JP3468144B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine

Info

Publication number
JP3468144B2
JP3468144B2 JP02694099A JP2694099A JP3468144B2 JP 3468144 B2 JP3468144 B2 JP 3468144B2 JP 02694099 A JP02694099 A JP 02694099A JP 2694099 A JP2694099 A JP 2694099A JP 3468144 B2 JP3468144 B2 JP 3468144B2
Authority
JP
Japan
Prior art keywords
purification catalyst
exhaust
temperature
nox
exhaust purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02694099A
Other languages
Japanese (ja)
Other versions
JP2000227021A (en
Inventor
康二 石原
圭司 岡田
彰 田山
要 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02694099A priority Critical patent/JP3468144B2/en
Publication of JP2000227021A publication Critical patent/JP2000227021A/en
Application granted granted Critical
Publication of JP3468144B2 publication Critical patent/JP3468144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、詳しくは、始動時のNOx浄化対策技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a NOx purification countermeasure technique at the time of starting.

【0002】[0002]

【従来の技術】従来から、所定温度以上で排気空燃比が
リーンであるときに排気中のNOxを吸収し、排気空燃
比が理論空燃比(ストイキ)又はリッチであるときに前
記吸収したNOxを放出して還元処理する排気浄化触媒
を備えた機関が知られている(特許番号第260049
2号参照)。
2. Description of the Related Art Conventionally, when the exhaust air-fuel ratio is lean above a predetermined temperature, NOx in the exhaust gas is absorbed, and when the exhaust air-fuel ratio is stoichiometric or rich, the absorbed NOx is absorbed. An engine provided with an exhaust gas purification catalyst that releases and reduces the gas is known (Patent No. 260049).
(See No. 2).

【0003】[0003]

【発明が解決しようとする課題】前記排気浄化触媒で
は、NOx吸収・放出作用が温度の影響を受けることは
知られていたが、一旦排気浄化触媒に吸収されたNOx
が温度上昇によって放出されてしまうことまでは、判明
されてしなかった。
In the exhaust purification catalyst, it has been known that the NOx absorption / release action is influenced by the temperature, but the NOx once absorbed by the exhaust purification catalyst.
It wasn't known until it was released due to a rise in temperature.

【0004】しかしながら、前記排気浄化触媒がNOx
を吸収した状態で機関の運転が停止された後、NOx吸
収・放出作用を有しない温度まで低下した場合、既に吸
入されているNOxは次回の運転時まで吸収保持され続
け、次回始動後の温度上昇に伴って放出される現象が発
生することが明らかとなった。
However, the exhaust purification catalyst is NOx.
When the engine operation is stopped while absorbing NOx and the temperature drops to a level that does not have NOx absorbing / releasing action, the already absorbed NOx continues to be absorbed and held until the next operation, and the temperature after the next start It was clarified that the phenomenon of release occurs with the rise.

【0005】即ち、従来は、始動後に残留NOxが排出
してしまうという問題があった。本発明は、このような
従来の課題に着目してなされたもので、HC吸着・放出
作用を有する排気浄化触媒を適切に組み合わせることに
より、始動後の残留NOxの排出を抑制できるようにし
た内燃機関の排気浄化装置を提供することを目的とす
る。
That is, conventionally, there has been a problem that residual NOx is discharged after starting. The present invention has been made in view of such a conventional problem, and an internal combustion engine capable of suppressing the emission of residual NOx after a start by appropriately combining an exhaust gas purification catalyst having an HC adsorbing / releasing action. An object is to provide an exhaust emission control device for an engine.

【0006】[0006]

【課題を解決するための手段】そのため請求項1に係る
発明は、機関の排気通路に配置され、NOx放出開始温
度に達すると保持していたNOxを放出するとともに、
完全に活性した状態では排気の空燃比に応じてNOxの
吸収と放出とを行う作用を有した第1の排気浄化触媒
と、前記第1の排気浄化触媒上流側の排気通路に配置さ
れ、温度に応じてHCの吸収と放出とを行う作用を有し
た第2の排気浄化触媒と、を含んで構成した内燃機関の
排気浄化装置において、機関始動後に前記第1の排気浄
化触媒が前記NOx放出開始温度に達するまでの時間
と、機関始動後に前記第2の排気浄化触媒がHC放出開
始温度に達するまでの時間とが略同一となる関係位置に
前記第1の排気浄化触媒と前記第2の排気浄化触媒とを
配置したことを特徴とする。
Therefore, the invention according to claim 1 is arranged in an exhaust passage of an engine, and a NOx emission start temperature is set.
When it reaches the limit, it releases the retained NOx and
In a completely activated state, the first exhaust purification catalyst having a function of absorbing and releasing NOx in accordance with the air-fuel ratio of the exhaust, and the first exhaust purification catalyst arranged in the exhaust passage upstream of the Of an internal combustion engine configured to include a second exhaust gas purification catalyst having an action of absorbing and releasing HC according to
In the exhaust gas purification device, the first exhaust gas purification after the engine is started.
Time for the oxidization catalyst to reach the NOx emission start temperature
Then, after the engine is started, the second exhaust gas purification catalyst releases HC.
At the related position where the time to reach the initial temperature is almost the same
The first exhaust purification catalyst and the second exhaust purification catalyst
It is characterized by being arranged .

【0007】請求項1に係る発明によると、機関運転停
止後、第2の排気浄化触媒がHCを放出できる温度より
低温となった状態で機関を再度始動すると、始動後の低
温状態で排気中のHCが吸収されるが、温度上昇してH
Cの放出開始温度に達すると、該吸収されていたHCが
放出される。
According to the first aspect of the present invention, after the engine is stopped, the engine is restarted when the temperature of the second exhaust purification catalyst is lower than the temperature at which HC can be released. HC is absorbed, but the temperature rises and H
When the release start temperature of C is reached, the absorbed HC is released.

【0008】一方、前記機関の始動後、第1の排気浄化
触媒も温度上昇してNOxの放出開始温度に達すると、
該触媒に吸収されていたNOxが放出される。そして、
上流側の第2の排気浄化触媒から放出されるHCと、下
流側の第1の排気浄化触媒から放出されたNOxとが反
応し合い、NOxはHCにより還元されて浄化処理され
つつ、HCも酸化剤であるNOxによって酸化されるこ
とにより、NOx,HC共に浄化処理される。
On the other hand, after the engine is started, when the temperature of the first exhaust purification catalyst also rises to reach the NOx emission start temperature,
NOx absorbed by the catalyst is released. And
HC released from the second exhaust purification catalyst on the upstream side and NOx released from the first exhaust purification catalyst on the downstream side react with each other, and NOx is reduced by the HC and purified, and at the same time, HC is also removed. Both NOx and HC are purified by being oxidized by NOx which is an oxidant.

【0009】ここで、第2の排気浄化触媒のHC放出開
始温度は、第1の排気浄化触媒のNOx放出開始温度よ
り高いが、第2の排気浄化触媒の方を第1の排気浄化触
媒より上流側に配置することにより、相対的に温度上昇
が早められ、HC放出開始温度に達するのとNOx放出
開始温度に達するのとが近づけることが可能であり、排
気通路の熱容量等に基づいて、両触媒の配置関係をより
精密に設定することにより、HC放出開始温度に達する
までの時間とNOx放出開始温度に達するまでの時間と
を略一致させることができ、これにより、NOxとHC
との相互作用による浄化機能をより促進できる。
Although the HC emission start temperature of the second exhaust purification catalyst is higher than the NOx emission start temperature of the first exhaust purification catalyst, the second exhaust purification catalyst is higher than the NOx emission start temperature of the first exhaust purification catalyst. by arranging the upstream side, relative temperature rise is earlier, it is possible that a is closer Rukoto reaches to the NOx release start temperature reaches HC emission initiation temperature, exhaust
Based on the heat capacity of the air passage, etc.
The HC release start temperature is reached by setting it precisely.
And the time to reach the NOx emission start temperature
Can be made to substantially coincide with each other, whereby NOx and HC
The purification function by interaction with can be further promoted.

【0010】[0010]

【0011】[0011]

【0012】また、請求項2に係る発明は、機関の排気
通路に配置され、NOx放出開始温度に達すると保持し
ていたNOxを放出するとともに、完全に活性した状態
では排気の空燃比に応じてNOxの吸収と放出とを行う
作用を有した第1の排気浄化触媒と、 前記第1の排気浄
化触媒上流側の排気通路に配置され、温度に応じてHC
の吸収と放出とを行う作用を有した第2の排気浄化触媒
と、 第1の排気浄化触媒の上流側に配置した加熱手段
と、 機関の始動後、所定時間前記加熱手段を作動させる
ことにより、前記第1の排気浄化触媒が前記NOx放出
開始温度に達するまでの時間と前記第2の排気浄化触媒
がHC放出開始温度に達するまでの時間とを略一致させ
る加熱制御手段と、 を含んで構成したことを特徴とす
る。
The invention according to claim 2 is the exhaust gas of an engine.
It is placed in the passage and holds when the NOx emission start temperature is reached.
Released NOx and fully activated
Then, NOx is absorbed and released according to the air-fuel ratio of the exhaust gas.
First exhaust gas purifying catalyst having an effect, the first exhaust purification
It is arranged in the exhaust passage on the upstream side of the oxidation catalyst,
Second exhaust purification catalyst having an action of absorbing and releasing
And heating means arranged upstream of the first exhaust purification catalyst
And, after starting the engine, operate the heating means for a predetermined time.
As a result, the first exhaust purification catalyst releases the NOx.
Time to reach start temperature and second exhaust purification catalyst
The time to reach the HC release start temperature
That a heating control unit, characterized in that it is configured to include to
It

【0013】請求項2に係る発明によると、HC放出開
始温度に達するまでの時間とNOx放出開始温度に達す
るまでの時間とが略一致させるように、第1の排気浄化
触媒と第2の排気浄化触媒とを配置することが困難な状
況の場合には、加熱制御手段により加熱手段を機関始動
後に所定時間作動させることにより、前記両時間を略一
致させて排気浄化機能を促進することができる。
According to the second aspect of the present invention, the first exhaust gas purification catalyst and the second exhaust gas are so arranged that the time required to reach the HC release start temperature and the time required to reach the NOx release start temperature are substantially the same. In the case where it is difficult to arrange the purification catalyst, the heating control means operates the heating means for a predetermined time after the engine is started, so that the both times can be substantially matched and the exhaust gas purification function can be promoted. .

【0014】また、請求項3に係る発明は、機関の排気
通路に配置され、NOx放出開始温度に達すると保持し
ていたNOxを放出するとともに、完全に活性した状態
では排気の空燃比に応じてNOxの吸収と放出とを行う
作用を有した第1の排気浄化触媒と、 前記第1の排気浄
化触媒上流側の排気通路に配置され、温度に応じてHC
の吸収と放出とを行う作用を有した第2の排気浄化触媒
と、 第1の排気浄化触媒の上流側に配置した加熱手段
と、 前記第1の排気浄化触媒が前記NOx放出開始温度
に達するまでの時間と、前記第2の排気浄化触媒がHC
放出開始温度に達するまでの時間とを推定する放出開始
時間推定手段と、 前記放出開始時間推定手段による推定
結果に基づいて、前記第1の排気浄化触媒が前記NOx
放出開始温度に達するまでの時間が、前記第2の排気浄
化触媒がHC放出開始温度に達するまでの時間より長い
と判定した場合に、前記加熱手段を作動させることによ
り、前記第1の排気浄化触媒が前記NOx放出開始温度
に達するまでの時間と前記第2の排気浄化触媒がHC放
出開始温度に達するまでの時間とを略一致させる加熱制
御手段と、を含んで構成したことを特徴とする。
The invention according to claim 3 is the exhaust gas of an engine.
It is placed in the passage and holds when the NOx emission start temperature is reached.
Released NOx and fully activated
Then, NOx is absorbed and released according to the air-fuel ratio of the exhaust gas.
First exhaust gas purifying catalyst having an effect, the first exhaust purification
It is arranged in the exhaust passage on the upstream side of the oxidation catalyst,
Second exhaust purification catalyst having an action of absorbing and releasing
And heating means arranged upstream of the first exhaust purification catalyst
And the first exhaust purification catalyst has the NOx emission start temperature
And the time when the second exhaust purification catalyst becomes HC
Emission start to estimate the time to reach the emission start temperature and
Time estimation means and estimation by the emission start time estimation means
Based on the result, the first exhaust purification catalyst is changed to the NOx.
The time until the emission start temperature is reached is the second exhaust gas cleaning
Longer than the time it takes for the catalyst to reach the HC release start temperature
If it is determined that the heating means is operated,
And the first exhaust gas purification catalyst has the NOx emission start temperature
And the second exhaust purification catalyst releases HC.
Heating control that makes the time to reach the discharge start temperature approximately match
It is characterized in that it is configured to include a control means.

【0015】請求項3に係る発明によると、前記両触媒
の配置をHCの放出開始とNOxの放出開始とが略一致
するように適切に設定しても、外気温度が常温より相当
低いなどの状況では、下流側の第1の排気浄化触媒の温
度上昇遅れが大きくなって、NOx放出開始がHC放出
開始に比較して遅れてしまう。そこで、HC放出開始温
度に達するまでの時間とNOx放出開始温度に達するま
での時間とを推定し、NOx放出開始が遅れると判定さ
れたときに加熱手段を作動させて、第1の排気浄化触媒
の温度上昇を早めることにより、HC放出開始とNOx
放出開始とを略一致させて排気浄化機能を促進すること
ができる。
According to the third aspect of the present invention, even when the arrangement of the both catalysts is appropriately set so that the start of HC release and the start of NOx release are substantially the same, the outside air temperature is considerably lower than room temperature. In this situation, the temperature rise delay of the first exhaust purification catalyst on the downstream side becomes large, and the NOx release start is delayed as compared with the HC release start. Therefore, the time until reaching the HC release start temperature and the time until reaching the NOx release start temperature are estimated, and when it is determined that the NOx release start is delayed, the heating means is operated to activate the first exhaust purification catalyst. HC release start and NOx
The emission purification function can be promoted by making the emission start substantially coincide with the emission start.

【0016】また、請求項4に係る発明は、前記放出開
始温度推定手段は、機関始動時の第1の排気浄化触媒及
び第2の排気浄化触媒の温度をそれぞれ検出する手段
と、該検出された各触媒温度に基づいて第1の排気浄化
触媒がNOxを放出する温度に達するまでの時間と第2
の排気浄化触媒がHCを放出する温度に達するまでの時
間とを推定する手段と、により構成されることを特徴と
する。
Further, in the invention according to claim 4 , the emission start temperature estimating means detects the temperature of each of the first exhaust purification catalyst and the second exhaust purification catalyst at the time of engine start, and the means for detecting the temperature. The time until the first exhaust purification catalyst reaches the temperature at which NOx is released based on the respective catalyst temperatures and the second
And means for estimating the time until the exhaust purification catalyst reaches the temperature at which HC is released.

【0017】請求項4に係る発明によると、第1の排気
浄化触媒及び第2の排気浄化触媒の各触媒温度を検出す
ることによって、NOx放出開始温度に達するまでの時
間とHC放出開始温度に達するまでの時間とを高精度に
推定することができる。
According to the fourth aspect of the present invention, by detecting the catalyst temperatures of the first exhaust purification catalyst and the second exhaust purification catalyst, the time until the NOx emission start temperature is reached and the HC emission start temperature are determined. It is possible to highly accurately estimate the time required to reach the destination.

【0018】また、請求項5に係る発明は、第1の排気
浄化触媒下流側の排気通路に三元触媒を配置したことを
特徴とする。
The invention according to claim 5 is characterized in that a three-way catalyst is arranged in the exhaust passage downstream of the first exhaust purification catalyst.

【0019】請求項5に係る発明によると、第1の排気
浄化触媒から放出されたHCと第2の排気浄化触媒から
放出されたNOxとが相互に還元・酸化が完全出なかっ
たり、還元・酸化が行われてもNOx、HCいずれかの
量が多かったりして余剰分を生じた場合でも、該余剰分
を三元触媒で転化して、万全な排気浄化性能を確保する
ことができる。
According to the fifth aspect of the present invention, HC released from the first exhaust purification catalyst and NOx released from the second exhaust purification catalyst do not completely reduce or oxidize each other, or the reduction or oxidation does not occur. Even if the amount of NOx or HC is large even if the oxidation is carried out, and the surplus is generated, the surplus can be converted by the three-way catalyst to ensure the exhaust purification performance.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図2は、第1の実施の形態における内燃機関のシ
ステム構成を示す図であり、機関1に接続された吸気通
路2には、上流側から吸気浄化用のエアクリーナ3と、
吸入空気量を計測するエアフロメータ4と、吸入空気量
をコントロールするスロットル弁5と、燃料を噴射供給
する燃料噴射弁6とを備え、前記エアフロメータ2の検
出信号は、コントロールモジュール7に出力される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 2 is a diagram showing a system configuration of the internal combustion engine according to the first embodiment. In the intake passage 2 connected to the engine 1, an air cleaner 3 for purifying intake air from an upstream side,
An air flow meter 4 for measuring the intake air amount, a throttle valve 5 for controlling the intake air amount, and a fuel injection valve 6 for injecting and supplying fuel are provided, and a detection signal of the air flow meter 2 is output to a control module 7. It

【0021】また、機関1には、暖機状態を検出するた
めの水温センサ8と、機関回転速度を検出するためのク
ランク角センサ9が取り付けられ、これら水温センサ
8、クランク角センサ9の検出信号は前記コントロール
モジュール7に出力される。コントロールモジュール7
では、前記エアフロメータ2で検出される吸入空気量
と、クランク角センサ9により検出される機関回転速度
とに基づいて基本燃料噴射量Tpを演算し、前記水温セ
ンサ8によって検出される水温に基づいて基本燃料噴射
量Tpに燃料増量補正量を加算し、該算出された燃料噴
射量相当の燃料を前記燃料噴射弁6から噴射する。な
お、燃料噴射弁は機関1の燃焼室内に直接噴射するもの
であってもよい。
Further, the engine 1 is provided with a water temperature sensor 8 for detecting a warm-up state and a crank angle sensor 9 for detecting an engine rotation speed. The detection of the water temperature sensor 8 and the crank angle sensor 9 is carried out. The signal is output to the control module 7. Control module 7
Then, the basic fuel injection amount Tp is calculated based on the intake air amount detected by the air flow meter 2 and the engine rotation speed detected by the crank angle sensor 9, and based on the water temperature detected by the water temperature sensor 8. Then, the fuel increase correction amount is added to the basic fuel injection amount Tp, and the fuel corresponding to the calculated fuel injection amount is injected from the fuel injection valve 6. The fuel injection valve may directly inject into the combustion chamber of the engine 1.

【0022】一方、機関1に接続された排気通路10に
は、排気の空燃比を検出する空燃比センサ11が装着さ
れ、該空燃比センサ11の検出信号は前記コントロールモ
ジュール7に出力される。コントロールモジュール7
は、排気の空燃比から目標空燃比との偏差を検出し、補
正項として、又は補正項を記憶学習した上で学習値とし
て次回噴射の燃料噴射量の演算に反映する。また、排気
通路10の下流には所定温度以上でNOxの吸収・放出作
用を有する第1の排気浄化触媒12が装着される。該第1
の排気浄化触媒12は、具体的には、所定温度以上で排気
の空燃比がリーンのときにNOxを吸収し、理論空燃比
又はリッチのときにNOxを放出する。前記第1の排気
浄化触媒11より上流側の排気通路10には、温度に応じて
HCを吸収・放出する作用を有する第2の排気浄化触媒
13が装着される。
On the other hand, the exhaust passage 10 connected to the engine 1 is equipped with an air-fuel ratio sensor 11 for detecting the air-fuel ratio of the exhaust gas, and the detection signal of the air-fuel ratio sensor 11 is output to the control module 7. Control module 7
Detects the deviation from the target air-fuel ratio from the exhaust air-fuel ratio, and reflects it as a correction term or as a learning value after memory-learning the correction term in the calculation of the fuel injection amount of the next injection. Further, a first exhaust purification catalyst 12 having a NOx absorption / release function at a predetermined temperature or higher is mounted downstream of the exhaust passage 10. The first
Specifically, the exhaust purification catalyst 12 absorbs NOx when the air-fuel ratio of the exhaust gas is lean at a predetermined temperature or higher, and releases NOx when the air-fuel ratio is stoichiometric or rich. A second exhaust purification catalyst having an action of absorbing and releasing HC according to temperature in the exhaust passage 10 upstream of the first exhaust purification catalyst 11.
13 is installed.

【0023】前記第1の実施の形態における作用を説明
する。前記第1の排気浄化触媒11が温度上昇により完全
に活性してNOxの吸収・放出を行える状態では、図2
のaに示すように、例えば、触媒温度350°Cの場
合、大量のNOxを吸収できる。その後機関1の運転を
停止すると、運転停止前に空燃比を理論空燃比又はリッ
チにしなければ、NOxは第1の排気浄化触媒12に吸収
されたままである。一般的にはこの状態で、その後触媒
温度が下がり、再始動時には第1の排気浄化触媒12がN
Oxを吸収・放出作用を有しない温度である場合が多
い。その場合、第1の排気浄化触媒12には運転停止前の
NOxが吸収保持されているので、この状態で再始動し
触媒温度が上昇してNOxが放出され始める温度(例え
ば200°C)に達すると、前記保持されていたNOx
が放出され始める(図3参照)。
The operation of the first embodiment will be described. In the state where the first exhaust purification catalyst 11 is fully activated by the temperature rise and is capable of absorbing and releasing NOx, FIG.
As shown in a), for example, when the catalyst temperature is 350 ° C, a large amount of NOx can be absorbed. After that, when the operation of the engine 1 is stopped, NOx is still absorbed by the first exhaust purification catalyst 12 unless the air-fuel ratio is set to the stoichiometric air-fuel ratio or rich before the operation is stopped. Generally, in this state, the catalyst temperature then decreases, and when restarting, the first exhaust gas purification catalyst 12 becomes N
In many cases, the temperature is a temperature at which Ox is not absorbed or released. In this case, since the first exhaust purification catalyst 12 absorbs and holds the NOx before the operation stop, it is restarted in this state and the catalyst temperature rises to a temperature (for example, 200 ° C) at which NOx starts to be released. When reached, the retained NOx
Are released (see FIG. 3).

【0024】一方、前記第1の排気浄化触媒12より上流
側に配置された第2の排気浄化触媒13では、機関始動後
の低温状態で排気中のHCが吸収されるが、温度上昇し
てHCの放出開始温度に達すると、該吸収されていたH
Cが放出される。
On the other hand, in the second exhaust purification catalyst 13 arranged on the upstream side of the first exhaust purification catalyst 12, HC in the exhaust is absorbed in the low temperature state after the engine is started, but the temperature rises. When the temperature at which HC is released is reached, the absorbed H
C is released.

【0025】そして、該第2の排気浄化触媒13から放出
されるHCと、前記第1の排気浄化触媒11から放出され
たNOxとが反応し合い、NOxはHCにより還元され
て浄化処理される。一方、HCも酸化剤であるNOxに
よって酸化されることにより、浄化処理される。つま
り、NOx,HC共に浄化処理されることとなる。
Then, the HC released from the second exhaust purification catalyst 13 and the NOx released from the first exhaust purification catalyst 11 react with each other, and the NOx is reduced by the HC and purified. . On the other hand, HC is also purified by being oxidized by NOx which is an oxidant. That is, both NOx and HC will be purified.

【0026】ここで、第2の排気浄化触媒13は、第1の
排気浄化触媒12に比較して排気通路10の上流側に設けら
れるため温度上昇が早い(図4参照) 。そして、第2の
排気浄化触媒13のHC放出開始温度(例えば300°
C)は、第1の排気浄化触媒12のNOx放出開始温度
(例えば200°C)より高いので、上記のように上流
側に第2の排気浄化触媒13、下流側に第1の排気浄化触
媒12を配置することにより、NOxとHCとを同時に浄
化処理することができるが、この時、NOx,HCのう
ち、どちらかが早く放出してしまうと、そのどちらかの
エミッションが排出されることになるので好ましくな
い。そこで、上流側の第2の排気浄化触媒13と下流側の
第1の排気浄化触媒12とを、該第1の排気浄化触媒12が
NOx放出開始温度に達するのと、第2の排気浄化触媒
13がHC放出開始温度に達するのとが略同時になるよう
な位置関係に配置することにより、どちらかのエミッシ
ョンが排出されることをできるかぎり抑制する。前記位
置関係は、機関始動後に排出される熱量、排気通路の熱
容量等に応じて実験等により決定される。
Since the second exhaust purification catalyst 13 is provided on the upstream side of the exhaust passage 10 as compared with the first exhaust purification catalyst 12, the temperature rises faster (see FIG. 4). Then, the HC emission start temperature of the second exhaust purification catalyst 13 (for example, 300 °
C) is higher than the NOx release start temperature (for example, 200 ° C.) of the first exhaust purification catalyst 12, the second exhaust purification catalyst 13 is on the upstream side and the first exhaust purification catalyst is on the downstream side as described above. By arranging 12, it is possible to purify NOx and HC at the same time, but at this time, if either NOx or HC is released earlier, the emission of either of them will be emitted. Is not desirable. Therefore, when the second exhaust purification catalyst 13 on the upstream side and the first exhaust purification catalyst 12 on the downstream side reach the NOx release start temperature of the first exhaust purification catalyst 12 and the second exhaust purification catalyst
By arranging 13 so that it reaches the HC release start temperature at substantially the same time, the emission of either emission is suppressed as much as possible. The positional relationship is determined by experiments or the like according to the amount of heat discharged after the engine is started, the heat capacity of the exhaust passage, and the like.

【0027】しかし、車両のボディや懸架装置、消音器
等との関係から上記位置関係に配置することが困難な場
合もある。このような場合、排気通路の下流側の方が温
度上昇が遅いことを考慮して、下流側に配置される第1
の排気浄化触媒12の温度を早期に昇温する必要がある。
However, in some cases, it may be difficult to arrange the above-mentioned positional relationship due to the relationship with the vehicle body, suspension device, silencer, and the like. In such a case, in consideration of the fact that the temperature rise on the downstream side of the exhaust passage is slower, the first passage arranged on the downstream side is considered.
It is necessary to raise the temperature of the exhaust purification catalyst 12 in the early stage.

【0028】図5は、上記昇温制御を行う第2の実施の
形態における内燃機関のシステム構成を示し、図1の構
成に追加して、第2の排気浄化触媒13の下流側の排気通
路10に加熱手段として例えば電気ヒータ(EHC)14を
装着し、機関の始動後所定時間電気ヒータ20を通電して
第2の排気浄化触媒13を加熱することにより、温度上昇
を促進する。
FIG. 5 shows the system configuration of the internal combustion engine in the second embodiment for performing the temperature rise control. In addition to the configuration of FIG. 1, the exhaust passage downstream of the second exhaust purification catalyst 13 is added. An electric heater (EHC) 14 is attached to 10 as a heating means, and the electric heater 20 is energized for a predetermined time after the engine is started to heat the second exhaust purification catalyst 13 to accelerate the temperature rise.

【0029】このようにすれば、各触媒の位置関係を最
適に設定できないような場合でも、HC放出開始温度に
達するまでの時間とNOx放出開始温度に達するまでの
時間とを略一致させて、NOxとHCとの相互作用によ
る浄化機能をより促進できる。
With this configuration, even when the positional relationship between the catalysts cannot be optimally set, the time required to reach the HC release start temperature and the time required to reach the NOx release start temperature are made substantially equal to each other, The purification function due to the interaction between NOx and HC can be further promoted.

【0030】また、前記各触媒の位置関係を最適に設定
した場合でも、通常の外気温度(例えば20°C〜40
°C)での始動では、第2の排気浄化触媒13がHC放出
開始温度に達するのと、第1の排気浄化触媒12がNOx
放出開始温度に達するのとを、略同時にできるとして
も、例えば外気温度が10°Cの場合等、必ずしも同時
に各放出開始温度に達するとは限らない。このような場
合、上流側の第2の排気浄化触媒13がHC放出開始温度
に達するまでの時間T1と、下流側の第1の排気浄化触
媒12がNOx放出開始温度に達するまでの時間T2とを
推定し、NOx放出開始温度に達するまでの時間の方が
長いと判定した場合は、下流側の第1の排気浄化触媒12
の温度上昇を促進する制御を行って、前記両時間T1,
T2を略一致させてNOx、HCの浄化を同時に行うよ
うにする。
Even when the positional relationship between the catalysts is optimally set, the normal outside air temperature (for example, 20 ° C. to 40 ° C.).
In the starting at 0 ° C), the second exhaust purification catalyst 13 reaches the HC release start temperature, and the first exhaust purification catalyst 12 becomes NOx.
Even if the release start temperature can be reached at approximately the same time, the release start temperatures are not necessarily reached at the same time, for example, when the outside air temperature is 10 ° C. In such a case, a time T1 until the second exhaust purification catalyst 13 on the upstream side reaches the HC release start temperature and a time T2 until the first exhaust purification catalyst 12 on the downstream side reaches the NOx release start temperature. When it is determined that the time to reach the NOx emission start temperature is longer than the first exhaust purification catalyst 12 on the downstream side,
Control for accelerating the temperature rise of
T2 is made to substantially match so that NOx and HC are purified at the same time.

【0031】図6は、上記制御を行う第3の実施の形態
における内燃機関のシステム構成を示し、図1の構成に
追加して、第1の排気浄化触媒12がHC放出開始温度に
達する時間を推定するため該触媒温度を検出する第1の
温度センサ21、第2の排気浄化触媒13がNOx放出開始
温度に達するまでの時間を予測するため該触媒温度を検
出する第2の温度センサ22をそれぞれ装着すると共に、
第2の排気浄化触媒13の下流側の排気通路10に加熱手段
として例えば電気ヒータ(EHC)14を装着する。
FIG. 6 shows the system configuration of the internal combustion engine in the third embodiment for performing the above control. In addition to the configuration of FIG. 1, the time required for the first exhaust purification catalyst 12 to reach the HC release start temperature. To detect the catalyst temperature, the first temperature sensor 21 for detecting the catalyst temperature, and the second temperature sensor 22 for detecting the catalyst temperature to predict the time until the second exhaust purification catalyst 13 reaches the NOx release start temperature. While wearing each,
An electric heater (EHC) 14, for example, is mounted as a heating means in the exhaust passage 10 on the downstream side of the second exhaust purification catalyst 13.

【0032】図7は、同上の実施の形態における制御ル
ーチンのフローチャートを示す。ステップ1では、第1
の排気浄化触媒12の触媒温度NTEMPと第2の排気浄
化触媒13の触媒温度HTEMPとをそれぞれ検出する。
FIG. 7 shows a flowchart of the control routine in the above embodiment. In Step 1, the first
The catalyst temperature NTEMP of the exhaust purification catalyst 12 and the catalyst temperature HTEMP of the second exhaust purification catalyst 13 are detected.

【0033】また、ステップ2では第1の排気浄化触媒
12の触媒温度NTEMPがNOx放出完了温度(例えば
300°C)以上であるか否かを判定し、ステップ3で
は第2の排気浄化触媒13の触媒温度HTEMPがHC放
出完了温度(例えば400°C)未満であるか否かを判
定する。
In step 2, the first exhaust purification catalyst
It is determined whether or not the catalyst temperature NTEMP of 12 is equal to or higher than the NOx release completion temperature (for example, 300 ° C). In step 3, the catalyst temperature HTEMP of the second exhaust purification catalyst 13 is set to the HC release completion temperature (for example, 400 ° C). ) Is less than or equal to.

【0034】そして、NTEMP、HTEMPが共に放
出完了温度未満であれば、NOx、HCの放出が始まっ
ていないか、放出中であるので、本発明に係る制御に移
行すべくステップ4へ進み、また、NTEMP、HTE
MPがどちらかでも設定温度以上であれば、NOx又は
HCの放出が完了していると判断してこのルーチンを終
了する。
If both NTEMP and HTEMP are below the release completion temperature, NOx and HC have not started to be released or are being released, so the routine proceeds to step 4 to shift to the control according to the present invention, and , NTEMP, HTE
If either MP is equal to or higher than the set temperature, it is determined that the release of NOx or HC is completed, and this routine is ended.

【0035】次に、ステップ4では、NTEMPがNO
x放出開始判断温度(例えば150°C)以上であるか
否かを判定する。これは、本来ならNOx放出を開始す
る温度(例えば200°C)で判断すべきであるが、実
際のNOx放出開始温度で判断してから後述する制御を
行ったのでは、手遅れになる可能性があるため、該実際
のNOx放出開始温度より低い温度で判定する。
Next, at step 4, NTEMP is NO.
It is determined whether or not the temperature is equal to or higher than the x emission start determination temperature (eg, 150 ° C.). This should be judged based on the temperature at which NOx release starts (for example, 200 ° C), but it may be too late if the control described below is performed after the actual NOx release start temperature is judged. Therefore, the determination is made at a temperature lower than the actual NOx release start temperature.

【0036】ステップ4で、NTEMPがNOx放出開
始判断温度以上と判定されたときは、ステップ5へ進
み、NTEMPとHTEMPとの差(=HTEMP−N
TEMP)を算出して、該差(HTEMP−NTEM
P)をHC放出開始温度(例えば300°C)とNOx
放出開始温度(例えば200°C)との差DT(100
°C)と比較する。
When it is determined in step 4 that NTEMP is equal to or higher than the NOx release start determination temperature, the process proceeds to step 5, where the difference between NTEMP and HTEMP (= HTEMP-N
TEMP) is calculated and the difference (HTEMP-NTEM) is calculated.
P) as the HC release start temperature (for example, 300 ° C) and NOx
Difference from emission start temperature (eg 200 ° C) DT (100
° C).

【0037】そして、HTEMP−NTEMP>DTの
場合は、第1の排気浄化触媒12がNOx放出開始温度に
達するのより、第2の排気浄化触媒13がHC放出開始温
度に達する方が遅くなると判断し、この場合は、第1の
排気浄化触媒12の触媒温度を上昇すべくステップ6へ進
む。
When HTEMP-NTEMP> DT, it is judged that the second exhaust purification catalyst 13 reaches the HC release start temperature later than the NOx release start temperature of the first exhaust purification catalyst 12. However, in this case, the process proceeds to step 6 in order to raise the catalyst temperature of the first exhaust purification catalyst 12.

【0038】また、HTEMP−NTEMP≦DTの場
合は、第1の排気浄化触媒12がNOx放出開始温度に達
するのと、第2の排気浄化触媒13がHC放出開始温度に
達するのとが同時であると判断し、これは望ましい状態
であるのでこのルーチンを終了する。
When HTEMP-NTEMP≤DT, the first exhaust purification catalyst 12 reaches the NOx release start temperature and the second exhaust purification catalyst 13 reaches the HC release start temperature at the same time. If so, this is a desirable state, and this routine is terminated.

【0039】ステップ6では、下流側の第1の排気浄化
触媒12を加熱するため、電気ヒータ23を通電し、加熱制
御を開始する。上記のようにすれば、図8に示すよう
に、第1、第2の排気浄化触媒の配置や外気温度によっ
てNOx放出開始温度に達するまでの時間T1とHC放
出開始温度に達するまでの時間T2とを一致させること
が困難な場合でも、電気ヒータ等の加熱手段による強制
的な加熱制御を行うことにより、2つの時間T1と時間
T2とを一致させることができる。
In step 6, in order to heat the first exhaust purification catalyst 12 on the downstream side, the electric heater 23 is energized to start heating control. According to the above, as shown in FIG. 8, the time T1 to reach the NOx release start temperature and the time T2 to reach the HC release start temperature depending on the arrangement of the first and second exhaust purification catalysts and the outside air temperature. Even when it is difficult to make the two coincide with each other, it is possible to make the two times T1 and T2 coincide with each other by forcibly controlling the heating by a heating means such as an electric heater.

【0040】図9は、第4の実施の形態における内燃機
関のシステム構成を示し、図6の構成に追加して、第1
の排気浄化触媒12の下流側の排気通路10にHC,NOx
の酸化・還元機能を有する三元触媒15を介装したもので
ある。
FIG. 9 shows the system configuration of the internal combustion engine in the fourth embodiment, and in addition to the configuration of FIG.
HC and NOx in the exhaust passage 10 downstream of the exhaust purification catalyst 12
The three-way catalyst 15 having the oxidation / reduction function of is interposed.

【0041】このように、三元触媒15を備えることによ
り、上流側の第2の排気浄化触媒13から放出されるH
C、第1の排気浄化触媒12から放出されるNOxが相互
に還元・酸化が完全でなかった場合や、還元・酸化が行
われてもNOx、HCのどちらかの量が多かったりし
て、どちらかに余剰分を生じた場合でも、該余剰分を三
元触媒15によって転化できるので、万全な排気浄化性能
を確保することができる。
As described above, by providing the three-way catalyst 15, the H released from the second exhaust purification catalyst 13 on the upstream side.
C, when NOx released from the first exhaust purification catalyst 12 is not completely reduced / oxidized with each other, or even if reduction / oxidation is performed, the amount of either NOx or HC is large, Even if a surplus is generated in either one, the surplus can be converted by the three-way catalyst 15, so that perfect exhaust gas purification performance can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る内燃機関のシ
ステム構成を示す図。
FIG. 1 is a diagram showing a system configuration of an internal combustion engine according to a first embodiment of the present invention.

【図2】第1の排気浄化触媒の温度に対するNOx吸収
量の特性を示す図。
FIG. 2 is a diagram showing a characteristic of a NOx absorption amount with respect to a temperature of a first exhaust purification catalyst.

【図3】第1の排気浄化触媒の温度上昇によるNOx放
出の特性を示す図。
FIG. 3 is a diagram showing a characteristic of NOx emission due to a temperature rise of a first exhaust purification catalyst.

【図4】第1の実施の形態における第1の排気浄化触
媒、第2の排気浄化触媒の温度変化に対するNOx,H
Cの放出特性を示す図。
[FIG. 4] NOx, H with respect to temperature changes of the first exhaust purification catalyst and the second exhaust purification catalyst in the first embodiment.
The figure which shows the release characteristic of C.

【図5】本発明の第2の実施の形態に係る内燃機関のシ
ステム構成を示す図。
FIG. 5 is a diagram showing a system configuration of an internal combustion engine according to a second embodiment of the present invention.

【図6】本発明の第3の実施の形態に係る内燃機関のシ
ステム構成を示す図。
FIG. 6 is a diagram showing a system configuration of an internal combustion engine according to a third embodiment of the present invention.

【図7】第3の実施の形態の制御ルーチンを示すフロー
チャート。
FIG. 7 is a flowchart showing a control routine of a third embodiment.

【図8】第3の実施の形態における第1の排気浄化触
媒、第2の排気浄化触媒の温度変化に対するNOx,H
Cの放出特性を示す図。
FIG. 8 shows NOx and H with respect to temperature changes of the first exhaust purification catalyst and the second exhaust purification catalyst according to the third embodiment.
The figure which shows the release characteristic of C.

【図9】本発明の第4の実施の形態に係る内燃機関のシ
ステム構成を示す図。
FIG. 9 is a diagram showing a system configuration of an internal combustion engine according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気通路 7 コントロールモジュール 10 排気通路 12 第1の排気浄化触媒 13 第2の排気浄化触媒 14 電気ヒータ 15 三元触媒 21 第1の温度センサ 22 第2の温度センサ 1 Internal combustion engine 2 Intake passage 7 Control module 10 exhaust passage 12 First exhaust purification catalyst 13 Second exhaust purification catalyst 14 Electric heater 15 three-way catalyst 21 First temperature sensor 22 Second temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長沼 要 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平8−284646(JP,A) 特開 平7−238826(JP,A) 特開2000−145439(JP,A) 特開 平9−100716(JP,A) 特許2600492(JP,B2) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/24 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kaname Naganuma 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Pref. Nissan Motor Co., Ltd. (56) References JP-A-8-284646 (JP, A) JP-A-7- 238826 (JP, A) JP 2000-145439 (JP, A) JP 9-100716 (JP, A) Patent 2600492 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関の排気通路に配置され、NOx放出開
始温度に達すると保持していたNOxを放出するととも
に、完全に活性した状態では排気の空燃比に応じてNO
xの吸収と放出とを行う作用を有した第1の排気浄化触
媒と、 前記第1の排気浄化触媒上流側の排気通路に配置され、
温度に応じてHCの吸収と放出とを行う作用を有した第
2の排気浄化触媒と、を含んで構成した内燃機関の排気浄化装置において、 機関始動後に前記第1の排気浄化触媒が前記NOx放出
開始温度に達するまでの時間と、機関始動後に前記第2
の排気浄化触媒がHC放出開始温度に達するまでの時間
とが略同一となる関係位置に前記第1の排気浄化触媒と
前記第2の排気浄化触媒とを配置した ことを特徴とする
内燃機関の排気浄化装置。
1. A NOx emission opening device arranged in an exhaust passage of an engine.
When the initial temperature is reached, the retained NOx is released
In addition, in the fully activated state, NO depending on the air-fuel ratio of the exhaust gas.
a first exhaust purification catalyst having a function of absorbing and releasing x, and arranged in the exhaust passage on the upstream side of the first exhaust purification catalyst,
In an exhaust gas purification device for an internal combustion engine , which includes a second exhaust gas purification catalyst that has the function of absorbing and releasing HC according to temperature, in the exhaust gas purification device for an internal combustion engine, the first exhaust gas purification catalyst causes the NOx release
The time required to reach the starting temperature and the second time after the engine is started
Time to reach the HC emission start temperature of the exhaust purification catalyst
And the first exhaust gas purification catalyst at a relational position where
An exhaust emission control device for an internal combustion engine, comprising: the second exhaust emission control catalyst .
【請求項2】機関の排気通路に配置され、NOx放出開
始温度に達すると保持していたNOxを放出するととも
に、完全に活性した状態では排気の空燃比に応じてNO
xの吸収と放出とを行う作用を有した第1の排気浄化触
媒と、 前記第1の排気浄化触媒上流側の排気通路に配置され、
温度に応じてHCの吸収と放出とを行う作用を有した第
2の排気浄化触媒と、 第1の排気浄化触媒の上流側に配置した加熱手段と、 機関の始動後、所定時間前記加熱手段を作動させること
により、前記第1の排気浄化触媒が前記NOx放出開始
温度に達するまでの時間と前記第2の排気浄化触媒がH
C放出開始温度に達するまでの時間とを略一致させる加
熱制御手段と、 を含んで構成したことを特徴とする内燃機関の排気浄化
装置。
2. An NOx emission opening device arranged in an exhaust passage of an engine.
When the initial temperature is reached, the retained NOx is released
In addition, in the fully activated state, NO depending on the air-fuel ratio of the exhaust gas.
First exhaust gas purification catalyst having a function of absorbing and releasing x
A medium and is arranged in the exhaust passage on the upstream side of the first exhaust purification catalyst,
First, which has the function of absorbing and releasing HC according to temperature
No. 2 exhaust purification catalyst, heating means arranged on the upstream side of the first exhaust purification catalyst, and operating the heating means for a predetermined time after the engine is started.
Causes the first exhaust purification catalyst to start releasing the NOx.
The time until the temperature is reached and the second exhaust purification catalyst is H
The time required to reach the C emission start temperature is made approximately equal.
Exhaust gas purification of an internal combustion engine characterized by including a heat control means
apparatus.
【請求項3】機関の排気通路に配置され、NOx放出開
始温度に達すると保持していたNOxを放出するととも
に、完全に活性した状態では排気の空燃比に応じてNO
xの吸収と放出とを行う作用を有した第1の排気浄化触
媒と、 前記第1の排気浄化触媒上流側の排気通路に配置され、
温度に応じてHCの吸 収と放出とを行う作用を有した第
2の排気浄化触媒と、 第1の排気浄化触媒の上流側に配置した加熱手段と、 前記第1の排気浄化触媒が前記NOx放出開始温度に達
するまでの時間と、前記第2の排気浄化触媒がHC放出
開始温度に達するまでの時間とを推定する放出開始時間
推定手段と、 前記放出開始時間推定手段による推定結果に基づいて、
前記第1の排気浄化触媒が前記NOx放出開始温度に達
するまでの時間が、前記第2の排気浄化触媒がHC放出
開始温度に達するまでの時間より長いと判定した場合
に、前記加熱手段を作動させることにより、前記第1の
排気浄化触媒が前記NOx放出開始温度に達するまでの
時間と前記第2の排気浄化触媒がHC放出開始温度に達
するまでの時間とを略一致させる加熱制御手段と、 を含んで構成したことを特徴とする内燃機関の排気浄化
装置。
3. An NOx emission opening device arranged in the exhaust passage of the engine.
When the initial temperature is reached, the retained NOx is released
In addition, in the fully activated state, NO depending on the air-fuel ratio of the exhaust gas.
First exhaust gas purification catalyst having a function of absorbing and releasing x
A medium and is arranged in the exhaust passage on the upstream side of the first exhaust purification catalyst,
The had an effect of performing the emission and absorption of HC in response to the temperature
The second exhaust purification catalyst, the heating means arranged on the upstream side of the first exhaust purification catalyst, and the first exhaust purification catalyst reach the NOx emission start temperature.
And the second exhaust purification catalyst releases HC.
Emission start time to estimate the time to reach the start temperature and
Based on the estimation means and the estimation result by the release start time estimation means,
The first exhaust purification catalyst reaches the NOx emission start temperature.
Until the second exhaust purification catalyst releases HC
When it is judged that it is longer than the time to reach the start temperature
And by activating the heating means, the first
Until the exhaust purification catalyst reaches the NOx emission start temperature
Time and the second exhaust purification catalyst reaches the HC release start temperature
Exhaust control of an internal combustion engine, characterized in that it comprises a heating control means for substantially matching the time until
apparatus.
【請求項4】 前記放出開始温度推定手段は、機関始動時
の第1の排気浄化触媒及び第2の排気浄化触媒の温度を
それぞれ検出する手段と、該検出された各触媒温度に基
づいて第1の排気浄化触媒がNOxを放出する温度に達
するまでの時間と第2の排気浄化触媒がHCを放出する
温度に達するまでの時間とを推定する手段と、により構
成されることを特徴とする請求項3に記載の内燃機関の
排気浄化装置。
Wherein said discharge initiation temperature estimating means includes means for detecting a first exhaust gas purifying catalyst and second temperature of the exhaust gas purifying catalyst at the time of engine start, respectively, first on the basis of the catalyst temperature issued該検And a means for estimating the time until the exhaust purification catalyst of No. 1 reaches the temperature for releasing NOx and the time until the second exhaust purification catalyst reaches the temperature for releasing HC of the second exhaust purification catalyst. An exhaust emission control device for an internal combustion engine according to claim 3 .
【請求項5】 第1の排気浄化触媒下流側の排気通路に三
元触媒を配置したことを特徴とする請求項1〜請求項4
のいずれか1つに記載の内燃機関の排気浄化装置。
5. A method according to claim 1 to claim 4, characterized in that a three-way catalyst in an exhaust passage of the first exhaust gas purifying catalyst downstream
2. An exhaust gas purification device for an internal combustion engine according to any one of 1.
JP02694099A 1999-02-04 1999-02-04 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3468144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02694099A JP3468144B2 (en) 1999-02-04 1999-02-04 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02694099A JP3468144B2 (en) 1999-02-04 1999-02-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000227021A JP2000227021A (en) 2000-08-15
JP3468144B2 true JP3468144B2 (en) 2003-11-17

Family

ID=12207160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02694099A Expired - Lifetime JP3468144B2 (en) 1999-02-04 1999-02-04 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3468144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054637A1 (en) * 2003-12-01 2005-06-16 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification apparatus of compression ignition internal combustion engine

Also Published As

Publication number Publication date
JP2000227021A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP2983429B2 (en) Exhaust gas purification device for internal combustion engine
US10364716B2 (en) Exhaust gas control apparatus for internal combustion engine and exhaust gas control method for internal combustion engine
JP4253294B2 (en) Engine self-diagnosis device
JP2010013974A (en) Filter regenerating system and filter regenerating method
WO2008114878A1 (en) Exhaust purification system for internal combustion engine
JP4697129B2 (en) Control device for internal combustion engine
JP2008082292A (en) Exhaust emission control device
JPH10238339A (en) Exhaust emission control device
JP4557176B2 (en) Catalyst early warm-up control device for internal combustion engine
JP4003768B2 (en) Exhaust gas purification system for internal combustion engine
JP4062765B2 (en) Failure detection device for air-fuel ratio detection device
US6792749B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US6945034B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JPH09158715A (en) Energization control device of electric heating catalyst
WO2007136143A1 (en) Exhaust emission purification system of internal combustion engine
JP2008151025A (en) Control device of internal combustion engine
JP2008025467A (en) Exhaust emission control system for internal combustion engine
JP3468144B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP3852382B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
EP1517030B1 (en) Method and apparatus for detecting deterioration in fuel injection amount of internal combustion engine
JP4613894B2 (en) Exhaust purification device for internal combustion engine
JP4645586B2 (en) Exhaust gas purification system for internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 11

EXPY Cancellation because of completion of term