the exhaust port of the combustion chamber of the engine, and the main post-stage catalyst is arranged behind it. As a result, the pre-stage catalyst composed of the three-way catalyst is heated early near the exhaust port, and because the capacity is small, the activation completion temperature is reached relatively quickly, and the exhaust gas purification rate at the initial stage of engine startup is increased in a short time. I try to rationalize.

【0006】[0006]

【発明が解決しようとする課題】ところで、排ガス規制
の強化が進んでおり、将来的には前段触媒(ウォームア
ップ触媒)の必要性が急増すると考えられている。しか
し、NOXの浄化にHC成分を必要とする点で、三元触
媒を前段触媒にそのまま使用した場合に後段のリーンN
X触媒がHC不足によって正常作動出来ない。他方、
前段触媒にリーンNOX触媒を用いることは、リーンN
X触媒が高温での劣化が大きいことより、このまま使
用することも出来ず、しかも、機関がリッチやストイキ
オ運転された際のリーンNOX触媒の劣化が大きき点も
解決されず、リーンNOX触媒22の耐久性の問題も十
分には解決されていない。
By the way, exhaust gas regulations are being strengthened, and it is considered that the need for a pre-stage catalyst (warm-up catalyst) will rapidly increase in the future. However, since the HC component is required for purification of NO x , when the three-way catalyst is used as it is as the front catalyst, the lean N of the rear stage is used.
O X catalyst can not be normal operation by HC shortage. On the other hand,
The use of a lean NO X catalyst in the pre-catalyst is lean N
O X catalyst than is large deterioration at high temperatures, it can not be used as is, moreover, the engine is not resolved even point Okiki degradation of the lean NO X catalyst in was operated rich or stoichiometric, lean NO The problem of durability of the X catalyst 22 has not been sufficiently solved.

【0007】本発明の目的は、排気路上に前段触媒とそ
の後方に少なくとも一部にリーンNOX触媒を有した後
段触媒とを配備した場合に、機関の各運転条件に対して
リーンNOX触媒の浄化効率を耐久性良く確保出来る自
動車の排ガス浄化装置を提供することにある。
An object of the present invention, when deployed and the rear stage catalyst having a lean NO X catalyst in at least a portion precatalyst and its rear exhaust path, the lean NO X catalyst for each operating condition of the engine An object of the present invention is to provide an exhaust gas purifying apparatus for automobiles, which can ensure the purification efficiency of the above with good durability.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明は内燃機関の燃焼室に近接される前段触
媒と上記前段触媒の後方に配備されリーンNOX触媒を
含む後段触媒とを排気路上に備え、上記前段触媒が主に
機関運転開始初期の排ガス浄化を行う様に構成され、特
に、上記排気路には上記前段触媒のみを迂回して上記排
気路に合流する第1バイパス路と上記後段触媒中のリー
ンNOX触媒のみを迂回して上記排気路に合流する第2
バイパス路とを設け、上記第1バイパス路或いは上記前
段触媒へ流入する排ガスの流量を上記内燃機関の運転情
報に応じて制御する第1切り換え弁を設け、上記第2バ
イパス路或いは上記リーンNOX触媒へ流入する排ガス
の流量を上記内燃機関の運転情報に応じて制御する第2
切り換え弁を設けたことを特徴とする自動車とを特徴と
する。
Means for Solving the Problems In order to achieve the above object, a rear catalyst This invention containing lean NO X catalyst is deployed behind the front catalyst and the pre-stage catalyst that is close to the combustion chamber of an internal combustion engine Is provided on the exhaust passage, and the pre-stage catalyst is mainly configured to purify exhaust gas at the initial stage of engine operation. In particular, the first bypass bypasses only the pre-stage catalyst in the exhaust passage and joins the exhaust passage. The second passage that bypasses only the lean NO x catalyst in the latter-stage catalyst and joins the exhaust passage
A bypass passage is provided, the first bypass passage or flow rate of the exhaust gas flowing into said precatalyst is provided a first switching valve for controlling in accordance with the operation information of the internal combustion engine, the second bypass passage or said lean NO X Second control for controlling the flow rate of exhaust gas flowing into the catalyst according to the operation information of the internal combustion engine
A vehicle characterized by being provided with a switching valve.

【0009】[0009]

【作用】第1切り換え弁が第1バイパス路或いは前段触
媒に流入する排ガス流量を内燃機関の運転情報に応じて
制御し、第2切り換え弁が第2バイパス路或いはリーン
NOX触媒に流入する排ガス流量を内燃機関の運転情報
に応じて制御するので、所定時にのみ排ガスを前段触媒
に流入させ、所定時にのみ排ガスをリーンNO触媒2
2に流入させるて各触媒が排ガスを適確に浄化すること
ができる。
[Action] The first switching valve is controlled in accordance with the operation information of the engine exhaust gas flow rate flowing into the first bypass passage or pre-catalyst, an exhaust gas second switching valve flows into the second bypass passage or lean NO X catalyst since controlled according to flow rate operation information of the internal combustion engine, the exhaust gas only a predetermined time to flow into the pre-catalyst, the lean NO X catalyst 2 of the exhaust gas only a predetermined time
The catalyst can purify the exhaust gas properly by allowing the exhaust gas to flow into the exhaust gas.

【0010】[0010]

【実施例】図1、図2(a)に示した自動車の排ガス浄
化装置はガソリンエンジンEの排気路2上に装着されて
いる。このエンジンEはエンジンコントロールユニット
(以後単にECUと記す)3により燃料供給量を制御さ
れ、各時点での負荷情報やエンジン回転数情報に応じた
目標空燃比に現空燃比を調整制御するように構成されて
いる。排気路2はエンジン本体1に接続される排気分岐
管4と、その合流部に連続して接続され、前段触媒とし
てのウォームアップ触媒9及びそれを迂回する第1バイ
パス路202を備えた上流排気管5と、その下流端に接
続され後段触媒10及び同触媒中のリーンNO触媒2
2のみを迂回する第2バイパス路を32を備えた下流排
気管6と、図示しないマフラーによって構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The automobile exhaust gas purification apparatus shown in FIGS. 1 and 2A is mounted on an exhaust passage 2 of a gasoline engine E. In this engine E, the fuel supply amount is controlled by an engine control unit (hereinafter simply referred to as ECU) 3, and the current air-fuel ratio is adjusted and controlled to a target air-fuel ratio corresponding to load information and engine speed information at each time point. It is configured. The exhaust passage 2 is provided with an exhaust branch pipe 4 connected to the engine body 1, a warm-up catalyst 9 as a pre-catalyst, and a first bypass passage 202 that bypasses the warm-up catalyst 9, which is continuously connected to a merging portion thereof. The pipe 5, the downstream catalyst 10 connected to the downstream end thereof, and the lean NO X catalyst 2 in the latter catalyst 10
The downstream exhaust pipe 6 is provided with a second bypass passage 32 that bypasses only 2 and a muffler (not shown).

【0011】上流排気管5は上流側の二又分岐部7及び
下流側の合流部8との間が分岐されて前段触媒であるウ
ォームアップ触媒9を装着した上流主路201と前段触
媒を迂回する第1バイパス路202を並列的に配備した
構成を成す。特に、ここでは、二又分岐部7に上流主路
201或いは第1バイパス路202に流入可能な排ガス
流量を増減制御する第1切り換え弁11を設けている。
第1切り換え弁11は上流排気管の二又分岐部7に枢支
される回転軸12を備え、回転軸12と一体のレバー1
3がエアーアクチュエータ14によって回動されること
によって弁本体111を所定開度に切り換え保持する。
The upstream exhaust pipe 5 is branched between the upstream bifurcating portion 7 and the downstream merging portion 8 so as to bypass the upstream main passage 201 equipped with the warm-up catalyst 9 as the pre-catalyst and the pre-catalyst. The first bypass passage 202 is arranged in parallel. In particular, here, the bifurcating part 7 is provided with the first switching valve 11 for increasing / decreasing the exhaust gas flow rate that can flow into the upstream main path 201 or the first bypass path 202.
The first switching valve 11 includes a rotary shaft 12 pivotally supported by the bifurcated portion 7 of the upstream exhaust pipe, and the lever 1 integrated with the rotary shaft 12.
By rotating 3 by the air actuator 14, the valve body 111 is switched to a predetermined opening degree and held.

【0012】ここでエアーアクチュエータ14は負圧室
141と、これに対向すると共にレバー13にリンク1
7を介して連結されるダイアフラム142と、ダイアフ
ラム142を押圧する戻しばね143とを備え、負圧室
141には開閉弁15を介して負圧源としてのスロット
ル弁18の下流の吸気路16が連結されている。なお、
第1切り換え弁を駆動するアクチュエータは上述のエア
ーアクチュエータ14に代えて、例えば、ステップモー
タ及び同モータの回転を回転軸12に伝えるギア列から
成る周知の回転伝達手段を用いても良い。
Here, the air actuator 14 is provided with a negative pressure chamber 141, which faces the negative pressure chamber 141 and is linked to the lever 13 by a link 1.
A diaphragm 142 connected via 7 and a return spring 143 that presses the diaphragm 142 are provided. The negative pressure chamber 141 has an intake passage 16 downstream of a throttle valve 18 as a negative pressure source via an opening / closing valve 15. It is connected. In addition,
The actuator for driving the first switching valve may be replaced by the air actuator 14 described above, and for example, a well-known rotation transmitting means including a step motor and a gear train for transmitting the rotation of the motor to the rotating shaft 12 may be used.

【0013】開閉弁15はデューティー弁であり、EC
U3に切り換え駆動される。この開閉弁15はデューテ
ィー比が0%のオフ時に負圧室141を完全に大気解放
し、デューティー比の増加に応じて負圧室141の負圧
化を強めて、戻しばね143に抗してレバー13をより
大きく引くように構成されている。即ち、第1切り換え
弁11の弁本体111は、開閉弁15のデューティー比
が所定レベル以下において戻しばね143の弾性力を受
けて第1バイパス路202を全開し、上流主路201を
閉じる(図1の実線で示す位置)第1位置P1に保持さ
れる。
The on-off valve 15 is a duty valve and is an EC
It is switched to U3 and driven. The on-off valve 15 completely releases the negative pressure chamber 141 to the atmosphere when the duty ratio is 0% off, strengthens the negative pressure of the negative pressure chamber 141 according to the increase of the duty ratio, and resists the return spring 143. It is configured to pull the lever 13 more greatly. That is, the valve body 111 of the first switching valve 11 receives the elastic force of the return spring 143 and fully opens the first bypass passage 202 and closes the upstream main passage 201 when the duty ratio of the opening / closing valve 15 is equal to or lower than a predetermined level. The position indicated by the solid line 1) is held at the first position P1.

【0014】逆に、弁本体111は、開閉弁15のデュ
ーティー比が所定レベルを上回るとダイアフラム142
の働きで戻しばね143に抗して第1バイパス路202
を閉じ初め、上流主路201を開き初めてウォームアッ
プ触媒9に排気を流入させる方向に移動を始める。そし
てデューティー比が全開レベルを上回ると、上流主路2
01を開き第1バイパス路202を閉じる第2位置P2
(図1の2点鎖線で示す位置)に保持される。ここで、
リンク17には弁開度センサ19が対設され、同センサ
19が第1切り換え弁11の開度相当のアナログ出力を
図示しないA/D変換器に発し、同A/D変換器のデジ
タル出力がECU3に出力される様に構成されている。
On the contrary, the valve body 111 has a diaphragm 142 when the duty ratio of the on-off valve 15 exceeds a predetermined level.
Of the first bypass passage 202 against the return spring 143.
Is started, and the upstream main path 201 is not opened until the exhaust gas starts flowing into the warm-up catalyst 9. When the duty ratio exceeds the fully open level, the upstream main road 2
The second position P2 which opens 01 and closes the first bypass passage 202
(The position indicated by the chain double-dashed line in FIG. 1). here,
A valve opening sensor 19 is provided opposite to the link 17, and the sensor 19 outputs an analog output corresponding to the opening of the first switching valve 11 to an A / D converter (not shown), and a digital output of the A / D converter. Is output to the ECU 3.

【0015】ウォームアップ触媒9はモノリス型の担持
体を有し、この担持体の内壁面には周知の三元触媒活性
成分が付着されている。このため、担持体を通過する排
ガスはその時の空燃比がストイキオ近傍にあり、活性温
度にあると、HC,CO,NOXの酸化還元処理を成
し、無害化された排ガスを排出することが出来る。な
お、この三元触媒に代えて、前段触媒に酸化触媒を用い
コスト低減を図っても良い。この酸化触媒としてはライ
トオフ温度の低いパラジウム(Pd)系の触媒を利用出
来る。
The warm-up catalyst 9 has a monolith-type carrier, and a well-known three-way catalytically active component is attached to the inner wall surface of the carrier. Therefore, when the exhaust gas passing through the carrier has an air-fuel ratio at that time in the vicinity of stoichiometry and is at the activation temperature, HC, CO, and NO x redox treatment can be performed, and the detoxified exhaust gas can be discharged. I can. It should be noted that instead of the three-way catalyst, an oxidation catalyst may be used as the pre-stage catalyst to reduce the cost. As this oxidation catalyst, a palladium (Pd) -based catalyst having a low light-off temperature can be used.

【0016】下流排気管6は排気路2の流下方向に沿っ
てリーンNOX触媒22及び三元触媒23をこの順に配
設して成る後段触媒10と、リーンNOX触媒22のみ
を迂回する第2バイパス路32とを備える。下流排気管
6の一部であってリーンNOX触媒22及び三元触媒2
3を収容する部分は各々単一の筒状の触媒ケース21、
33として形成され互いが順次結合されている。なお、
このリーンNOX触媒22及び三元触媒23を単一の触
媒ケース21内に収容してコンパクト化を図っても良
い。
The downstream exhaust pipe 6 bypasses only the lean NO x catalyst 22 and the rear stage catalyst 10 in which the lean NO x catalyst 22 and the three-way catalyst 23 are arranged in this order along the flow direction of the exhaust passage 2. 2 bypass passage 32. A part of the downstream exhaust pipe 6 lean NO X catalyst 22 and the three way catalyst 2
3 is a single cylindrical catalyst case 21,
33 and are connected to each other in sequence. In addition,
The lean NO X catalyst 22 and the three way catalyst 23 housed in a single catalyst case 21 may be compactified.

【0017】ここで第2バイパス路32はその分岐部3
4と合流部35(後側の三元触媒23の上流位置)とで
排気路2に連通され、その途中に第2切り換え弁27を
配備し、これが第2バイパス路32の開閉を行ってい
る。第2切り換え弁27の弁本体271はバタフライ弁
であり、同弁にはこれと一体のレバー30を介してエア
ーアクチュエータ26のリンク29がピン結合される。
Here, the second bypass passage 32 has its branch portion 3
4 and the merging portion 35 (upstream position of the three-way catalyst 23 on the rear side) are communicated with the exhaust passage 2, and a second switching valve 27 is provided in the middle thereof, which opens and closes the second bypass passage 32. .. The valve body 271 of the second switching valve 27 is a butterfly valve, and the link 29 of the air actuator 26 is pin-coupled to the valve body 271 via a lever 30 integral with the butterfly valve.

【0018】ここでエアーアクチュエータ26は図1の
エアーアクチュエータ14と同様に形成され、リンク2
9の一端が連結されるダイアフラム36、このダイアフ
ラムの対向する負圧室28、ダイアフラム36を押圧す
る戻しばね37を備え、負圧室28には開閉弁31を介
してスロットル弁18の下流の吸気路16が連結されて
いる。ここで、リンク29には弁開度センサ38が対設
され、同センサが第2切り換え弁27の開度相当のアナ
ログ出力を図示しないA/D変換器に発し、同A/D変
換器のデジタル出力がECU3に出力される様に構成さ
れている。
Here, the air actuator 26 is formed similarly to the air actuator 14 of FIG.
A diaphragm 36 to which one end of the diaphragm 9 is connected, a negative pressure chamber 28 facing the diaphragm, and a return spring 37 for pressing the diaphragm 36 are provided, and the negative pressure chamber 28 is provided with an intake valve downstream of the throttle valve 18 via an opening / closing valve 31. The passage 16 is connected. Here, a valve opening sensor 38 is provided opposite to the link 29, and the sensor outputs an analog output corresponding to the opening of the second switching valve 27 to an A / D converter (not shown), and the analog output of the A / D converter is not shown. The digital output is configured to be output to the ECU 3.

【0019】開閉弁31はオン、オフ弁であり、ECU
3に切り換え駆動される。この開閉弁31はオフ時に負
圧室28を完全に大気解放し、オン時に負圧室28の負
圧化を強める様に構成されている。即ち、第2切り換え
弁27は開閉弁31がオンで第2バイパス路202を全
閉して(図1の実線で示す位置)第1位置Q1に保持さ
れ、リーンNOX触媒22に排ガスを流入させることが
出来る。逆に開閉弁31がオフで第2バイパス路202
を全開する第2位置Q2に保持され、排ガスをリーンN
X触媒22を迂回して三元触媒23に直接供給でき
る。
The on-off valve 31 is an on / off valve, and the ECU
It is switched to 3 and driven. The on-off valve 31 is configured to completely open the negative pressure chamber 28 to the atmosphere when it is off, and strengthen the negative pressure of the negative pressure chamber 28 when it is on. That is, the second switching valve 27 is held at the first position Q1 by fully closing the second bypass passage 202 (the position shown by the solid line in FIG. 1) when the opening / closing valve 31 is on, and the exhaust gas flows into the lean NO x catalyst 22. It can be done. On the contrary, when the on-off valve 31 is off, the second bypass passage 202
Is held in the second position Q2 where the exhaust gas is fully opened
Bypassing the O X catalyst 22 can be supplied directly to the three-way catalyst 23.

【0020】リーンNOX触媒22はモノリス型の担持
体を有し、その全内壁面に触媒活性成分が付着される。
ここでの触媒活性成分は酸素過剰化(リーン空燃比)で
NOXを還元することが可能なもので、図3に示すよう
に、HC/CO比が所定値以上でNOX浄化率(ηNOX
が高レベルとなる特性を示す。即ち、その時の排ガスの
空燃比がリーン雰囲気下にあり、しかも、活性温度にあ
ると、NOXを還元剤としてのHCで還元して無害化す
るように構成されている。後側の三元触媒23は前段の
ウォームアップ触媒9と比較して十分に大きな容量に形
成され、そのモノリス型の担持体の全内壁面に前段のウ
ォームアップ触媒9と同様にストイキオ雰囲気下で酸化
還元処理可能な触媒活性成分が付着された周知の構成を
採る。このように後段触媒10がリーンNOX触媒22
とその下流の三元触媒23で構成されることによって、
両触媒の排ガス浄化性能の向上を図っている。
The lean NO x catalyst 22 has a monolith type carrier, and the catalytically active component is attached to the entire inner wall surface thereof.
The catalytically active component here is capable of reducing NO x by excess oxygen (lean air-fuel ratio), and as shown in FIG. 3, when the HC / CO ratio is above a predetermined value, the NO x purification rate (η NOX )
Shows a high level characteristic. That is, when the air-fuel ratio of the exhaust gas at that time is in a lean atmosphere and at the activation temperature, NO x is reduced by HC as a reducing agent to render it harmless. The three-way catalyst 23 on the rear side is formed to have a sufficiently large capacity as compared with the warm-up catalyst 9 on the front stage, and on the entire inner wall surface of the monolith-type carrier in the same stoichiometric atmosphere as the warm-up catalyst 9 on the front stage. It adopts a well-known structure to which a catalytically active component capable of redox treatment is attached. In this way, the rear catalyst 10 is the lean NO X catalyst 22.
And the three-way catalyst 23 downstream thereof,
We are trying to improve the exhaust gas purification performance of both catalysts.

【0021】なお、図1の自動車の排ガス浄化装置の概
略を図2(a)に示したが、ここでは、エンジン1の燃
焼室101とウォームアップ触媒9の間の前排気通路長
さL1に対して、ウォームアップ触媒9と後段触媒10
の間の後排気通路長さL2を大きく設定してあり、これ
によってウォームアップ触媒9の性能向上と、リーンN
X触媒22の耐久性確保を図っている。ECU3はマ
イクロコンピュータによってその要部が形成され、エン
ジンEへの燃料供給制御、点火時期制御、スロットル弁
駆動制御等の周知の制御処理を行うと共に切り換え弁制
御を行う。このためECU3には上述の弁開度センサ1
9の他に、排気路2に装着されると共に排ガスの空燃比
(A/F)情報を全域に渡って出力するリニア空燃比セ
ンサ24、リーンNOX触媒22位置の排気温度情報を
出力する後段触媒温度センサ25、エンジン本体1に取
付けられる水温センサ26、エンジン回転センサ27、
等が接続され、これらより各検出信号がそれぞれ取り込
まれている。
The outline of the automobile exhaust gas purifying apparatus of FIG. 1 is shown in FIG. 2 (a), but here, in the front exhaust passage length L1 between the combustion chamber 101 of the engine 1 and the warm-up catalyst 9, On the other hand, the warm-up catalyst 9 and the post-stage catalyst 10
The rear exhaust passage length L2 between the two is set to a large value, which improves the performance of the warm-up catalyst 9 and increases the lean N
Thereby achieving a secure durability of the O X catalyst 22. A main part of the ECU 3 is formed by a microcomputer, and performs well-known control processing such as fuel supply control to the engine E, ignition timing control, throttle valve drive control, and switching valve control. Therefore, the ECU 3 is provided with the above-mentioned valve opening sensor 1
In addition to 9, the linear air-fuel ratio sensor 24 that outputs over the whole area of the air-fuel ratio (A / F) information of the exhaust gas while being mounted on the exhaust passage 2, the rear stage to output the exhaust gas temperature information of the lean NO X catalyst 22 position A catalyst temperature sensor 25, a water temperature sensor 26 attached to the engine body 1, an engine rotation sensor 27,
Etc. are connected, and the respective detection signals are respectively fetched from these.

【0022】ここでECU3は、特に、弁制御手段とし
ての機能を備え、エンジンEの運転情報に応じて第1、
第2切り換え弁11,27各のエアーアクチュエータ1
4,26に所定開度相当の切り換え制御信号を出力す
る。以下に、図1の自動車の排ガス浄化装置の作動をE
CU3の制御プログラム(図6,7参照)、図3の待ち
時間算出マップ等に沿って説明する。ECU3はエンジ
ンキーのオンに応じ周知のメインルーチンに入り、その
処理の途中で切り換え弁制御処理に達する。
Here, the ECU 3 is provided with a function as a valve control means, in particular, according to the operating information of the engine E.
Air actuator 1 for each second switching valve 11, 27
A switching control signal corresponding to a predetermined opening is output to 4, 26. The operation of the exhaust gas purifying apparatus for automobiles shown in FIG.
The control program of the CU 3 (see FIGS. 6 and 7) and the waiting time calculation map of FIG. 3 will be described. When the engine key is turned on, the ECU 3 enters a well-known main routine, and the switching valve control process is reached during the process.

【0023】図6,図7に示すように切り換え弁制御処
理では、まず、各センサよりのデータを読み込み、所定
のエリアにストアする。そして、エンジン回転数Neが
機関停止判定値Ne1を下回るか否か判定し、下回ると
エンジン停止時と見做し、ステップa4に進み、第1切
り換え弁11を上流主路201を閉じる第1位置P1に
保持すべく、開閉弁15への出力をデューティー比0%
に保持する。これにより開閉弁15が閉じ、負圧室が大
気解放され、第1切り換え弁11を第1位置P1に切り
換える。同時に第2切り換え弁27を第1位置Q1に保
持すべくオン出力を発っする。これにより開閉弁31が
オンし、負圧室28が負圧化され、第2切り換え弁27
を第1位置Q1に切り換える(図5中に符号eで停止時
状態を示した)。
In the switching valve control process as shown in FIGS. 6 and 7, first, data from each sensor is read and stored in a predetermined area. Then, it is determined whether or not the engine speed Ne is below the engine stop determination value Ne1, and if it is below that, it is considered that the engine is stopped, and the process proceeds to step a4, where the first switching valve 11 closes the upstream main path 201 at the first position. The duty ratio of the output to the on-off valve 15 should be 0% to maintain P1.
Hold on. As a result, the opening / closing valve 15 is closed, the negative pressure chamber is released to the atmosphere, and the first switching valve 11 is switched to the first position P1. At the same time, an ON output is issued to keep the second switching valve 27 at the first position Q1. As a result, the on-off valve 31 is turned on, the negative pressure chamber 28 is made negative, and the second switching valve 27
To the first position Q1 (indicated by a symbol e in FIG. 5 to indicate a stopped state).

【0024】この後、ステップa6では第1切り換え弁
11が第1位置P1に、第2切り換え弁27が第1位置
Q1にそれぞれ達するのを待ち、弁開度センサ19,3
7の出力より第1位置P1、第1位置Q1に達するのを
検出すると、そのままリターンし、所定の経過時間T1
を経過しても第1位置P1及び第1位置Q1に達しない
とステップa7で故障表示の出力を発し、リターンす
る。
Thereafter, at step a6, the first switching valve 11 waits for the first position P1 and the second switching valve 27 for the first position Q1, respectively, and the valve opening sensors 19, 3 are detected.
When it is detected from the output of No. 7 that the first position P1 and the first position Q1 are reached, the process directly returns and a predetermined elapsed time T1
If the first position P1 and the first position Q1 are not reached even after the passage of, the fault display is output in step a7 and the process returns.

【0025】他方、ステップa2で機関停止でないとし
て、ステップa3に進むと機関温度としての水温センサ
26の出力を読み取り、同値が機関の暖機完了判定値T
2を上回っているか判定し、低い場合は、ステップa9
に、高いとステップa8に進む。暖機完了判定値T2よ
り低いとしてステップa9では図3の待ち時間算出マッ
プより比較的長い待ち時間H1を読み取り、同待ち時間
H1の経過中はステップa11に進み、上流主路201
を開きバイパス路202を閉じる第2位置P2に切り換
え弁11を切り換え処理し、待ち時間H1の経過によっ
てステップa10に進む。
On the other hand, assuming that the engine is not stopped at step a2, the process proceeds to step a3, at which the output of the water temperature sensor 26 as the engine temperature is read, and the same value is used as the engine warm-up completion determination value T.
If it is higher than 2, it is determined that it is lower, step a9.
If it is higher, the process proceeds to step a8. Assuming that the warm-up completion determination value T2 is lower than the warm-up completion determination value T2, a relatively long waiting time H1 is read from the waiting time calculation map of FIG. 3, and while the waiting time H1 is elapsed, the process proceeds to step a11 and the upstream main road 201
Is opened and the bypass valve 202 is closed to switch the switching valve 11 to the second position P2, and after the waiting time H1, the process proceeds to step a10.

【0026】ステップa11の後のステップa12,a
13では切り換え弁11が第2位置P2に達するのを待
ち、弁開度センサ19の出力より第2位置P2に達する
のを検出すると、ステップa14に進み、所定の経過時
間T1を経過しても第2位置P1に達しないとステップ
a6に進んで故障出力を発し、リターンする。機関温度
が暖機完了判定値T2を上回っているとしてステップa
8に進むと、ここでは待ち時間算出マップより比較的短
い待ち時間H2を読み取り、同待ち時間H2の経過中は
ステップa11に進み、上流主路201を開きバイパス
路202を閉じる第2位置P2に切り換え弁11を切り
換え、待ち時間H2の経過を判定すると、ステップa1
0に進む。ここで、後段触媒温度センサ25より後段触
媒の排ガス温度T3を取り込み、同値が後段触媒の活性
完了温度Trより低い間はステップa15に進み、上回
ると前述のステップa16に進む。
Steps a12 and a after step a11
At 13, when waiting for the switching valve 11 to reach the second position P2 and detecting that it reaches the second position P2 from the output of the valve opening sensor 19, the process proceeds to step a14, and even if a predetermined elapsed time T1 elapses. If the second position P1 is not reached, the process proceeds to step a6, a fault output is issued, and the process returns. Step a assuming that the engine temperature exceeds the warm-up completion determination value T2.
8, the waiting time H2, which is relatively shorter than the waiting time calculation map, is read here, and while the waiting time H2 has elapsed, the process proceeds to step a11, where the upstream main road 201 is opened and the bypass 202 is closed to the second position P2. When the switching valve 11 is switched and it is determined that the waiting time H2 has elapsed, step a1
Go to 0. Here, the exhaust gas temperature T3 of the post-catalyst is taken in from the post-catalyst temperature sensor 25, and while the same value is lower than the activation completion temperature Tr of the post-catalyst, the process proceeds to step a15, and when it exceeds, the process proceeds to step a16 described above.

【0027】ステップa15では後段触媒の排ガス温度
T3の微分値ΔT(=ΔTn-1−ΔTn)を算出し、同微
分値ΔTのレベルがウォームアップ触媒9が活性完了温
度Tfに達したと見做せる温度勾配相当の判定値ΔTα
を上回るか否か判定する。ここで、下回る間はステップ
a11に進み、上流主路201を開く第2位置P2に第
1切り換え弁11を保持し、ウォームアップ触媒9の温
度上昇を図り、上回るとステップa19に進み、第1切
り換え弁11を中間開度P3(例えばストイキオ域での
時点t1でこの状態に達した場合を図5中に符号nで示
した)に保持し、バイパス路202の加熱を開始する。
At step a15, the differential value ΔT (= ΔT n-1 -ΔT n ) of the exhaust gas temperature T3 of the latter stage catalyst is calculated, and the level of the differential value ΔT indicates that the warm-up catalyst 9 has reached the activation completion temperature Tf. Judgment value ΔTα corresponding to the temperature gradient that can be considered
Or not. Here, while falling below the temperature, the routine proceeds to step a11, where the first switching valve 11 is held at the second position P2 that opens the upstream main path 201, the temperature of the warm-up catalyst 9 is increased, and if it exceeds, the routine proceeds to step a19 and the first The switching valve 11 is held at the intermediate opening degree P3 (for example, the case where this state is reached at the time point t1 in the stoichio region is shown by the symbol n in FIG. 5), and the heating of the bypass passage 202 is started.

【0028】なお、図1に示す自動車の排ガス浄化装置
では後段触媒温度センサ25のみで第1切り換え弁11
を切り換えていたが、これと逆に図示しない前段触媒温
度センサをウォームアップ触媒9中に装備して同センサ
の出力のみで切り換え弁11を切り換えるような構成を
採ることも出来る。ステップa19の後のステップa2
0,a21では切り換え弁11が中間開度P3に達する
のを待ち、弁開度センサ19の出力より中間開P3に達
するのを検出すると、そのままリターンし、所定の経過
時間T1を経過しても中間開度P3に達しないとステッ
プa7に進んで故障出力を発し、リターンする。
In the automobile exhaust gas purification apparatus shown in FIG. 1, only the rear catalyst temperature sensor 25 is used for the first switching valve 11
However, conversely, it is possible to adopt a configuration in which a pre-catalyst temperature sensor (not shown) is provided in the warm-up catalyst 9 and the switching valve 11 is switched only by the output of the sensor. Step a2 after step a19
At 0 and a21, the switching valve 11 waits until it reaches the intermediate opening P3, and when it is detected from the output of the valve opening sensor 19 that it reaches the intermediate opening P3, it returns as it is and even after a predetermined elapsed time T1 elapses. If the intermediate opening P3 is not reached, the process proceeds to step a7, a fault output is issued, and the process returns.

【0029】ステップa10より後段触媒温度T3がそ
の活性完了温度Trを上回るとしてステップa16に達
っすると、図5中に二点鎖線mで示すように第1切り換
え弁11を第1開度P1に切り換え、後のステップa1
7,a18では切り換え弁11が第1開度P1に達する
のを待ち、弁開度センサ19の出力より第1開度P1に
達するのを検出すると、ステップa22に進み、所定の
経過時間T1を経過しても第1開度P1に達しないとス
テップa7に進んで故障出力を発し、リターンする。
When the subsequent stage catalyst temperature T3 exceeds the activation completion temperature Tr from step a10 and the process reaches step a16, the first switching valve 11 is set to the first opening degree P1 as shown by the chain double-dashed line m in FIG. Switching, the subsequent step a1
7 and a18, the switching valve 11 waits for the first opening P1 to reach the first opening P1, and when it is detected from the output of the valve opening sensor 19 that the first opening P1 is reached, the process proceeds to step a22, and the predetermined elapsed time T1 is passed. If the first opening P1 has not been reached even after the lapse of time, the routine proceeds to step a7, where a failure output is issued and the routine returns.

【0030】ステップa22に達すると、ここでは空燃
比情報をリニア空燃比センサ24の出力に基づき取り込
み、同空燃比がリーン域か否か判定し、リーンではステ
ップa23に進み、そうでない、即ち、ストイキオ域或
いはリッチ域に切り替わった時点(例えば図5中の時点
t2)で有ると、ステップa24に進み、第2切り換え
弁27を第2バイパス路32を開く第2位置Q2に切り
換え保持し、ステップa25,26に進む。ここでは第
2切り換え弁27が第2位置Q2に達するのを待ち、弁
開度センサ19の出力より第2位置Q2に達するのを検
出すると、そのままリターンし、所定の経過時間T1を
経過しても第2位置Q2に達しないとステップa7に進
み、ここで故障表示の出力を発し、リターンする。この
様にリーン運転以外の領域で第2切り換え弁27を第2
位置Q2に保持することによって、リーンNOX触媒2
2へのストイキオ域、リッチ域での排ガスが流入するこ
とを低減し、リーンNOX触媒22の耐久性を向上させ
ることができる。
When step a22 is reached, here, the air-fuel ratio information is taken in based on the output of the linear air-fuel ratio sensor 24, it is judged whether or not the air-fuel ratio is in the lean range, and if lean, the process proceeds to step a23, otherwise, that is, If it is the time point (for example, time point t2 in FIG. 5) when switching to the stoichio area or the rich area, the process proceeds to step a24, the second switching valve 27 is switched to the second position Q2 that opens the second bypass passage 32, and is held. Go to a25, 26. Here, it waits for the second switching valve 27 to reach the second position Q2, and when it is detected from the output of the valve opening sensor 19 that the second switching valve 27 reaches the second position Q2, the process returns without further processing, and a predetermined elapsed time T1 elapses. Also does not reach the second position Q2, the process proceeds to step a7, where a failure display is issued and the process returns. In this way, the second switching valve 27 is set to the second position in the region other than the lean operation.
Lean NO x catalyst 2 by holding at position Q2
Stoichiometric range to 2, reducing the exhaust gas in the rich region to flow, it is possible to improve the durability of the lean NO X catalyst 22.

【0031】他方、ステップa22よりリーン運転域と
してa23に達すると、ここでは後段触媒温度センサ2
5によりリーンNOX触媒22位置の排気温度情報を取
り込み、この値が後段触媒の許容される一定値、即ち高
温側上限値TMAXを上回るか否か判定し、上回るとステ
ップa24に進み、第2バイパス路32を開いて(図5
中に二点鎖線bで示した)、リーンNOX触媒22の高
温劣化を防止する。他方下回っているとステップa14
に進み、ステップa14では第2切り換え弁27を第1
開度Q1に切り換え、第2バイパス路32を閉じで、リ
ーンNOX触媒22にリーン雰囲気下の排ガスを供給す
る。このステップa14よりステップa27,28に進
むと、ここでは第2切り換え弁27が第1位置Q1に達
するのを待ち、弁開度センサ19の出力より第1位置Q
1に達するのを検出すると、そのままリターンし、所定
の経過時間T1を経過しても第1位置Q1に達しないと
ステップa7に進み、ここで故障表示の出力を発し、リ
ターンする。
On the other hand, when a23 is reached as the lean operating range from step a22, the rear catalyst temperature sensor 2 is detected here.
The exhaust temperature information at the position of the lean NO X catalyst 22 is fetched by 5, and it is judged whether or not this value exceeds a fixed value allowed by the post-catalyst, that is, the upper limit value T MAX on the high temperature side. 2 Open the bypass 32 (Fig. 5
It indicated by the two-dot chain line b in) to prevent high-temperature degradation of the lean NO X catalyst 22. On the other hand, if it is below step a14
Then, in step a14, the second switching valve 27 is set to the first
By switching to the opening degree Q1 and closing the second bypass passage 32, the exhaust gas in a lean atmosphere is supplied to the lean NO x catalyst 22. When the process proceeds from step a14 to steps a27 and 28, here, the second switching valve 27 waits until it reaches the first position Q1, and the output of the valve opening sensor 19 determines the first position Q1.
When it is detected that the number reaches 1, the process returns as it is, and if the first position Q1 is not reached even after the lapse of a predetermined elapsed time T1, the process proceeds to step a7, where a failure display is output and the process returns.

【0032】このように、リーン運転域ではステップa
16で第1切り換え弁11を第1位置P1に切り換えて
ウォームアップ触媒9にHCを消費されることを防ぎ、
第2バイパス路32を閉じてHCを含む燃焼室101か
らの排ガスをそのままリーンNOX触媒22に導くの
で、リーンNOX触媒22が過度に加熱しないかぎり、
即ち高温側上限値TMAXを上回らない限り、リーンNOX
触媒22のリーン域でのNOX浄化効率の低下を避ける
ことが出来る。なお、図5には時点t3で第1切り換え
弁11を第1位置P1に第2切り換え弁27を第1位置
Q1のままに保持した状態を実線aで示した。
Thus, in the lean operation range, step a
At 16, the first switching valve 11 is switched to the first position P1 to prevent the warm-up catalyst 9 from consuming HC,
Since directing exhaust gas from the combustion chamber 101 including the HC closes the second bypass passage 32 as it is lean NO X catalyst 22, as long as the lean NO X catalyst 22 is not excessively heated,
That is, unless the upper limit T MAX on the high temperature side is exceeded, lean NO x
It is possible to avoid a decrease in NO x purification efficiency in the lean region of the catalyst 22. In FIG. 5, the solid line a shows a state in which the first switching valve 11 is held at the first position P1 and the second switching valve 27 is kept at the first position Q1 at time t3.

【0033】上述の様に、ここでは、機関停止時に第1
切り換え弁11を第1位置P1に開き、第2切り換え弁
27を第1位置Q1に保持する。このため、ウォームア
ップ触媒9に排ガスを流さないので、たとえ、第1切り
換え弁11が第1位置P1に長時間保持され続けたまま
となり、排気管の内壁に固着しても、この第1位置P1
では第1バイパス路202が開き、リーンNOX触媒2
2へのHCの供給は可能となる。このため、リーンNO
X触媒22のNOX浄化率の低下が防止され、更に上流主
路201が閉じられウォームアップ触媒9の熱劣化も防
止され、市場出荷時におけるフェイルセーフ機能を保持
出来る。なお、図1の第2切り換え弁27は開閉弁31
のオン時に第1開度Q1に切り換えられたが、これに代
えて、開閉弁31のオフ時に第2切り換え弁27を第1
開度Q1に切り換える構成を取っても良く、この場合に
は、機関停止時に、第1バイパス路202を開き、第2
バイパス路32を閉じるので、両弁が共に固着した場合
におけるフェイルセーフ機能をより強化出来る。
As described above, here, when the engine is stopped, the first
The switching valve 11 is opened to the first position P1 and the second switching valve 27 is held at the first position Q1. For this reason, since the exhaust gas does not flow through the warm-up catalyst 9, even if the first switching valve 11 remains held at the first position P1 for a long time and sticks to the inner wall of the exhaust pipe, this first position P1
Then, the first bypass passage 202 opens, and the lean NO X catalyst 2 is opened.
It becomes possible to supply HC to No. 2. Therefore, lean NO
The NO x purification rate of the X catalyst 22 is prevented from lowering, the upstream main path 201 is closed, the heat deterioration of the warm-up catalyst 9 is also prevented, and the fail safe function at the time of market shipment can be maintained. The second switching valve 27 shown in FIG.
When the switch valve 31 is turned on, the first opening degree Q1 is switched to, but instead of this, when the on-off valve 31 is turned off, the second switch valve 27 is switched to the first opening degree Q1.
The configuration may be such that the opening degree is switched to Q1. In this case, when the engine is stopped, the first bypass passage 202 is opened and the second bypass passage 202 is opened.
Since the bypass passage 32 is closed, the fail-safe function when both valves are stuck together can be further strengthened.

【0034】図1,図2の自動車の排ガス浄化装置は上
流排気管5の二又分岐部7に第1切り換え弁11を配備
し、第2バイパス路32の中間部に第2切り換え弁27
を配設していたが、これに代えて図2(b)に示す様
に、下流側の合流部8に第1切り換え弁11を配備し、
第2バイパス路32の合流部35ても良い。このような
構成でも図1の装置と同様な作用効果を得ることが出来
る。
In the exhaust gas purifying apparatus for automobiles shown in FIGS. 1 and 2, the first switching valve 11 is provided at the bifurcated branch portion 7 of the upstream exhaust pipe 5, and the second switching valve 27 is provided at the middle portion of the second bypass passage 32.
However, instead of this, as shown in FIG. 2 (b), a first switching valve 11 is provided at the merging portion 8 on the downstream side,
The merging portion 35 of the second bypass passage 32 may be used. Even with such a configuration, it is possible to obtain the same operational effects as the device of FIG.

【0035】図1の自動車の排ガス浄化装置はその弁制
御手段としてのECU3が後段触媒温度によって第1切
り換え弁11を開閉制御しているが、特に、機関の暖機
時の間のみは始動後の経過時間に応じて開度を第1開度
P1,中間開度P3(第1位置と第2位置の間の開度で
上流主路201と第1バイパス路202に共に排ガスを
流入出来る開度)及び第2開度P2とに選択的に順次切
り換える構成を採っても良い。この場合、始動時の排ガ
ス浄化効率を早期に向上出来、暖機後は図1の装置と同
様の作用効果を得られる。更に第1切り換え弁11を始
動後の経過時間及び後段触媒温度の両者を用いて開閉制
御する様にしても良い。更に、第2切り換え弁27は空
燃比と後段触媒温度によって切り換えられていたが、空
燃比のみで切り換えても良く、後段触媒温度に代えて、
後段触媒付近の排ガス温度で切り換え制御する様にして
も良い。
In the vehicle exhaust gas purifying apparatus shown in FIG. 1, the ECU 3 as the valve control means controls the opening / closing of the first switching valve 11 according to the temperature of the rear catalyst. The opening degree is the first opening degree P1 and the intermediate opening degree P3 according to the time (the opening degree between the first position and the second position where the exhaust gas can flow into the upstream main path 201 and the first bypass path 202). Alternatively, a configuration may be adopted in which the second opening P2 is selectively and sequentially switched. In this case, the exhaust gas purification efficiency at the time of starting can be improved at an early stage, and after warming up, the same operational effects as the device of FIG. 1 can be obtained. Further, the first switching valve 11 may be controlled to be opened / closed by using both the elapsed time after the start and the temperature of the latter stage catalyst. Further, the second switching valve 27 was switched depending on the air-fuel ratio and the post-catalyst temperature, but it may be switched only by the air-fuel ratio, instead of the post-catalyst temperature,
The switching may be controlled by the temperature of the exhaust gas near the rear catalyst.

【0036】[0036]

【発明の効果】以上のように、この発明は第1バイパス
路或いは前段触媒の排ガス流量を第1切り換え弁が制御
し、第2バイパス路或いはリーンNOX触媒の排ガス流
量を第2切り換え弁が制御するので、内燃機関の運転情
報に応じて前段触媒及びリーンNOX触媒に流入された
排ガスを適確に浄化することが出来、特に、排気路上に
前段触媒とその後方に少なくとも一部にリーンNOX
媒を有した後段触媒とを配備した場合における、リーン
NOX触媒の浄化効率及び耐久性を十分に確保出来る。
As described above, according to the present invention, the first switching valve controls the exhaust gas flow rate of the first bypass passage or the front stage catalyst, and the second switching valve controls the exhaust gas flow rate of the second bypass passage or the lean NO x catalyst. and controls, the exhaust gas flowing into the front catalyst and the lean NO X catalyst in accordance with the operation information of the internal combustion engine can be purified to accurately, particularly, the lean on at least a portion precatalyst and its rear exhaust path NO in the case where X catalyst deployed and the rear stage catalyst having a purification efficiency and durability of the lean NO X catalyst sufficiently be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての自動車の排ガス浄化
装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an automobile exhaust gas purifying apparatus as an embodiment of the present invention.

【図2】(a)は図1の排ガス浄化装置の概略配置図、
(b)は本発明の他の実施例としての排ガス浄化装置の
概略配置図である。
2 (a) is a schematic layout diagram of the exhaust gas purifying apparatus of FIG. 1,
(B) is a schematic layout drawing of an exhaust gas purifying apparatus as another embodiment of the present invention.

【図3】図1の排ガス浄化装置のECUが用いる待ち時
間算出マップの特性線図である。
3 is a characteristic diagram of a waiting time calculation map used by the ECU of the exhaust gas purification apparatus of FIG.

【図4】リーンNOX触媒の浄化特性線図である。FIG. 4 is a purification characteristic diagram of a lean NO x catalyst.

【図5】図1の排ガス浄化装置の各切り換え弁の作動説
明図である。
5 is an operation explanatory view of each switching valve of the exhaust gas purifying apparatus of FIG. 1. FIG.

【図6】図1の排ガス浄化装置のECUが行う切り換え
弁制御ルーチンの前部フローチャートである。
6 is a front part flowchart of a switching valve control routine executed by an ECU of the exhaust gas purifying apparatus of FIG.

【図7】図1の排ガス浄化装置のECUが行う切り換え
弁制御ルーチンの後部フローチャートである。
7 is a rear flow chart of a switching valve control routine executed by the ECU of the exhaust gas purification apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 排気路 3 ECU 5 上流排気管 8 合流部 9 ウォームアップ触媒 10 後段触媒 11 切り換え弁 14 エアーアクチュエータ 15 電磁弁 22 リーンNOX触媒 23 三元触媒 24 空燃比センサ 26 エアーアクチュエータ 27 第2切り換え弁 31 開閉弁 32 第2バイパス路 101 燃焼室 201 上流主路 202 バイパス路 E エンジン1 Engine Main Body 2 Exhaust Path 3 ECU 5 Upstream Exhaust Pipe 8 Merging Section 9 Warm-up Catalyst 10 Rear Catalyst 11 Switching Valve 14 Air Actuator 15 Solenoid Valve 22 Lean NO X Catalyst 23 Three-way Catalyst 24 Air-fuel Ratio Sensor 26 Air Actuator 27 2nd Switching valve 31 Open / close valve 32 Second bypass passage 101 Combustion chamber 201 Upstream main passage 202 Bypass passage E Engine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 B 9150−3G 3/28 301 F 9150−3G (72)発明者 古賀 一雄 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location F01N 3/24 B 9150-3G 3/28 301 F 9150-3G (72) Inventor Kazuo Koga Tokyo 5-33-8 Shiba, Minato-ku, Mitsubishi Motors Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の燃焼室に近接される前段触媒と
上記前段触媒の後方に配備されリーンNOX触媒を含む
後段触媒とを排気路上に備え、上記前段触媒が主に機関
運転開始初期の排ガス浄化を行う様に構成された自動車
の排ガス浄化装置において、上記排気路には上記前段触
媒のみを迂回して上記排気路に合流する第1バイパス路
と上記後段触媒中のリーンNOX触媒のみを迂回して上
記排気路に合流する第2バイパス路とを設け、上記第1
バイパス路或いは上記前段触媒へ流入する排ガスの流量
を上記内燃機関の運転情報に応じて制御する第1切り換
え弁を設け、上記第2バイパス路或いは上記リーンNO
X触媒へ流入する排ガスの流量を上記内燃機関の運転情
報に応じて制御する第2切り換え弁を設けたことを特徴
とする自動車の排ガス浄化装置。
1. A and a rear stage catalyst comprising a pre-catalyst and the deployed behind the front catalyst lean NO X catalyst proximate to the combustion chamber of an internal combustion engine in the exhaust path, the pre-catalyst mainly engine operation start initial In an exhaust gas purifying apparatus for an automobile configured to purify exhaust gas, a first bypass passage that bypasses only the front catalyst and joins the exhaust passage in the exhaust passage, and a lean NO x catalyst in the rear catalyst. And a second bypass passage that joins the exhaust passage by bypassing only the first bypass passage.
A first switching valve for controlling the flow rate of the exhaust gas flowing into the bypass passage or the pre-stage catalyst according to the operation information of the internal combustion engine is provided, and the second bypass passage or the lean NO.
An exhaust gas purifying apparatus for an automobile, comprising a second switching valve for controlling the flow rate of exhaust gas flowing into the X catalyst in accordance with the operation information of the internal combustion engine.
JP4033729A 1992-02-20 1992-02-20 Exhaust emission control device for automobile Withdrawn JPH05231138A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4033729A JPH05231138A (en) 1992-02-20 1992-02-20 Exhaust emission control device for automobile
US08/019,902 US5349816A (en) 1992-02-20 1993-02-19 Exhaust emission control system
DE69304562T DE69304562T2 (en) 1992-02-20 1993-02-19 Exhaust emission control device
EP93102682A EP0556854B1 (en) 1992-02-20 1993-02-19 Exhaust emission control system
KR1019930002368A KR960007969B1 (en) 1992-02-20 1993-02-20 Exhaust emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033729A JPH05231138A (en) 1992-02-20 1992-02-20 Exhaust emission control device for automobile

Publications (1)

Publication Number Publication Date
JPH05231138A true JPH05231138A (en) 1993-09-07

Family

ID=12394493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033729A Withdrawn JPH05231138A (en) 1992-02-20 1992-02-20 Exhaust emission control device for automobile

Country Status (1)

Country Link
JP (1) JPH05231138A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690072A (en) * 1996-12-13 1997-11-25 Ford Global Technologies, Inc. Method and system for determining and controlling a/f ratio in lean engines
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
US5755202A (en) * 1996-10-25 1998-05-26 Ford Global Technologies, Inc. Method of reducing feed gas emissions in an internal combustion engine
US5778666A (en) * 1996-04-26 1998-07-14 Ford Global Technologies, Inc. Method and apparatus for improving engine fuel economy
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
US5865026A (en) * 1997-01-21 1999-02-02 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5915359A (en) * 1996-12-13 1999-06-29 Ford Global Technologies, Inc. Method and system for determining and controlling A/F ratio during cold start engine operation
US5953905A (en) * 1997-01-17 1999-09-21 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US5974785A (en) * 1997-01-16 1999-11-02 Ford Global Technologies, Inc. Closed loop bias air/fuel ratio offset to enhance catalytic converter efficiency
US5974786A (en) * 1997-01-21 1999-11-02 Ford Global Technologies, Inc. Adaptive time window to synchronize pre- and post-catalyst oxygen sensor switch counters
US6003309A (en) * 1995-02-17 1999-12-21 Hitachi, Ltd. Diagnostic apparatus for exhaust gas clarification apparatus for internal combustion engine
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
KR20030070260A (en) * 2002-02-23 2003-08-30 한국델파이주식회사 Catalytic converter apparatus for exhaust gas in vehicle using diesel fuel
US11834975B2 (en) 2019-11-20 2023-12-05 Vitesco Technologies GmbH Method for purifying exhaust gas and electronic device therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003309A (en) * 1995-02-17 1999-12-21 Hitachi, Ltd. Diagnostic apparatus for exhaust gas clarification apparatus for internal combustion engine
US5778666A (en) * 1996-04-26 1998-07-14 Ford Global Technologies, Inc. Method and apparatus for improving engine fuel economy
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US5755202A (en) * 1996-10-25 1998-05-26 Ford Global Technologies, Inc. Method of reducing feed gas emissions in an internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
US5690072A (en) * 1996-12-13 1997-11-25 Ford Global Technologies, Inc. Method and system for determining and controlling a/f ratio in lean engines
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
US5915359A (en) * 1996-12-13 1999-06-29 Ford Global Technologies, Inc. Method and system for determining and controlling A/F ratio during cold start engine operation
US5974785A (en) * 1997-01-16 1999-11-02 Ford Global Technologies, Inc. Closed loop bias air/fuel ratio offset to enhance catalytic converter efficiency
US6112518A (en) * 1997-01-17 2000-09-05 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US5953905A (en) * 1997-01-17 1999-09-21 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter
US6018944A (en) * 1997-01-21 2000-02-01 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5974786A (en) * 1997-01-21 1999-11-02 Ford Global Technologies, Inc. Adaptive time window to synchronize pre- and post-catalyst oxygen sensor switch counters
US5865026A (en) * 1997-01-21 1999-02-02 Ford Global Technologies, Inc. System and method for monitoring a catalytic converter using adaptable indicator threshold
US5832722A (en) * 1997-03-31 1998-11-10 Ford Global Technologies, Inc. Method and apparatus for maintaining catalyst efficiency of a NOx trap
KR20030070260A (en) * 2002-02-23 2003-08-30 한국델파이주식회사 Catalytic converter apparatus for exhaust gas in vehicle using diesel fuel
US11834975B2 (en) 2019-11-20 2023-12-05 Vitesco Technologies GmbH Method for purifying exhaust gas and electronic device therefor

Similar Documents

Publication Publication Date Title
KR960007969B1 (en) Exhaust emission control system
KR960004832B1 (en) Engine exhaust gas purification apparatus
JPH05231138A (en) Exhaust emission control device for automobile
JPH0742542A (en) Exhaust emission control device foe intrenal combustion engine
JP2000186543A (en) Exhaust emission control device of internal combustion engine
JP2988200B2 (en) Secondary air supply control device for electrically heated catalyst
JPH05231136A (en) Exhaust emission control device for automobile
US6286306B1 (en) Exhaust gas purification system of internal combustion engine
JPH05231137A (en) Exhaust emission control device for automobile
US6641303B2 (en) Temperature control system for humidity sensor
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4382771B2 (en) Air supply device
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JPH11132035A (en) Exhaust emission control device for internal combustion engine
JP3587670B2 (en) Exhaust gas purification equipment for automobiles
JP3840815B2 (en) Exhaust gas purification device for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JP3629953B2 (en) Exhaust gas purification device for internal combustion engine
KR100366255B1 (en) Exhaust system to improve output of engine
JPH11148340A (en) Exhaust emission control device of internal combustion engine
JP3775460B2 (en) Exhaust gas purification device for internal combustion engine
JP3185597B2 (en) Exhaust gas purification device for internal combustion engine
JP3468144B2 (en) Exhaust gas purification device for internal combustion engine
JPH0511294Y2 (en)
JPH11141331A (en) Emission control device of engine with turbo charger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518