JP4557176B2 - Catalyst early warm-up control device for internal combustion engine - Google Patents

Catalyst early warm-up control device for internal combustion engine Download PDF

Info

Publication number
JP4557176B2
JP4557176B2 JP2006192524A JP2006192524A JP4557176B2 JP 4557176 B2 JP4557176 B2 JP 4557176B2 JP 2006192524 A JP2006192524 A JP 2006192524A JP 2006192524 A JP2006192524 A JP 2006192524A JP 4557176 B2 JP4557176 B2 JP 4557176B2
Authority
JP
Japan
Prior art keywords
catalyst
warm
control
temperature
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006192524A
Other languages
Japanese (ja)
Other versions
JP2008019792A (en
Inventor
宏哉 野上
真浩 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006192524A priority Critical patent/JP4557176B2/en
Publication of JP2008019792A publication Critical patent/JP2008019792A/en
Application granted granted Critical
Publication of JP4557176B2 publication Critical patent/JP4557176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の排出ガス浄化用の触媒を早期に暖機する内燃機関の触媒早期暖機制御装置に関する発明である。   The present invention relates to an early catalyst warm-up control device for an internal combustion engine that warms up an exhaust gas purifying catalyst for the internal combustion engine at an early stage.

近年、内燃機関を搭載した車両は、内燃機関の排出ガスを浄化するために三元触媒等の触媒が設けられているが、内燃機関の始動後に触媒が活性温度に暖機されるまでは触媒の排出ガス浄化率が低いため、内燃機関の始動後に触媒が活性温度に暖機されるまで触媒早期暖機制御を実行して触媒を短時間で暖機するようにしている。   In recent years, a vehicle equipped with an internal combustion engine is provided with a catalyst such as a three-way catalyst for purifying exhaust gas from the internal combustion engine. However, until the catalyst is warmed up to an active temperature after the internal combustion engine is started, Since the exhaust gas purification rate is low, the catalyst is warmed up in a short time by executing the catalyst early warm-up control until the catalyst is warmed up to the activation temperature after the internal combustion engine is started.

従来の触媒早期暖機制御は、例えば、特許文献1(特開2002−235592号公報)、特許文献2(特開2000−257479号公報)に記載されているように、触媒早期暖機制御中に空燃比を理論空燃比よりも若干稀薄空燃比(弱リーン)となるように制御して、触媒内部で排出ガス中のリッチ成分(HC,CO等)の酸化反応を促進させ、その反応熱で触媒の昇温を促進させるようにしたものがある。   Conventional catalyst early warm-up control is performed during catalyst early warm-up control as described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-235592) and Patent Document 2 (Japanese Patent Laid-Open No. 2000-257479). The air-fuel ratio is controlled to be slightly leaner than the stoichiometric air-fuel ratio (weak lean) to promote the oxidation reaction of rich components (HC, CO, etc.) in the exhaust gas inside the catalyst, and the reaction heat There is one that promotes the temperature rise of the catalyst.

或は、特許文献3(特開平9−88564号公報)に記載されているように、触媒早期暖機制御中に空燃比をリッチとリーンに交互に変化させるディザ制御を行うことで、エンジンからHC,COの濃度が高いリッチガスとO2 濃度が高いリーンガスとを交互に排出して、触媒内でリッチガスとリーンガスを混合させてリッチ成分の酸化反応を発生させ、その反応熱で触媒を内部から効率良く暖機するようにしたものがある。
特開2002−235592号公報(第5頁〜第6頁等) 特開2000−257479号公報(第2頁等) 特開平9−88564号公報(第1頁等)
Alternatively, as described in Patent Document 3 (Japanese Patent Laid-Open No. 9-88564), by performing dither control in which the air-fuel ratio is changed between rich and lean alternately during catalyst early warm-up control, The rich gas with a high concentration of HC and CO and the lean gas with a high O 2 concentration are alternately discharged, and the rich gas and the lean gas are mixed in the catalyst to generate an oxidation reaction of the rich component. Some are designed to warm up efficiently.
Japanese Patent Laid-Open No. 2002-235592 (pages 5 to 6 etc.) JP 2000-257479 A (second page, etc.) JP-A-9-88564 (first page, etc.)

しかし、上記特許文献1,2のように、触媒早期暖機制御中に空燃比を弱リーンに制御すると、排出ガス中のO2 濃度が高くなる反面、酸化反応に必要なリッチ成分(HC,CO等)が少なくなるため、その分、触媒の暖機に必要な酸化反応の反応熱も少なくなって触媒暖機効果が小さくなるという欠点がある。 However, as in Patent Documents 1 and 2, if the air-fuel ratio is controlled to be weak lean during the early catalyst warm-up control, the O 2 concentration in the exhaust gas increases, but rich components (HC, Therefore, there is a disadvantage that the reaction heat of the oxidation reaction necessary for warming up the catalyst is reduced and the catalyst warming-up effect is reduced.

これに対して、上記特許文献3のように、触媒早期暖機制御中に空燃比をリッチとリーンに交互に変化させるディザ制御を行うと、上記弱リーン制御と比べて、触媒に供給するリッチ成分量を十分に確保できるが、そもそも、触媒早期暖機制御中は、触媒の温度が活性温度よりも低く、暖機後(活性後)と比べて酸化反応性(活性度合)が低くなっているため、触媒の温度が低いディザ制御の初期にリッチ成分の一部がそのまま触媒内を通過して排出される“リッチ成分のすり抜け”が発生して、エミッションが増加する懸念がある。   On the other hand, when dither control is performed in which the air-fuel ratio is alternately changed between rich and lean during the early catalyst warm-up control as in Patent Document 3, the rich supplied to the catalyst is compared with the weak lean control. In the first place, the catalyst temperature is lower than the activation temperature during the early catalyst warm-up control, and the oxidation reactivity (activity) is lower than after warm-up (after activation). Therefore, there is a concern that emission of “rich component slipping” occurs in which part of the rich component passes through the catalyst as it is and is discharged at the initial stage of dither control where the temperature of the catalyst is low.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒早期暖機制御中のエミッションを低減しながら触媒を従来より早期に暖機することができ、触媒早期暖機制御中のエミッション低減と触媒早期暖機性能向上とを両立させることができる内燃機関の触媒早期暖機制御装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, the object of the present invention is to warm up the catalyst earlier than before while reducing the emission during the early catalyst warm-up control. It is an object of the present invention to provide an early catalyst warm-up control device for an internal combustion engine that can achieve both emission reduction during engine control and improved early catalyst warm-up performance.

上記目的を達成するために、請求項1に係る発明は、触媒早期暖機制御の初期に内燃機関の燃焼温度が高くなるように空燃比を制御する第1段階の暖機制御と、この第1段階の暖機制御により触媒が排出ガス中のリッチ成分を酸化浄化し始めてから半暖機状態になるまでの期間に触媒の酸化反応を促進させるように空燃比を弱リーンに制御する第2段階の暖機制御と、触媒が半暖機状態から完全暖機状態になるまでの期間に空燃比をリーンとリッチに交互に変化させるディザ制御を行う第3段階の暖機制御を行うことを第1の特徴とし、更に、前記第2段階の暖機制御の実行中に前記触媒温度判定手段で推定又は検出した触媒温度が前記排気温度判定手段で推定又は検出した排気温度よりも高くなった時点で、前記第2段階の暖機制御から前記第3段階の暖機制御に切り換えることを第2の特徴とするものである。 In order to achieve the above object, the invention according to claim 1 is directed to a first stage warm-up control in which the air-fuel ratio is controlled so that the combustion temperature of the internal combustion engine becomes high at the early stage of the catalyst early warm-up control. The air-fuel ratio is controlled to be slightly lean so as to promote the oxidation reaction of the catalyst during the period from when the catalyst starts to oxidize and purify rich components in the exhaust gas to the half warm-up state by the one-step warm-up control. a warm-up control step, the catalyst is to perform a warm-up control of the third step of performing dither control to change alternately the air-fuel ratio to lean and rich during the period until complete warm-up state from the semi-warming up condition As a first feature, the catalyst temperature estimated or detected by the catalyst temperature determining means during execution of the second stage warm-up control is higher than the exhaust temperature estimated or detected by the exhaust temperature determining means. At the time, before the second stage warm-up control To switch to warm-up control of the third step is to the second feature.

要するに、本発明は、触媒早期暖機制御を触媒暖機の進み具合(酸化反応の発生レベル)に応じて3段階に分け、触媒早期暖機制御の初期には、触媒の温度が低く、酸化反応がほとんど発生しないため、内燃機関の燃焼温度が高くなるように空燃比を制御する第1段階の暖機制御を行うことで、エミッションの増加を抑えながら、触媒を高温の排出ガスにより暖機する。そして、この第1段階の暖機制御により触媒が排出ガス中のリッチ成分を酸化浄化し始める程度まで暖機された頃に、第1段階の暖機制御から第2段階の暖機制御に切り換える。この第2段階では、まだ触媒の酸化反応の発生レベルが低レベルであるため、空燃比を弱リーンに制御することで、この第2段階の酸化反応促進レベルで酸化浄化可能な比較的少ないリッチ成分を触媒に供給して、触媒からのリッチ成分のすり抜け(エミッションの増加)を防止しながら、触媒内でリッチ成分を酸化反応させて、その反応熱で触媒を効率良く暖機する。そして、触媒が半暖機状態になる頃に、第2段階の暖機制御から第3段階の暖機制御に切り換える。この第3段階では、触媒の酸化反応の発生レベルがある程度高くなっていて、第2段階の時よりも触媒で酸化浄化可能なリッチ成分量が増加しているため、ディザ制御を行うことで、触媒に供給するリッチ成分量を増加させて、触媒内の酸化反応の反応熱を増大させ、その反応熱で触媒を完全暖機状態になるまで効率良く暖機する。これにより、触媒早期暖機制御中のエミッションを低減しながら触媒を従来より早期に暖機することができ、触媒早期暖機制御中のエミッション低減と触媒早期暖機性能向上とを両立させることが可能となる。
また、触媒が半暖機状態になると、触媒温度が排気温度よりも高くなることを考慮して、本発明では、第2段階の暖機制御(弱リーン制御)の実行中に触媒温度判定手段で推定又は検出した触媒温度が排気温度判定手段で推定又は検出した排気温度よりも高くなった時点で、第2段階の暖機制御から第3段階の暖機制御(ディザ制御)に切り換えるようにしているため、適正な時期に第3段階の暖機制御に切り換えることができる。
In short, the present invention divides the catalyst early warm-up control into three stages according to the progress of the catalyst warm-up (the level of occurrence of oxidation reaction). Since the reaction hardly occurs, the first stage warm-up control is performed to control the air-fuel ratio so that the combustion temperature of the internal combustion engine becomes high, so that the catalyst is warmed up by the high-temperature exhaust gas while suppressing an increase in emissions. To do. The first stage warm-up control is switched to the second stage warm-up control when the catalyst is warmed up to such an extent that the catalyst starts to oxidize and purify rich components in the exhaust gas by the first stage warm-up control. . In this second stage, since the generation level of the oxidation reaction of the catalyst is still low, by controlling the air-fuel ratio to a weak lean, a relatively small rich that can be oxidized and purified at the oxidation reaction promotion level of the second stage. The component is supplied to the catalyst, and the rich component is oxidized in the catalyst while preventing the slip of the rich component from the catalyst (increase in emission), and the catalyst is efficiently warmed up by the reaction heat. Then, when the catalyst is in the semi-warm-up state, the second stage warm-up control is switched to the third stage warm-up control. In this third stage, the generation level of the oxidation reaction of the catalyst is increased to some extent, and the amount of rich components that can be oxidized and purified by the catalyst is increased compared to that in the second stage, so by performing dither control, The amount of rich components supplied to the catalyst is increased to increase the reaction heat of the oxidation reaction in the catalyst, and the catalyst is efficiently warmed up by the reaction heat until the catalyst is completely warmed up. As a result, the catalyst can be warmed up earlier than before while reducing the emission during the catalyst early warm-up control, and both the emission reduction during the catalyst early warm-up control and the catalyst early warm-up performance can be achieved at the same time. It becomes possible.
Further, in consideration of the fact that the catalyst temperature becomes higher than the exhaust gas temperature when the catalyst is in a semi-warm-up state, in the present invention, the catalyst temperature determination means during execution of the second-stage warm-up control (weak lean control). When the catalyst temperature estimated or detected in step 1 becomes higher than the exhaust temperature estimated or detected by the exhaust temperature determination means, the second stage warm-up control is switched to the third stage warm-up control (dither control). Therefore, it is possible to switch to the third stage warm-up control at an appropriate time.

この場合、請求項2のように、触媒の温度を推定又は検出する触媒温度判定手段を備え、第1段階の暖機制御の実行中に前記触媒温度判定手段で推定又は検出した触媒温度が所定温度に達した時点で、触媒が排出ガス中のリッチ成分を酸化浄化し始めたと判断して、第1段階の暖機制御から第2段階の暖機制御(弱リーン制御)に切り換えるようにすると良い。このようにすれば、第1段階の暖機制御により触媒が排出ガス中のリッチ成分を酸化浄化し始める時期を確認して第2段階の暖機制御に切り換えることができるため、外気温や触媒の初期温度の影響を受けずに常に最適な時期に第2段階の暖機制御に切り換えることができる。   In this case, as in the second aspect, the catalyst temperature determining means for estimating or detecting the temperature of the catalyst is provided, and the catalyst temperature estimated or detected by the catalyst temperature determining means during execution of the first stage warm-up control is predetermined. When the temperature reaches the temperature, it is determined that the catalyst has started to oxidize and purify the rich component in the exhaust gas, and the first stage warm-up control is switched to the second stage warm-up control (weak lean control). good. In this way, it is possible to check the timing when the catalyst starts oxidizing and purifying rich components in the exhaust gas by the first stage warm-up control, and to switch to the second stage warm-up control. Therefore, it is possible to always switch to the second stage warm-up control without being affected by the initial temperature.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図7に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ10によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。   A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by the motor 10 and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 21.

一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ、酸素センサ等)が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する水温センサ25や、エンジン11のクランク軸が一定クランク角(例えば30℃A)回転する毎にパルス信号を出力するクランク角センサ26が取り付けられている。このクランク角センサ26の出力信号に基づいてクランク角やエンジン回転速度が検出される。   On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst that purifies CO, HC, NOx, etc. in the exhaust gas. / An exhaust gas sensor 24 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting lean or the like is provided. Further, a water temperature sensor 25 that detects the coolant temperature and a crank angle sensor 26 that outputs a pulse signal each time the crankshaft of the engine 11 rotates by a certain crank angle (for example, 30 ° C. A) are attached to the cylinder block of the engine 11. It has been. Based on the output signal of the crank angle sensor 26, the crank angle and the engine speed are detected.

前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。   Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 20 can be changed according to the engine operating state. The ignition timing of the spark plug 21 is controlled.

その際、ECU27は、後述する図2乃至図6に示す触媒早期暖機制御用の各プログラムを実行することで、エンジン始動から触媒23の暖機が完了するまで触媒早期暖機制御を実行する。   At that time, the ECU 27 executes the early catalyst warm-up control from the start of the engine until the warm-up of the catalyst 23 is completed by executing each program for early catalyst warm-up control shown in FIGS. 2 to 6 described later.

本実施例1では、触媒早期暖機制御を触媒23の暖機の進み具合に応じて3段階に分け、触媒早期暖機制御の初期には、触媒23の温度が低く、触媒23内でリッチ成分の酸化反応がほとんど発生しないため、エンジン11の燃焼温度が最も高くなるように空燃比をストイキ付近(理論空燃比付近)に制御する第1段階の暖機制御を行うことで、エミッションの増加を抑えながら、触媒23を高温の排出ガスにより暖機する。   In the first embodiment, the early catalyst warm-up control is divided into three stages according to the progress of the warm-up of the catalyst 23. At the initial stage of the early catalyst warm-up control, the temperature of the catalyst 23 is low and rich in the catalyst 23. Since the oxidation reaction of the components hardly occurs, the first stage warm-up control that controls the air-fuel ratio near the stoichiometric (near the stoichiometric air-fuel ratio) so that the combustion temperature of the engine 11 becomes the highest increases the emission. While suppressing the above, the catalyst 23 is warmed up by the high temperature exhaust gas.

この後、エンジン始動後の排気熱量積算値等に基づいて触媒温度Tを推定し、触媒温度Tが排出ガス中のリッチ成分を酸化浄化し始める所定温度T1 に達した時点で、第1段階の暖機制御(ストイキ制御)から第2段階の暖機制御(弱リーン制御)に切り換える。この第2段階では、まだ触媒23の酸化反応促進レベルが低レベルであるため、空燃比を弱リーンに制御することで、この第2段階の酸化反応促進レベルで酸化浄化可能な比較的少ないリッチ成分を触媒23に供給して、触媒23からのリッチ成分のすり抜け(エミッションの増加)を防止しながら、触媒23内で排出ガス中のリッチ成分を酸化反応させて、その反応熱で触媒23を効率良く暖機する。   Thereafter, the catalyst temperature T is estimated based on the exhaust heat integrated value after the engine is started, and when the catalyst temperature T reaches a predetermined temperature T1 at which the rich component in the exhaust gas begins to be oxidized and purified, the first stage is reached. Switch from warm-up control (stoichiometric control) to second-stage warm-up control (weak lean control). In this second stage, the oxidation reaction promotion level of the catalyst 23 is still low. Therefore, by controlling the air-fuel ratio to be weak lean, a relatively small rich amount that can be oxidized and purified at this second stage oxidation reaction promotion level. The component is supplied to the catalyst 23 to prevent the rich component from slipping through the catalyst 23 (increase in emission), and the rich component in the exhaust gas is oxidized in the catalyst 23, and the catalyst 23 is caused by the reaction heat. Warm up efficiently.

その後、触媒温度の上昇が飽和レベル付近に達した時点で、触媒23が半暖機状態になったと判断して、第2段階の暖機制御から第3段階の暖機制御(ディザ制御)に切り換える。この第3段階では、触媒23の酸化反応の促進レベルがある程度高くなっていて、第2段階の時よりも触媒23で酸化浄化可能なリッチ成分量が増加しているため、空燃比をリーンとリッチに交互に変化させるディザ制御を行うことで、触媒26に供給するリッチ成分量を増加させて、触媒23内の酸化反応の反応熱を増大させ、その反応熱で触媒23を完全暖機状態になるまで効率良く暖機する。   Thereafter, when the increase in the catalyst temperature reaches near the saturation level, it is determined that the catalyst 23 is in a semi-warm-up state, and the second stage warm-up control is changed to the third stage warm-up control (dither control). Switch. In this third stage, the level of acceleration of the oxidation reaction of the catalyst 23 is somewhat high, and the amount of rich components that can be oxidized and purified by the catalyst 23 is higher than in the second stage. By performing dither control that changes alternately in a rich manner, the amount of rich components supplied to the catalyst 26 is increased, the reaction heat of the oxidation reaction in the catalyst 23 is increased, and the catalyst 23 is completely warmed up by the reaction heat. Warm up efficiently until

以上説明した本実施例1の触媒早期暖機制御は、ECU27によって図2乃至図6に示す触媒早期暖機制御用の各ルーチンに従って実行される。以下、これら各ルーチンの処理内容を説明する。   The catalyst early warm-up control according to the first embodiment described above is executed by the ECU 27 according to the routines for catalyst early warm-up control shown in FIGS. The processing contents of these routines will be described below.

[触媒早期暖機制御メインルーチン]
図2の触媒早期暖機制御メインルーチンは、イグニッションスイッチ(図示せず)のオン後(ECU27の電源投入後)に所定周期で実行され、特許請求の範囲でいう触媒早期暖機制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、アイドル運転中であるか否かを判定し、アイドル運転中でなければ、触媒早期暖機制御が禁止されている運転領域であるため、以降の触媒早期暖機制御に関する処理を行わずに、本ルーチンを終了する。
[Catalyst early warm-up control main routine]
The catalyst early warm-up control main routine of FIG. 2 is executed in a predetermined cycle after an ignition switch (not shown) is turned on (after powering on the ECU 27), and serves as catalyst early warm-up control means in the claims. Play a role. When this routine is started, it is first determined in step 101 whether or not the idling operation is being performed. If the idling operation is not being performed, the catalyst early warm-up control is prohibited. This routine is terminated without performing the process related to the early catalyst warm-up control.

一方、上記ステップ101で、アイドル運転中であると判定されれば、ステップ102に進み、エンジン始動後の排気熱量積算値に基づいて始動後の触媒温度上昇量を推定して、この始動後の触媒温度上昇量を始動当初の触媒温度に加算して現時点の触媒温度Tを推定する。   On the other hand, if it is determined in step 101 that the engine is idling, the process proceeds to step 102, where the amount of catalyst temperature increase after startup is estimated based on the integrated exhaust heat amount after engine startup, and The current catalyst temperature T is estimated by adding the catalyst temperature increase to the initial catalyst temperature.

T=始動後の触媒温度上昇量+(始動当初の触媒温度)
=K×(始動後の排気熱量積算値)+(始動当初の触媒温度)
=K×∫(排気温度×排出ガス流量)dt+(始動当初の触媒温度)
T = amount of increase in catalyst temperature after start-up + (catalyst temperature at start-up)
= K x (exhaust heat integrated value after start-up) + (catalyst temperature at start-up)
= K x ∫ (exhaust temperature x exhaust gas flow rate) dt + (starting catalyst temperature)

ここで、Kは、排気熱量による触媒温度Tの上昇量を算出するための係数である。排気温度は、排気管22の触媒23の上流側に設置した温度センサで実測しても良いし、エンジン運転条件から推定するようにしても良い。排出ガス流量は、エアフローメータ14で検出した吸入空気量から推定すれば良い。尚、始動後の排気熱量積算値の代わりに、始動後の燃料噴射量積算値又は始動後経過時間に基づいて始動後の触媒温度上昇量を推定するようにしても良い。また、始動当初の触媒温度は、水温センサ25で検出した始動当初の冷却水温から推定しても良いし、冷却水温の他にエンジン停止時間や外気温等も考慮して始動当初の触媒温度を推定するようにしても良い。勿論、触媒温度Tを温度センサで実測するようにしても良い。このステップ102の処理が特許請求の範囲でいう触媒温度判定手段としての役割を果たす。   Here, K is a coefficient for calculating the amount of increase in the catalyst temperature T due to the amount of exhaust heat. The exhaust temperature may be measured with a temperature sensor installed on the upstream side of the catalyst 23 in the exhaust pipe 22 or may be estimated from engine operating conditions. The exhaust gas flow rate may be estimated from the intake air amount detected by the air flow meter 14. In addition, instead of the exhaust heat amount integrated value after starting, the catalyst temperature increase amount after starting may be estimated based on the fuel injection amount integrated value after starting or the elapsed time after starting. The initial catalyst temperature may be estimated from the initial cooling water temperature detected by the water temperature sensor 25, or the initial catalyst temperature may be determined in consideration of the engine stop time and the outside air temperature in addition to the cooling water temperature. It may be estimated. Of course, the catalyst temperature T may be measured with a temperature sensor. The processing in step 102 serves as catalyst temperature determination means in the claims.

触媒温度Tの推定後、ステップ103に進み、現時点の触媒温度Tが予め適合された触媒暖機完了温度Tend 以下であるか否かを判定し、現時点の触媒温度Tが触媒暖機完了温度Tend を越えていれば、触媒23の暖機が完了していると判断して、以降の触媒早期暖機制御に関する処理を行わずに、本ルーチンを終了する。   After the estimation of the catalyst temperature T, the routine proceeds to step 103, where it is determined whether or not the current catalyst temperature T is equal to or lower than the pre-adapted catalyst warm-up completion temperature Tend, and the current catalyst temperature T is the catalyst warm-up completion temperature Tend. If it exceeds, it is determined that the warm-up of the catalyst 23 has been completed, and this routine is terminated without performing the subsequent processes related to the early catalyst warm-up control.

これに対して、上記ステップ103で、現時点の触媒温度Tが触媒暖機完了温度Tend 以下であると判定されれば、触媒早期暖機制御実行条件が成立して、ステップ104に進み、現時点の触媒温度Tが排出ガス中のリッチ成分を酸化浄化し始める所定温度T1 以下であるか否かを判定し、現時点の触媒温度Tが当該所定温度T1 以下であれば、ステップ106に進み、後述する図3の第1段階の暖機制御ルーチンを実行して、エンジン11の燃焼温度が最も高くなるように空燃比をストイキ付近に制御する第1段階の暖機制御を行う。この際、点火時期と空燃比に応じて目標スロットル開度をマップ等により設定してスロットル開度を制御する(ステップ109)。   On the other hand, if it is determined in step 103 that the current catalyst temperature T is equal to or lower than the catalyst warm-up completion temperature Tend, the catalyst early warm-up control execution condition is satisfied, and the process proceeds to step 104. It is determined whether or not the catalyst temperature T is equal to or lower than a predetermined temperature T1 at which the rich component in the exhaust gas begins to be oxidized and purified. If the current catalyst temperature T is equal to or lower than the predetermined temperature T1, the process proceeds to step 106 and will be described later. The first-stage warm-up control routine of FIG. 3 is executed to perform the first-stage warm-up control in which the air-fuel ratio is controlled near the stoichiometric range so that the combustion temperature of the engine 11 becomes the highest. At this time, the target throttle opening is set by a map or the like according to the ignition timing and the air-fuel ratio, and the throttle opening is controlled (step 109).

この第1段階の暖機制御により、触媒温度Tが排出ガス中のリッチ成分を酸化浄化し始める所定温度T1 を越えると、その時点で、上記ステップ104で「No」と判定されてステップ105に進み、触媒温度Tの単位時間当たりの上昇量ΔTが所定値ΔTend 以上であるか否かによって、触媒温度Tの上昇がまだ飽和レベル付近に達していないか否かを判定する。   When the catalyst temperature T exceeds the predetermined temperature T1 at which the rich component in the exhaust gas begins to be oxidized and purified by this first stage warm-up control, at the time, it is determined as “No” in the above step 104, and the process proceeds to step 105. Then, it is determined whether or not the increase in the catalyst temperature T has yet reached the saturation level depending on whether or not the increase amount ΔT per unit time of the catalyst temperature T is equal to or greater than the predetermined value ΔTend.

このステップ105で、触媒温度Tの単位時間当たりの上昇量ΔTが所定値ΔTend 以上であると判定されれば、触媒温度Tの上昇がまだ飽和レベル付近に達していないと判断して、ステップ107に進み、後述する図4の第2段階の暖機制御ルーチンを実行して、空燃比を弱リーンに制御することで、この第2段階の酸化反応促進レベルで酸化浄化可能な比較的少ないリッチ成分を触媒23に供給して、触媒23からのリッチ成分のすり抜け(エミッションの増加)を防止しながら、触媒23内で排出ガス中のリッチ成分を酸化反応させて、その反応熱で触媒23を効率良く暖機する。この第2段階の暖機制御でも、点火時期と空燃比に応じて目標スロットル開度をマップ等により設定してスロットル開度を制御する(ステップ109)。   If it is determined in step 105 that the increase amount ΔT per unit time of the catalyst temperature T is greater than or equal to the predetermined value ΔTend, it is determined that the increase in the catalyst temperature T has not yet reached the saturation level, and step 107 , The second stage warm-up control routine shown in FIG. 4 to be described later is executed to control the air-fuel ratio to be slightly lean, so that a relatively small rich amount that can be oxidized and purified at this second stage oxidation reaction promotion level. The component is supplied to the catalyst 23 to prevent the rich component from slipping through the catalyst 23 (increase in emission), and the rich component in the exhaust gas is oxidized in the catalyst 23, and the catalyst 23 is caused by the reaction heat. Warm up efficiently. Even in the second stage warm-up control, the throttle opening is controlled by setting the target throttle opening on a map or the like in accordance with the ignition timing and the air-fuel ratio (step 109).

この第2段階の暖機制御の実行中に、触媒温度Tの単位時間当たりの上昇量ΔTが所定値ΔTend より小さくなった時点で、上記ステップ105で「No」と判定される。これにより、触媒温度Tの上昇が飽和レベル付近に達したと判断して(触媒23が半暖機状態になったと判断して)、ステップ108に進み、後述する図6の第3段階の暖機制御ルーチンを実行して、空燃比をリーンとリッチに交互に変化させるディザ制御を行うことで、触媒26に供給するリッチ成分量を増加させて、触媒23内の酸化反応の反応熱を増大させ、その反応熱で触媒23を完全暖機状態になるまで効率良く暖機する。このようにすれば、第2段階の暖機制御(弱リーン制御)による暖機効果が少なくなってきた時点で、より暖機効果の大きい第3段階の暖機制御(ディザ制御)に切り換えることができ、適正な時期に第3段階の暖機制御に切り換えることができる。   During the execution of the second stage warm-up control, when the increase amount ΔT per unit time of the catalyst temperature T becomes smaller than the predetermined value ΔTend, it is determined as “No” in the above step 105. As a result, it is determined that the increase in the catalyst temperature T has reached the saturation level (determined that the catalyst 23 is in a semi-warm-up state), the process proceeds to step 108, and the third stage warming in FIG. A dither control that alternately changes the air-fuel ratio between lean and rich by executing a machine control routine, thereby increasing the amount of rich components supplied to the catalyst 26 and increasing the reaction heat of the oxidation reaction in the catalyst 23 The catalyst 23 is efficiently warmed up by the reaction heat until the catalyst 23 is completely warmed up. In this way, when the warm-up effect by the second stage warm-up control (weak lean control) is reduced, switching to the third-stage warm-up control (dither control) having a larger warm-up effect is performed. Can be switched to the third stage warm-up control at an appropriate time.

その後、触媒温度Tが触媒暖機完了温度Tend を越えて触媒23が完全暖機状態になった時点で、ステップ103で「No」と判定される。これにより、第3段階の暖機制御(ディザ制御)を終了して通常の制御に復帰する。   Thereafter, when the catalyst temperature T exceeds the catalyst warm-up completion temperature Tend and the catalyst 23 is in a completely warm-up state, “No” is determined in Step 103. As a result, the third stage warm-up control (dither control) is terminated and the normal control is resumed.

[第1段階の暖機制御ルーチン]
図3の第1段階の暖機制御ルーチンは、図2の触媒早期暖機制御メインルーチンのステップ106で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ201で、水温センサ25の出力を読み込んで現時点の冷却水温を検出し、次のステップ202で、冷却水温が触媒早期暖機制御の実行温度領域(例えば−10℃以上)であるか否かを判定し、触媒早期暖機制御が禁止される極低温度領域(例えば−10℃以下)であれば、ステップ204に進み、目標空燃比を極低温度領域でも燃焼性を確保できるようにリッチ空燃比に設定する。
[First stage warm-up control routine]
The first stage warm-up control routine of FIG. 3 is a subroutine executed in step 106 of the catalyst early warm-up control main routine of FIG. When this routine is started, first, in step 201, the output of the water temperature sensor 25 is read to detect the current cooling water temperature, and in the next step 202, the cooling water temperature falls within the execution temperature region (for example, −− If it is an extremely low temperature region (for example, −10 ° C. or less) in which the early catalyst warm-up control is prohibited, the process proceeds to step 204 and the target air-fuel ratio is set to the extremely low temperature region. However, the rich air-fuel ratio is set so as to ensure combustibility.

これに対して、上記ステップ202で、冷却水温が触媒早期暖機制御の実行温度領域(例えば−10℃以上)であると判定されれば、ステップ203に進み、第1段階の暖機制御期間中にエンジン11の燃焼温度が最も高くなるように目標空燃比をストイキTAF1 に設定する。   On the other hand, if it is determined in step 202 that the coolant temperature is within the temperature range (for example, −10 ° C. or higher) of the catalyst early warm-up control, the process proceeds to step 203 and the first stage warm-up control period. The target air-fuel ratio is set to stoichiometric TAF1 so that the combustion temperature of the engine 11 becomes the highest.

[第2段階の暖機制御ルーチン]
図4の第2段階の暖機制御ルーチンは、図2の触媒早期暖機制御メインルーチンのステップ107で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ301で、水温センサ25の出力を読み込んで現時点の冷却水温を検出し、次のステップ302で、始動後の経過時間をタイマカウンタ等によりカウントする。
[Second stage warm-up control routine]
The second stage warm-up control routine of FIG. 4 is a subroutine executed in step 107 of the catalyst early warm-up control main routine of FIG. When this routine is started, first, at step 301, the output of the water temperature sensor 25 is read to detect the current cooling water temperature, and at the next step 302, the elapsed time after starting is counted by a timer counter or the like.

この後、ステップ303に進み、冷却水温と始動後経過時間をパラメータとする図5の目標空燃比マップを参照して、現時点の冷却水温と始動後経過時間に応じて第2段階の暖機制御の目標空燃比TAF2 を弱リーンに設定する。この際、始動後経過時間が長くなるほど、また、冷却水温が高くなるほど、触媒23の暖機が促進されることを考慮して、図5の目標空燃比マップは、始動後経過時間が長くなるほど、また、冷却水温が高くなるほど、リーン度合が強くなるように設定されている。尚、制御ロジックを簡単化するために、目標空燃比TAF2 を予め決められた一定の弱リーンに設定するようにしても良い。   Thereafter, the process proceeds to step 303, and the second stage warm-up control is performed according to the current coolant temperature and the elapsed time after startup with reference to the target air-fuel ratio map of FIG. 5 using the coolant temperature and the elapsed time after startup as parameters. The target air-fuel ratio TAF2 is set to be slightly lean. At this time, in consideration of the fact that the longer the elapsed time after start-up and the higher the coolant temperature, the more the catalyst 23 is warmed up, the target air-fuel ratio map of FIG. In addition, the lean degree is set higher as the cooling water temperature becomes higher. In order to simplify the control logic, the target air-fuel ratio TAF2 may be set to a predetermined constant weak lean.

目標空燃比TAF2 の設定後、ステップ304に進み、第1段階の暖機制御の目標空燃比TAF1 (ストイキ)から第2段階の暖機制御の目標空燃比TAF2 (弱リーン)への空燃比変化量ΔTAF12を算出する。
ΔTAF12=TAF2 −TAF1
After the target air-fuel ratio TAF2 has been set, the routine proceeds to step 304, where the air-fuel ratio changes from the target air-fuel ratio TAF1 (stoichiki) of the first stage warm-up control to the target air-fuel ratio TAF2 (weak lean) of the second stage warm-up control. The amount ΔTAF12 is calculated.
ΔTAF12 = TAF2-TAF1

この後、ステップ305に進み、第1段階の暖機制御の目標空燃比TAF1 (ストイキ)から第2段階の暖機制御の目標空燃比TAF2 (弱リーン)へ徐変させるように目標空燃比TAF12を設定する。
TAF12=ΔTAF12×G+TAF1
上式において、Gは徐変係数であり、例えば次式により設定される。
G=徐変開始後経過時間/所定時間
Thereafter, the routine proceeds to step 305, where the target air-fuel ratio TAF12 is gradually changed from the target air-fuel ratio TAF1 (stoichiometric) of the first stage warm-up control to the target air-fuel ratio TAF2 (weak lean) of the second stage warm-up control. Set.
TAF12 = ΔTAF12 × G + TAF1
In the above equation, G is a gradual change coefficient, and is set by the following equation, for example.
G = Elapsed time after start of gradual change / predetermined time

これにより、第1段階の暖機制御の目標空燃比TAF1 (ストイキ)から第2段階の暖機制御の目標空燃比TAF2 (弱リーン)へ切り換える際に、目標空燃比TAF12をTAF1 (ストイキ)からTAF2 (弱リーン)へ徐々に変化させ、所定時間が経過した時点で、目標空燃比TAF12が図5のマップ値TAF2 に達して徐変が終了する(ステップ306)。その後は、目標空燃比TAF12が図5のマップ値TAF2 に維持される。   Thus, when the target air-fuel ratio TAF1 (stoichiometric) in the first stage warm-up control is switched to the target air-fuel ratio TAF2 (weak lean) in the second stage warm-up control, the target air-fuel ratio TAF12 is changed from TAF1 (stoichiometric). When the predetermined time elapses, the target air-fuel ratio TAF12 reaches the map value TAF2 in FIG. 5 and the gradual change ends (step 306). Thereafter, the target air-fuel ratio TAF12 is maintained at the map value TAF2 in FIG.

[第3段階の暖機制御ルーチン]
図6の第3段階の暖機制御ルーチンは、図2の触媒早期暖機制御メインルーチンのステップ108で実行されるサブルーチンであり、次のようにして、空燃比をリーンとリッチに交互に変化させるディザ制御を実行する。まず、ステップ401で、前回のリッチ/リーンの反転タイミングから所定時間(リッチ/リーンを反転させるまでの設定時間)が経過したか否かを判定し、まだ所定時間が経過していなければ、そのまま本ルーチンを終了する。
[Third stage warm-up control routine]
The third stage warm-up control routine of FIG. 6 is a subroutine executed in step 108 of the catalyst early warm-up control main routine of FIG. 2, and the air-fuel ratio is changed alternately between lean and rich as follows. The dither control to be executed is executed. First, in step 401, it is determined whether or not a predetermined time (a set time until the rich / lean is inverted) has elapsed since the previous rich / lean inversion timing. This routine ends.

そして、前回のリッチ/リーンの反転タイミングから所定時間が経過した時点で、ステップ402に進み、前回の目標空燃比TAF3 がリッチであるか否かを判定し、前回の目標空燃比TAF3 がリッチであれば、ステップ403に進み、今回の目標空燃比TAF3 をリーンに反転し、前回の目標空燃比TAF3 がリーンであれば、ステップ404に進み、今回の目標空燃比TAF3 をリッチに反転する。この際、リッチ/リーンの反転は、ストイキ(空燃比=14.7)を中心にして±所定%相当値で設定すれば良い。   When a predetermined time has elapsed from the previous rich / lean reversal timing, the routine proceeds to step 402, where it is determined whether or not the previous target air-fuel ratio TAF3 is rich, and the previous target air-fuel ratio TAF3 is rich. If there is, the process proceeds to step 403 to reverse the current target air-fuel ratio TAF3 to lean, and if the previous target air-fuel ratio TAF3 is lean, the process proceeds to step 404 to reverse the current target air-fuel ratio TAF3 to rich. At this time, the rich / lean reversal may be set to a value corresponding to ± predetermined% with the stoichiometric (air-fuel ratio = 14.7) as the center.

尚、このディザ制御は、気筒毎に空燃比を交互にリッチ/リーンに反転させるようにしても良いし、或は、1サイクル毎(又は所定サイクル毎)に空燃比を交互にリッチ/リーンに反転させるようにしても良い。   In this dither control, the air-fuel ratio may be alternately reversed to rich / lean for each cylinder, or the air-fuel ratio may be alternately rich / lean every cycle (or every predetermined cycle). It may be reversed.

以上説明した本実施例1の触媒早期暖機制御の暖機効果を図7を用いて説明する。
図7には、本実施例1の触媒早期暖機制御の挙動を実線で示し、弱リーン制御のみで触媒23を暖機する比較例を破線で示している。
The warm-up effect of the catalyst early warm-up control of the first embodiment described above will be described with reference to FIG.
In FIG. 7, the behavior of the catalyst early warm-up control of the first embodiment is shown by a solid line, and a comparative example in which the catalyst 23 is warmed up only by weak lean control is shown by a broken line.

本実施例1では、触媒早期暖機制御を触媒23の暖機の進み具合に応じて3段階に分け、触媒早期暖機制御の初期には、触媒23の温度が低く、触媒23内でリッチ成分の酸化反応がほとんど発生しないため、エンジン11の燃焼温度が最も高くなるように空燃比をストイキ付近(理論空燃比付近)に制御する第1段階の暖機制御を行うことで、触媒23を高温の排出ガスにより効率良く暖機する。これにより、触媒早期暖機制御の初期の暖機効果を比較例(弱リーン制御のみ)と比較して高めることができる。   In the first embodiment, the early catalyst warm-up control is divided into three stages according to the progress of the warm-up of the catalyst 23. At the initial stage of the early catalyst warm-up control, the temperature of the catalyst 23 is low and rich in the catalyst 23. Since the oxidation reaction of the components hardly occurs, the first stage warm-up control is performed in which the air-fuel ratio is controlled near the stoichiometric (near the stoichiometric air-fuel ratio) so that the combustion temperature of the engine 11 becomes the highest. Efficiently warms up with hot exhaust gas. Thereby, the initial warm-up effect of the early catalyst warm-up control can be enhanced as compared with the comparative example (only weak lean control).

この後、触媒温度が排出ガス中のリッチ成分を酸化浄化し始める所定温度T1 に達した時点で、第1段階の暖機制御(ストイキ制御)から第2段階の暖機制御(弱リーン制御)に切り換える。この第2段階の暖機制御期間中は、比較例と同じく、弱リーン制御を行うため、第2段階の暖機制御期間中の触媒温度の上昇量は比較例とほぼ同じであるが、第2段階の暖機制御開始時の触媒温度が比較例よりも高いため、第2段階の暖機制御終了時の触媒温度も比較例よりも高くなり、その分、第2段階の暖機制御期間中の浄化率も比較例よりも高くなる。   Thereafter, when the catalyst temperature reaches a predetermined temperature T1 at which the rich component in the exhaust gas begins to be oxidized and purified, the first stage warm-up control (stoichiometric control) to the second stage warm-up control (weak lean control). Switch to. During this second stage warm-up control period, as in the comparative example, weak lean control is performed, so the amount of increase in the catalyst temperature during the second stage warm-up control period is almost the same as in the comparative example. Since the catalyst temperature at the start of the two-stage warm-up control is higher than that of the comparative example, the catalyst temperature at the end of the second-stage warm-up control is also higher than that of the comparative example. The inside purification rate is also higher than that of the comparative example.

その後、触媒温度の上昇が飽和レベル付近に達した時点で、触媒23が半暖機状態になったと判断して、第2段階の暖機制御から第3段階の暖機制御(ディザ制御)に切り換える。この第3段階では、触媒23の酸化反応の促進レベルがある程度高くなっていて、第2段階の時よりも触媒23で酸化浄化可能なリッチ成分量が増加しているため、空燃比をリーンとリッチに交互に変化させるディザ制御を行うことで、触媒26に供給するリッチ成分量を増加させて、触媒23内の酸化反応の反応熱を増大させ、その反応熱で触媒23を完全暖機状態になるまで効率良く暖機する。   Thereafter, when the increase in the catalyst temperature reaches near the saturation level, it is determined that the catalyst 23 is in a semi-warm-up state, and the second stage warm-up control is changed to the third stage warm-up control (dither control). Switch. In this third stage, the level of acceleration of the oxidation reaction of the catalyst 23 is increased to some extent, and the amount of rich components that can be oxidized and purified by the catalyst 23 is increased compared to that in the second stage. By performing dither control that alternately changes richly, the amount of rich component supplied to the catalyst 26 is increased, the reaction heat of the oxidation reaction in the catalyst 23 is increased, and the catalyst 23 is completely warmed up by the reaction heat. Warm up efficiently until

これにより、本実施例1の触媒早期暖機制御では、比較例(弱リーン制御のみ)と比較して、触媒早期暖機性能と浄化率の両方を向上させることができる。   Thereby, in catalyst early warm-up control of the present Example 1, both catalyst early warm-up performance and a purification rate can be improved compared with a comparative example (only weak lean control).

上記実施例1では、第2段階の暖機制御(弱リーン制御)の実行中に、触媒温度Tの単位時間当たりの上昇量ΔTが所定値ΔTend より小さくなった時点で、触媒温度Tの上昇が飽和レベル付近に達したと判断して第3段階の暖機制御(ディザ制御)に切り換えるようにしたが、図8に示す本発明の実施例2では、触媒23が半暖機状態になると、触媒温度Tが排気温度Texよりも高くなることを考慮して、第2段階の暖機制御(弱リーン制御)の実行中に、触媒温度Tが排気温度Texよりも高くなった時点で、第2段階の暖機制御から第3段階の暖機制御(ディザ制御)に切り換えるようにしている。   In the first embodiment, the catalyst temperature T increases when the increase amount ΔT per unit time of the catalyst temperature T becomes smaller than the predetermined value ΔTend during the execution of the second stage warm-up control (weak lean control). However, in the second embodiment of the present invention shown in FIG. 8, when the catalyst 23 is in a semi-warm-up state, it is determined that has reached the saturation level and switched to the third stage warm-up control (dither control). In consideration of the fact that the catalyst temperature T becomes higher than the exhaust temperature Tex, when the catalyst temperature T becomes higher than the exhaust temperature Tex during execution of the second stage warm-up control (weak lean control), The second stage warm-up control is switched to the third stage warm-up control (dither control).

図8の触媒早期暖機制御メインルーチンは、前記実施例1で説明した図2の触媒早期暖機制御メインルーチンのステップ102の後に排気温度Texを推定する処理(ステップ102a)を追加すると共に、図2のステップ105の処理をステップ105aに変更しただけであり、その他の各ステップの処理は同じである。   The catalyst early warm-up control main routine of FIG. 8 adds a process (step 102a) for estimating the exhaust gas temperature Tex after step 102 of the catalyst early warm-up control main routine of FIG. 2 described in the first embodiment. The processing in step 105 in FIG. 2 is only changed to step 105a, and the processing in other steps is the same.

図8の触媒早期暖機制御メインルーチンでは、実施例1と同様の方法で触媒温度Tを推定し(ステップ102)、次のステップ102aで、点火時期と始動後の排出ガス流量積算値に基づいて始動後の排気温度上昇量をマップ又は数式により推定し、始動後の排気温度上昇量を始動時冷却水温(又は外気温)に加算して排気温度Texを推定する。
Tex=始動時冷却水温(又は外気温)+F(点火時期,排出ガス流量積算値)
In the catalyst early warm-up control main routine of FIG. 8, the catalyst temperature T is estimated by the same method as in the first embodiment (step 102), and in the next step 102a, based on the ignition timing and the integrated exhaust gas flow rate after startup. Then, the exhaust temperature increase after the start is estimated by a map or a mathematical expression, and the exhaust temperature increase after the start is added to the cooling water temperature (or outside air temperature) at the start to estimate the exhaust temperature Tex.
Tex = Cooling water temperature at start-up (or outside temperature) + F (ignition timing, exhaust gas flow rate integrated value)

上式において、始動時冷却水温(又は外気温)は、排気温度Texの初期値として用いられる。尚、排気温度Texは、排気管22の触媒23の上流側に設置した温度センサで実測しても良い。このステップ102aの処理が特許請求の範囲でいう排気温度判定手段としての役割を果たす。   In the above formula, the starting coolant temperature (or outside air temperature) is used as the initial value of the exhaust temperature Tex. The exhaust temperature Tex may be measured with a temperature sensor installed on the upstream side of the catalyst 23 in the exhaust pipe 22. The processing in step 102a serves as exhaust temperature determination means in the claims.

そして、第2段階の暖機制御(弱リーン制御)の実行中に、ステップ105aで、触媒温度Tが排気温度Tex以下であるか否かを判定し、触媒温度Tが排気温度Texを越えるまで、第2段階の暖機制御(弱リーン制御)を継続する。その後、触媒温度Tが排気温度Texを越えた時点で、ステップ108に進み、第2段階の暖機制御(弱リーン制御)から第3段階の暖機制御(ディザ制御)に切り換える。このようにすれば、第2段階の暖機制御(弱リーン制御)による暖機効果が少なくなってきた時点で、より暖機効果の大きい第3段階の暖機制御(ディザ制御)に切り換えることができ、適正な時期に第3段階の暖機制御に切り換えることができる。   Then, during execution of the second stage warm-up control (weak lean control), it is determined in step 105a whether or not the catalyst temperature T is equal to or lower than the exhaust temperature Tex until the catalyst temperature T exceeds the exhaust temperature Tex. Then, the second stage warm-up control (weak lean control) is continued. Thereafter, when the catalyst temperature T exceeds the exhaust gas temperature Tex, the routine proceeds to step 108 where the second stage warm-up control (weak lean control) is switched to the third stage warm-up control (dither control). In this way, when the warm-up effect due to the second stage warm-up control (weak lean control) has decreased, switching to the third stage warm-up control (dither control) with a greater warm-up effect is performed. Can be switched to the third stage warm-up control at an appropriate time.

以上説明した本実施例2においても、前記実施例1と同様の効果を得ることができる。 尚、本発明は、排気管に1つの触媒を設けたシステムに限定されず、排気管に複数の触媒を設けたシステムに適用しても良い。   Also in the second embodiment described above, the same effect as in the first embodiment can be obtained. The present invention is not limited to a system in which one catalyst is provided in the exhaust pipe, and may be applied to a system in which a plurality of catalysts are provided in the exhaust pipe.

その他、本発明は、図1のような吸気ポート噴射エンジンに限定されず、筒内噴射エンジンにも適用して実施できる等、種々変更して実施できる。   In addition, the present invention is not limited to the intake port injection engine as shown in FIG. 1, but can be implemented with various modifications such as being applicable to a cylinder injection engine.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の触媒早期暖機制御メインルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a catalyst early warm-up control main routine according to the first embodiment. 実施例1の第1段階の暖機制御ルーチンの処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of processing of a first stage warm-up control routine according to the first embodiment. 実施例1の第2段階の暖機制御ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a second stage warm-up control routine according to the first embodiment. 第2段階の暖機制御の実行中に冷却水温と始動後経過時間に応じて目標空燃比TAF2 を弱リーンに設定するマップの一例を説明する図である。It is a figure explaining an example of the map which sets the target air fuel ratio TAF2 to weak lean according to the cooling water temperature and the elapsed time after starting during the execution of the second stage warm-up control. 実施例1の第3段階の暖機制御ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of a third stage warm-up control routine according to the first embodiment. 実施例1と比較例の触媒早期暖機制御の効果の相違を説明するタイムチャートである。It is a time chart explaining the difference of the effect of catalyst early warming-up control of Example 1 and a comparative example. 実施例2の触媒早期暖機制御メインルーチンの処理の流れを示すフローチャートである。7 is a flowchart showing a flow of processing of a catalyst early warm-up control main routine of a second embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、21…点火プラグ、22…排気管、23…触媒、27…ECU(触媒早期暖機制御手段,触媒温度判定手段,排気温度判定手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 23 ... Catalyst, 27 ... ECU (Catalyst early warm-up control means, catalyst) (Temperature judgment means, exhaust temperature judgment means)

Claims (2)

内燃機関の排気通路に設置した排出ガス浄化用の触媒を早期に暖機する触媒早期暖機制御を実行する触媒早期暖機制御手段を備えた内燃機関の触媒早期暖機制御装置において、 前記触媒の温度を推定又は検出する触媒温度判定手段と、
排気温度を推定又は検出する排気温度判定手段とを備え、
前記触媒早期暖機制御手段は、前記触媒早期暖機制御の初期に内燃機関の燃焼温度が高くなるように空燃比を制御する第1段階の暖機制御と、この第1段階の暖機制御により前記触媒が排出ガス中のリッチ成分を酸化浄化し始めてから半暖機状態になるまでの期間に前記触媒の酸化反応を促進させるように空燃比を弱リーンに制御する第2段階の暖機制御と、前記触媒が半暖機状態から完全暖機状態になるまでの期間に空燃比をリーンとリッチに交互に変化させるディザ制御を行う第3段階の暖機制御を行うものであって、前記第2段階の暖機制御の実行中に前記触媒温度判定手段で推定又は検出した触媒温度が前記排気温度判定手段で推定又は検出した排気温度よりも高くなった時点で、前記第2段階の暖機制御から前記第3段階の暖機制御に切り換えることを特徴とする内燃機関の触媒早期暖機制御装置。
In the catalyst early warm-up control device for an internal combustion engine, comprising catalyst early warm-up control means for performing early catalyst warm-up control for warming up an exhaust gas purifying catalyst installed in an exhaust passage of the internal combustion engine early, the catalyst Catalyst temperature determination means for estimating or detecting the temperature of
An exhaust temperature judging means for estimating or detecting the exhaust temperature,
The catalyst early warm-up control means includes a first stage warm-up control for controlling the air-fuel ratio so that the combustion temperature of the internal combustion engine becomes high at an early stage of the catalyst early warm-up control, and the first stage warm-up control. The second stage of warm-up, in which the air-fuel ratio is controlled to be slightly lean so as to promote the oxidation reaction of the catalyst during the period from when the catalyst begins to oxidize and purify rich components in the exhaust gas until it reaches a semi-warm state. Performing a third stage warm-up control for performing control and dither control for alternately changing the air-fuel ratio between lean and rich during the period from the semi-warm state to the complete warm-up state , When the catalyst temperature estimated or detected by the catalyst temperature determining means during execution of the second stage warm-up control becomes higher than the exhaust temperature estimated or detected by the exhaust temperature determining means, the second stage From the warm-up control to the third stage warm-up control Rapid catalyst warm-up control device for an internal combustion engine, characterized in that to switch to.
前記触媒の温度を推定又は検出する触媒温度判定手段を備え、
前記触媒早期暖機制御手段は、前記第1段階の暖機制御の実行中に前記触媒温度判定手段で推定又は検出した触媒温度が所定温度に達した時点で、前記第1段階の暖機制御から前記第2段階の暖機制御に切り換えることを特徴とする請求項1に記載の内燃機関の触媒早期暖機制御装置。
A catalyst temperature determining means for estimating or detecting the temperature of the catalyst;
The catalyst early warm-up control means is configured to perform the first stage warm-up control when the catalyst temperature estimated or detected by the catalyst temperature determination means reaches a predetermined temperature during execution of the first stage warm-up control. 2. The early catalyst warm-up control apparatus for an internal combustion engine according to claim 1, wherein the control is switched to the second stage warm-up control.
JP2006192524A 2006-07-13 2006-07-13 Catalyst early warm-up control device for internal combustion engine Expired - Fee Related JP4557176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192524A JP4557176B2 (en) 2006-07-13 2006-07-13 Catalyst early warm-up control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192524A JP4557176B2 (en) 2006-07-13 2006-07-13 Catalyst early warm-up control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008019792A JP2008019792A (en) 2008-01-31
JP4557176B2 true JP4557176B2 (en) 2010-10-06

Family

ID=39075931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192524A Expired - Fee Related JP4557176B2 (en) 2006-07-13 2006-07-13 Catalyst early warm-up control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4557176B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164619B2 (en) * 2008-03-13 2013-03-21 ダイハツ工業株式会社 Operation control method for internal combustion engine
US8631641B2 (en) 2008-12-24 2014-01-21 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP5155974B2 (en) * 2009-09-25 2013-03-06 本田技研工業株式会社 Control device for internal combustion engine
JP6398798B2 (en) * 2015-03-06 2018-10-03 株式会社豊田自動織機 Engine control system
JP6451688B2 (en) * 2016-04-28 2019-01-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP6414132B2 (en) * 2016-04-28 2018-10-31 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2020187415A1 (en) 2019-03-20 2020-09-24 Volvo Penta Corporation A method and a control system for controlling an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988564A (en) * 1995-09-18 1997-03-31 Denso Corp Controller for internal combustion engine
JP2004169711A (en) * 2004-03-24 2004-06-17 Mitsubishi Electric Corp Catalyst temperature rise control device for internal combustion engine
JP2004353552A (en) * 2003-05-29 2004-12-16 Denso Corp Catalyst early warming-up control device of internal combustion engine
JP2005098184A (en) * 2003-09-24 2005-04-14 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988564A (en) * 1995-09-18 1997-03-31 Denso Corp Controller for internal combustion engine
JP2004353552A (en) * 2003-05-29 2004-12-16 Denso Corp Catalyst early warming-up control device of internal combustion engine
JP2005098184A (en) * 2003-09-24 2005-04-14 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
JP2004169711A (en) * 2004-03-24 2004-06-17 Mitsubishi Electric Corp Catalyst temperature rise control device for internal combustion engine

Also Published As

Publication number Publication date
JP2008019792A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP3622279B2 (en) Fuel supply control device for internal combustion engine
JP4341689B2 (en) Secondary air supply device for internal combustion engine
JP4557176B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2010019178A (en) Engine control device
JP2004353552A (en) Catalyst early warming-up control device of internal combustion engine
JP4175385B2 (en) Internal combustion engine exhaust purification catalyst warm-up system
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
JP5371893B2 (en) Exhaust gas purification device for internal combustion engine
JP2009103017A (en) Control device for internal combustion engine
JP4987354B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2004169711A (en) Catalyst temperature rise control device for internal combustion engine
JPH0988564A (en) Controller for internal combustion engine
JP3627561B2 (en) Air-fuel ratio control apparatus for multi-cylinder internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP5278054B2 (en) Control device for internal combustion engine
JP4789291B2 (en) Internal combustion engine temperature rising operation control device
JP5041341B2 (en) Exhaust gas sensor heater control device
JP2000337130A (en) Exhaust emission control system for internal combustion engine
JP2002155784A (en) Exhaust emission control device of internal combustion engine
JP4232373B2 (en) Engine exhaust purification system
JP2012251429A (en) Fuel injection control device for internal combustion engine
JP2010185321A (en) Engine control device
JP2003097332A (en) Exhaust emission control device and method for internal combustion engine
JP2011111895A (en) Control device of internal combustion engine
JPH06212959A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4557176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees