JP2005098184A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2005098184A
JP2005098184A JP2003331865A JP2003331865A JP2005098184A JP 2005098184 A JP2005098184 A JP 2005098184A JP 2003331865 A JP2003331865 A JP 2003331865A JP 2003331865 A JP2003331865 A JP 2003331865A JP 2005098184 A JP2005098184 A JP 2005098184A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
oxidation
particulate filter
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003331865A
Other languages
Japanese (ja)
Other versions
JP4328949B2 (en
Inventor
Reiko Domeki
礼子 百目木
Yoshihisa Takeda
好央 武田
Sei Kawatani
聖 川谷
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003331865A priority Critical patent/JP4328949B2/en
Publication of JP2005098184A publication Critical patent/JP2005098184A/en
Application granted granted Critical
Publication of JP4328949B2 publication Critical patent/JP4328949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of securely regenerating a particulate filter by efficiently promoting the oxidation reaction of an oxidation catalyst irrespective of the oxidation capacity of the oxidation catalyst in the exhaust emission control device formed such that particulate matters arrested by the particulate filter are incinerated by using the oxidation reaction heat of the oxidation catalyst installed on the exhaust gas upstream side of the particulate filter. <P>SOLUTION: When the deposited amount of the particulate matters arrested by the particulate filter reaches a specified amount, hydrocarbon HC is fed to the oxidation catalyst installed on the exhaust gas upstream side of the particulate filter to incinerate and remove the particulate matters arrested by the particulate filter by the oxidation reaction heat of the HC in the oxidation catalyst. In this case, the HC is periodically fed to the oxidation catalyst (S16 to S22). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、ディーゼルエンジンの排気通路に配設されるパティキュレートフィルタの再生技術に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a regeneration technique for a particulate filter disposed in an exhaust passage of a diesel engine.

バス、トラック等に搭載されるディーゼルエンジンから排出される排ガスには、HC、CO、NOx等のほか、パティキュレートマター(PMと略す)が多く含まれている。そこで、ディーゼルエンジンの後処理装置として、PMを捕捉し外部熱源により焼却除去するディーゼル・パティキュレートフィルタ(DPFと略す)やHC、COを処理する酸化触媒が実用化されている。また、最近では、外部熱源の代わりにDPFの上流側にPMを酸化除去するための酸化剤を生成可能な酸化触媒を設け、連続的にDPF上のPMを処理する連続再生式DPFが開発されている。   Exhaust gas discharged from diesel engines mounted on buses, trucks, and the like contains a lot of particulate matter (abbreviated as PM) in addition to HC, CO, NOx, and the like. Therefore, diesel particulate filters (abbreviated as DPF) that capture PM and incinerate and remove it with an external heat source and oxidation catalysts that treat HC and CO have been put to practical use as aftertreatment devices for diesel engines. Recently, a continuous regenerative DPF has been developed in which an oxidation catalyst capable of generating an oxidizing agent for oxidizing and removing PM is provided upstream of the DPF instead of an external heat source, and the PM on the DPF is continuously processed. ing.

ところで、連続再生式DPFであっても、酸化触媒やDPFの温度が低い不活性状況下では、PMが十分に処理されず堆積量が増大することがあり、このようにPMの堆積量が増大すると、DPFのフィルタ圧損の増大により排気圧が上昇してポンピングロス等を招き、燃費悪化や排ガス悪化等を起こすという問題がある。また、フィルタにPMが過剰に堆積した状態では、高負荷運転等でPMが自己着火した場合、フィルタが破損するおそれがある。   By the way, even in a continuously regenerating DPF, PM may not be sufficiently processed and the amount of deposition may increase under an inert condition where the temperature of the oxidation catalyst or DPF is low, and thus the amount of PM deposition increases. Then, the exhaust pressure increases due to an increase in the filter pressure loss of the DPF, causing a pumping loss and the like. Further, in a state where PM is excessively accumulated on the filter, the filter may be damaged if the PM self-ignites during high load operation or the like.

そこで、このような場合には、DPFに捕捉されたPMが所定量に達すると、当該PMを強制的に燃焼除去すべく強制再生を行うようにしている。
連続再生式DPFの強制再生の手法としては、例えば、排気通路の酸化触媒上流側に燃料、即ち炭化水素(HC)を噴射供給して該HCを酸化触媒によって酸化させ、当該酸化により生じた酸化反応熱を利用することでDPFに捕捉されたPMを焼却除去させるものがある。
Therefore, in such a case, when the PM trapped in the DPF reaches a predetermined amount, forced regeneration is performed to forcibly burn and remove the PM.
As a method of forced regeneration of the continuous regeneration type DPF, for example, fuel, that is, hydrocarbon (HC) is injected and supplied to the upstream side of the oxidation catalyst in the exhaust passage, and the HC is oxidized by the oxidation catalyst. There is one that incinerates and removes PM trapped in the DPF by using reaction heat.

この場合、強制再生中にはDPFの温度が低すぎたりDPFが溶損するほど高すぎたりしないよう、DPFの温度を所定の高温に維持する必要があり、DPFの温度を所定の高温に維持すべくフィードバック制御する技術も知られている(特許文献1参照)。
特開平9−13945号公報
In this case, it is necessary to maintain the DPF temperature at a predetermined high temperature during forced regeneration so that the DPF temperature is not too low or too high to melt the DPF. A technique of performing feedback control as much as possible is also known (see Patent Document 1).
JP-A-9-13945

ところで、酸化触媒は排気中の酸素(O2)を取り込み蓄える能力を有しており、上記強制再生手法では、供給されるHCを触媒上の酸素によって酸化させ、発熱させるようにしている。
しかしながら、酸化触媒が劣化し、高濃度HC供給下において触媒への酸素の取り込みが十分に進行しないような触媒にあっては、HCを連続的に供給しても酸化反応が進展しないために発熱量が不足し、DPFの温度が上記所定の高温にまで上昇せず、DPFに捕捉されたPMを十分に焼却除去させることができないという問題がある。
By the way, the oxidation catalyst has the ability to take in and store oxygen (O 2 ) in the exhaust gas. In the forced regeneration method, the supplied HC is oxidized by oxygen on the catalyst to generate heat.
However, if the oxidation catalyst deteriorates and oxygen uptake into the catalyst does not proceed sufficiently under the supply of high-concentration HC, the oxidation reaction will not progress even if HC is continuously supplied, so heat is generated. There is a problem that the amount is insufficient, the temperature of the DPF does not rise to the predetermined high temperature, and the PM trapped in the DPF cannot be sufficiently removed by incineration.

この問題は、特に新品の状態では十分に酸素の取り込みが行えていた酸化触媒が、経時劣化するにつれて、酸素の授受機能が低下してしまうような場合において顕著である。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、パティキュレートフィルタの排気上流側に設けた酸化触媒の酸化反応熱を利用してパティキュレートフィルタに捕捉されたパティキュレートマターを焼却する構成の排気浄化装置において、酸化触媒の酸化能力に拘わらず効率的に酸化触媒の酸化反応を促進させてパティキュレートフィルタを確実に再生可能な内燃機関の排気浄化装置を提供することにある。
This problem is particularly noticeable in the case where an oxidation catalyst that has sufficiently taken up oxygen in a new state deteriorates its oxygen transfer function as it deteriorates over time.
The present invention has been made to solve such problems, and the object of the present invention is to capture the particulate filter using the oxidation reaction heat of the oxidation catalyst provided upstream of the exhaust of the particulate filter. Exhaust gas purification device for internal combustion engine capable of efficiently regenerating particulate filter by efficiently promoting oxidation reaction of oxidation catalyst regardless of oxidation capability of oxidation catalyst, in exhaust gas purification device configured to incinerate the generated particulate matter Is to provide.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に介装され、パティキュレートマターを捕捉するパティキュレートフィルタと、前記排気通路の前記パティキュレートフィルタよりも上流の部分に配設された酸化触媒と、前記パティキュレートフィルタに捕捉されたパティキュレートマターの堆積量を検出する堆積量検出手段と、前記堆積量検出手段により検出されるパティキュレートマターの堆積量が所定量に達したとき、前記酸化触媒に炭化水素を供給して酸化させ、該炭化水素の酸化反応熱により前記パティキュレートフィルタに捕捉された前記パティキュレートマターを強制的に燃焼除去して前記パティキュレートフィルタを強制再生させる強制再生手段とを備え、前記強制再生手段は、前記酸化触媒に炭化水素を周期的に供給することを特徴としている。   In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, a particulate filter that is interposed in an exhaust passage of the internal combustion engine and captures particulate matter, and the particulate filter in the exhaust passage. An oxidation catalyst disposed in an upstream portion, a deposition amount detection means for detecting a deposition amount of the particulate matter captured by the particulate filter, and a particulate matter detected by the deposition amount detection means. When the deposition amount reaches a predetermined amount, hydrocarbon is supplied to the oxidation catalyst to oxidize, and the particulate matter captured by the particulate filter is forcibly burned and removed by the oxidation reaction heat of the hydrocarbon. Forcibly regenerating the particulate filter, and the forced regeneration means It is characterized by periodically supplying hydrocarbon to the oxidation catalyst.

即ち、パティキュレートフィルタに捕捉されたパティキュレートマターの堆積量が所定量に達すると、パティキュレートフィルタの排気上流側に設けた酸化触媒に炭化水素(HC)が供給され、酸化触媒における当該HCの酸化反応熱によってパティキュレートフィルタに捕捉されたパティキュレートマターが焼却除去されることになるが、この際、HCは酸化触媒に周期的に供給される。   That is, when the accumulated amount of particulate matter captured by the particulate filter reaches a predetermined amount, hydrocarbon (HC) is supplied to the oxidation catalyst provided on the exhaust gas upstream side of the particulate filter, and the HC of the oxidation catalyst is reduced. The particulate matter trapped in the particulate filter by the heat of oxidation reaction is incinerated and removed. At this time, HC is periodically supplied to the oxidation catalyst.

従って、酸化触媒の酸化能力が低い場合、例えば、経時劣化等により酸化触媒がHCの酸化に必要なO2を十分に蓄えられないような場合であっても、強制再生中にHCが周期的に増減して酸化触媒に供給されることで、排気中のO2が酸化触媒に適宜繰り返し補充されることになり、酸化触媒の酸化能力に拘わらず、酸化触媒の酸化反応が効率的に進展してパティキュレートフィルタが確実に昇温し、パティキュレートフィルタに捕捉されたパティキュレートマターが確実に焼却除去される。 Therefore, when the oxidation capability of the oxidation catalyst is low, for example, even when the oxidation catalyst cannot sufficiently store O 2 necessary for HC oxidation due to deterioration over time, the HC is periodically cycled during forced regeneration. By supplying to the oxidation catalyst by increasing / decreasing to 0, the O 2 in the exhaust is replenished to the oxidation catalyst as appropriate, and the oxidation reaction of the oxidation catalyst progresses efficiently regardless of the oxidation ability of the oxidation catalyst. Thus, the temperature of the particulate filter is reliably increased, and the particulate matter captured by the particulate filter is surely incinerated and removed.

また、酸化に寄与しないHCの無駄な供給が減少することにもなり、HCが大気中に排出されることも防止される。
また、請求項2の内燃機関の排気浄化装置では、請求項1に関し、さらに、前記酸化触媒における酸素濃度または酸素濃度相関値を検出する酸素濃度相関値検出手段を備え、前記強制再生手段は、前記酸素濃度相関値検出手段により検出される酸素濃度または酸素濃度相関値に基づいて前記炭化水素の供給期間と非供給期間とを設定し、前記炭化水素を該供給期間に亘りパルス状に供給することを特徴としている。
In addition, the wasteful supply of HC that does not contribute to oxidation is reduced, and HC is prevented from being discharged into the atmosphere.
The exhaust gas purification apparatus for an internal combustion engine according to claim 2 further comprises oxygen concentration correlation value detection means for detecting an oxygen concentration or oxygen concentration correlation value in the oxidation catalyst according to claim 1, wherein the forced regeneration means comprises: Based on the oxygen concentration or the oxygen concentration correlation value detected by the oxygen concentration correlation value detecting means, the hydrocarbon supply period and non-supply period are set, and the hydrocarbon is supplied in pulses over the supply period. It is characterized by that.

つまり、酸化触媒における酸素濃度、或いは当該O2の濃度に相関する酸素濃度相関値(例えば、酸化触媒出口O2の濃度の強制再生時における変化度合いや、強制再生時に酸化反応により生成され排出されるCO2の濃度の変化度合い)に応じてHCの供給期間と非供給期間とが適切に設定され、HCが供給期間にのみパルス状に供給される。
従って、強制再生中、HCの供給時には酸化に寄与するO2量とHC量とが酸化触媒上で過不足なく略一致可能となり、HCの非供給時には排気中のO2が酸化触媒に十分に補充されることになり、酸化触媒の酸化反応がより一層効率的に進展してパティキュレートフィルタが確実に昇温し、パティキュレートフィルタに捕捉されたパティキュレートマターがより一層確実に焼却除去される。
That is, the oxygen concentration in the oxidation catalyst, or the oxygen concentration correlation value correlated with the O 2 concentration (for example, the degree of change in the concentration of the oxidation catalyst outlet O 2 during forced regeneration, or generated and discharged by an oxidation reaction during forced regeneration) The HC supply period and the non-supply period are appropriately set according to the CO 2 concentration change degree), and HC is supplied in pulses only during the supply period.
Therefore, during forced regeneration, the amount of O 2 that contributes to oxidation and the amount of HC can be substantially matched on the oxidation catalyst when supplying HC, and when the HC is not supplied, O 2 in the exhaust is sufficient for the oxidation catalyst. As a result, the oxidation reaction of the oxidation catalyst progresses more efficiently, the temperature of the particulate filter is reliably increased, and the particulate matter trapped in the particulate filter is more reliably incinerated and removed. .

また、請求項3の内燃機関の排気浄化装置では、請求項1に関し、さらに、前記酸化触媒の温度を検出する触媒温度検出手段を備え、前記強制再生手段は、前記触媒温度検出手段により検出される前記酸化触媒の温度の変化度合いに基づいて前記炭化水素の供給期間と非供給期間とを設定し、前記炭化水素を該供給期間に亘りパルス状に供給することを特徴としている。   Further, the exhaust gas purification apparatus for an internal combustion engine according to claim 3 relates to claim 1, further comprising catalyst temperature detection means for detecting the temperature of the oxidation catalyst, wherein the forced regeneration means is detected by the catalyst temperature detection means. The hydrocarbon supply period and non-supply period are set based on the degree of change in temperature of the oxidation catalyst, and the hydrocarbon is supplied in a pulsed manner over the supply period.

つまり、酸化触媒で酸化反応が生起されると酸化反応熱によって酸化触媒の温度が上昇するが、このときの酸化反応熱の発生状況、即ち酸化触媒の温度の変化度合いは、酸化触媒で酸化に寄与する酸素濃度、即ち酸化触媒上に蓄えられたO2の濃度と極めて相関が高く、故に酸化触媒の温度の変化度合いに応じてHCの供給期間と非供給期間とが適切に設定され、HCが供給期間にのみパルス状に供給される。 In other words, when an oxidation reaction occurs in the oxidation catalyst, the temperature of the oxidation catalyst rises due to the heat of the oxidation reaction, but the state of generation of the oxidation reaction heat, that is, the degree of change in the temperature of the oxidation catalyst, depends on the oxidation catalyst. The oxygen concentration that contributes, that is, the concentration of O 2 stored on the oxidation catalyst, is extremely correlated, and accordingly, the HC supply period and non-supply period are appropriately set according to the degree of change in the temperature of the oxidation catalyst. Is supplied in pulses only during the supply period.

従って、強制再生中、HCの供給時には酸化に寄与するO2量とHC量とが酸化触媒上で過不足なく略一致可能となり、HCの非供給時には排気中のO2が酸化触媒に十分に補充されることになり、酸化触媒の酸化反応がより一層効率的に進展してパティキュレートフィルタが確実に昇温し、パティキュレートフィルタに捕捉されたパティキュレートマターがより一層確実に焼却除去される。 Therefore, during forced regeneration, the amount of O 2 that contributes to oxidation and the amount of HC can be substantially matched on the oxidation catalyst when supplying HC, and when the HC is not supplied, O 2 in the exhaust is sufficient for the oxidation catalyst. As a result, the oxidation reaction of the oxidation catalyst progresses more efficiently, the temperature of the particulate filter is reliably increased, and the particulate matter trapped in the particulate filter is more reliably incinerated and removed. .

本発明に係る請求項1の内燃機関の排気浄化装置によれば、パティキュレートフィルタに捕捉されたパティキュレートマターの堆積量が所定量に達すると、パティキュレートフィルタの排気上流側に設けた酸化触媒に炭化水素(HC)が供給され、酸化触媒における当該HCの酸化反応熱によってパティキュレートフィルタに捕捉されたパティキュレートマターが焼却除去されることになるが、この際、HCを酸化触媒に周期的に供給するようにしたので、酸化触媒の酸化能力が低い場合であっても、排気中のO2を酸化触媒に適宜繰り返し補充するようにでき、酸化触媒の酸化能力に拘わらず、酸化触媒の酸化反応を効率的に促進させてパティキュレートフィルタを確実に昇温させ、パティキュレートフィルタに捕捉されたパティキュレートマターを確実に焼却除去することができる。 According to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, when the accumulated amount of particulate matter captured by the particulate filter reaches a predetermined amount, the oxidation catalyst provided on the exhaust upstream side of the particulate filter. Hydrocarbon (HC) is supplied to the catalyst, and particulate matter trapped in the particulate filter is burned and removed by the oxidation reaction heat of the HC in the oxidation catalyst. At this time, HC is periodically used as an oxidation catalyst. Therefore, even if the oxidation ability of the oxidation catalyst is low, O 2 in the exhaust gas can be appropriately replenished to the oxidation catalyst, and the oxidation catalyst can be supplied regardless of the oxidation ability of the oxidation catalyst. The particulate filter trapped by the particulate filter is heated efficiently by accelerating the oxidation reaction. It can be reliably burned and removed the matter.

さらに、酸化に寄与しないHCの無駄な供給が減少することにもなり、HCの大気中への排出をも良好に防止することができる。
また、請求項2の内燃機関の排気浄化装置によれば、請求項1において、酸化触媒で酸化に寄与する酸素濃度、即ち酸化触媒上のO2の濃度、或いは当該O2の濃度に相関する酸素濃度相関値(例えば、強制再生時に排出されるO2の濃度の変化度合い)に応じてHCの供給期間と非供給期間とを適切に設定し、供給期間にのみHCをパルス状に供給するようにしたので、強制再生中、HCの供給時には酸化に寄与するO2量とHC量とを酸化触媒上で過不足なく略一致させ、HCの非供給時には排気中のO2を酸化触媒に十分に補充するようにできる。これにより、酸化触媒の酸化反応をより一層効率的に促進させてパティキュレートフィルタを確実に昇温させ、パティキュレートフィルタに捕捉されたパティキュレートマターをより一層確実に焼却除去することができる。
Furthermore, the wasteful supply of HC that does not contribute to oxidation is reduced, and the discharge of HC into the atmosphere can be satisfactorily prevented.
Further, according to the exhaust gas purification apparatus for an internal combustion engine of claim 2, in claim 1, the oxygen concentration contributing to oxidation by the oxidation catalyst, that is, the O 2 concentration on the oxidation catalyst, or the O 2 concentration is correlated. The supply period and non-supply period of HC are appropriately set according to the oxygen concentration correlation value (for example, the degree of change in the concentration of O 2 discharged during forced regeneration), and HC is supplied in pulses only during the supply period. As a result, during forced regeneration, the amount of O 2 that contributes to oxidation and the amount of HC are substantially matched on the oxidation catalyst when HC is supplied, and O 2 in the exhaust is used as the oxidation catalyst when HC is not supplied. Can be replenished enough. As a result, the oxidation reaction of the oxidation catalyst can be promoted more efficiently, the temperature of the particulate filter can be reliably increased, and the particulate matter trapped by the particulate filter can be incinerated and removed more reliably.

また、請求項3の内燃機関の排気浄化装置によれば、請求項1において、酸化触媒で酸化に寄与する酸素濃度、即ち酸化触媒上に蓄えられたO2の濃度と極めて相関の高い酸化触媒の温度の変化度合いに応じてHCの供給期間と非供給期間とを適切に設定し、供給期間にのみHCをパルス状に供給するようにしたので、強制再生中、HCの供給時には酸化に寄与するO2量とHC量とを酸化触媒上で過不足なく略一致させ、HCの非供給時には排気中のO2を酸化触媒に十分に補充するようにできる。これにより、酸化触媒の酸化反応をより一層効率的に促進させてパティキュレートフィルタを確実に昇温させ、パティキュレートフィルタに捕捉されたパティキュレートマターをより一層確実に焼却除去することができる。 According to an exhaust gas purification apparatus for an internal combustion engine according to claim 3, the oxidation catalyst according to claim 1 having an extremely high correlation with the oxygen concentration contributing to oxidation by the oxidation catalyst, that is, the concentration of O 2 stored on the oxidation catalyst. The HC supply period and the non-supply period are set appropriately according to the degree of temperature change, and HC is supplied in pulses only during the supply period, contributing to oxidation during forced regeneration and during HC supply. The amount of O 2 and the amount of HC to be substantially matched on the oxidation catalyst without excess or deficiency, and when HC is not supplied, O 2 in the exhaust gas can be sufficiently supplemented to the oxidation catalyst. As a result, the oxidation reaction of the oxidation catalyst can be promoted more efficiently, the temperature of the particulate filter can be reliably increased, and the particulate matter trapped by the particulate filter can be incinerated and removed more reliably.

以下、本発明の実施形態を添付図面に基づき説明する。
図1を参照すると、本発明に係る内燃機関の排気浄化装置の概略構成図が示されており、以下、同図に基づき本発明に係る内燃機関の排気浄化装置の構成を説明する。
図1に示すように、内燃機関であるエンジン1は例えばコモンレール式直列4気筒のディーゼルエンジンである。コモンレール式のエンジン1では、燃焼室2に臨んで電磁式の燃料噴射ノズル4が各気筒毎に設けられており、各燃料噴射ノズル4は高圧パイプ5によりコモンレール6に接続されている。そして、コモンレール6は、高圧ポンプ8の介装された高圧パイプ7を介して燃料タンク9に接続されている。なお、エンジン1がディーゼルエンジンであるため、燃料としては軽油が使用される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention. Hereinafter, the configuration of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIG.
As shown in FIG. 1, an engine 1 that is an internal combustion engine is, for example, a common rail in-line four-cylinder diesel engine. In the common rail engine 1, an electromagnetic fuel injection nozzle 4 is provided for each cylinder facing the combustion chamber 2, and each fuel injection nozzle 4 is connected to a common rail 6 by a high-pressure pipe 5. The common rail 6 is connected to a fuel tank 9 via a high-pressure pipe 7 in which a high-pressure pump 8 is interposed. Since engine 1 is a diesel engine, light oil is used as the fuel.

燃焼室2には吸気ポートを介して吸気通路10が接続されるとともに排気ポートを介して排気通路20が接続されている。吸気通路10には吸気流量を検出するエアフローセンサ14が設けられており、排気通路20には排気圧を検出する排気圧センサ21が設けられている。
なお、吸気弁、排気弁等のエンジン1の動弁機構の構成については周知であるため、ここでは説明を省略する。
An intake passage 10 is connected to the combustion chamber 2 through an intake port, and an exhaust passage 20 is connected through an exhaust port. The intake passage 10 is provided with an air flow sensor 14 for detecting an intake flow rate, and the exhaust passage 20 is provided with an exhaust pressure sensor 21 for detecting an exhaust pressure.
Since the configuration of the valve operating mechanism of the engine 1 such as an intake valve and an exhaust valve is well known, the description thereof is omitted here.

排気通路20には、後処理装置が介装されている。後処理装置は、ディーゼル・パティキュレートフィルタ(DPF)26の上流に酸化触媒24を設けて構成されている。なお、DPF26の上流に酸化触媒24を設けた当該タイプの後処理装置は全体として連続再生式DPF22と呼ばれるものである。
連続再生式DPF22は、酸化触媒24において排気中の窒素(N)成分を酸化して依然酸化能力を有する酸化剤(NO2)を生成し、該生成された酸化剤によって下流のDPF26に堆積したパティキュレートマター(PM)を常時連続的に酸化除去するように構成されている。
A post-processing device is interposed in the exhaust passage 20. The post-processing apparatus is configured by providing an oxidation catalyst 24 upstream of a diesel particulate filter (DPF) 26. Note that the post-treatment device of this type in which the oxidation catalyst 24 is provided upstream of the DPF 26 is called a continuous regeneration type DPF 22 as a whole.
The continuous regeneration type DPF 22 oxidizes the nitrogen (N) component in the exhaust gas in the oxidation catalyst 24 to generate an oxidizing agent (NO 2 ) that still has an oxidizing ability, and is deposited on the downstream DPF 26 by the generated oxidizing agent. Particulate matter (PM) is continuously and continuously oxidized and removed.

酸化触媒24は、排気空燃比がリーン空燃比であるときには十分な酸素(O2)存在のもと、未燃炭化水素(HC)や一酸化炭素(CO)を酸化可能であるとともに、HCやCOが過剰雰囲気にあるときでも、触媒上に蓄えられたO2によってHC、COを酸化処理可能である。
排気通路20の酸化触媒24よりも上流側には、HC添加インジェクタ28が配設され、当該HC添加インジェクタ28はHC供給通路29を介して燃料タンク9に接続されている。これにより、酸化触媒24に向けて燃料である軽油、即ちHC成分を噴射し供給することが可能である。なお、ここではHC添加インジェクタ28から軽油を噴射するようにしているが、HC成分であれば軽油に限られるものではない。
The oxidation catalyst 24 can oxidize unburned hydrocarbons (HC) and carbon monoxide (CO) in the presence of sufficient oxygen (O 2 ) when the exhaust air-fuel ratio is a lean air-fuel ratio. Even when CO is in an excess atmosphere, HC and CO can be oxidized by O 2 stored on the catalyst.
An HC addition injector 28 is disposed upstream of the oxidation catalyst 24 in the exhaust passage 20, and the HC addition injector 28 is connected to the fuel tank 9 via an HC supply passage 29. As a result, it is possible to inject and supply light oil, that is, HC component, which is fuel toward the oxidation catalyst 24. In addition, although light oil is injected from the HC addition injector 28 here, if it is HC component, it will not be restricted to light oil.

また、酸化触媒24には該酸化触媒24の温度Tcatを検出する温度センサ25が設けられ、DPF26には該DPF26の温度Tdpfを検出する温度センサ27が設けられている。
さらに、酸化触媒24とDPF26との間、即ち酸化触媒24の下流には、酸素(O2)の濃度を検出するO2センサ23も設けられており、当該O2センサ23により酸化触媒24から流出するO2の濃度が検出される。
The oxidation catalyst 24 is provided with a temperature sensor 25 that detects the temperature Tcat of the oxidation catalyst 24, and the DPF 26 is provided with a temperature sensor 27 that detects the temperature Tdpf of the DPF 26.
Furthermore, between the oxidation catalyst 24 DPF 26, that is, downstream of the oxidation catalyst 24, O 2 sensor 23 for detecting the concentration of oxygen (O 2) is also provided, the oxidation catalyst 24 by the O 2 sensor 23 The concentration of O 2 flowing out is detected.

また、排気通路20からはEGR通路30が延びており、該EGR通路30の終端は吸気通路10に接続されている。そして、EGR通路30には、電磁式のEGR弁32が介装されている。
電子コントローラ(ECU)40の入力側には、上記エアフローセンサ14、排気圧センサ21、O2センサ23、温度センサ25、温度センサ27等の各種センサ類が接続され、出力側には、上記燃料噴射ノズル4、HC添加インジェクタ28、EGR弁32等の各種デバイス類が接続されている。
An EGR passage 30 extends from the exhaust passage 20, and the end of the EGR passage 30 is connected to the intake passage 10. An electromagnetic EGR valve 32 is interposed in the EGR passage 30.
Various sensors such as the air flow sensor 14, exhaust pressure sensor 21, O 2 sensor 23, temperature sensor 25, temperature sensor 27 and the like are connected to the input side of the electronic controller (ECU) 40, and the fuel is connected to the output side. Various devices such as the injection nozzle 4, the HC addition injector 28, and the EGR valve 32 are connected.

これにより、各種入力情報に基づき各種デバイス類が制御され、エンジン1が適正に運転制御されるとともに、HC添加インジェクタ28が適宜適正に駆動制御される。
以下、上記のように構成された内燃機関の排気浄化装置の本発明に係る強制再生制御の内容について説明する。
上述したように、連続再生式DPF22では、上流側の酸化触媒24によってNO2が生成され、通常は、該生成されたNO2によって下流のDPF26に堆積したPMが常時連続的に酸化除去される。しかしながら、酸化触媒24やDPF26の温度が低い不活性状況下では連続再生が十分に実施されず、エンジン1の運転状態によっては、排気温度が上昇せずに酸化触媒24やDPF26が不活性のままとされ、連続再生が行われることなくDPF26にPMが多量に堆積する場合がある。
As a result, various devices are controlled based on various input information, the engine 1 is appropriately controlled, and the HC addition injector 28 is appropriately controlled.
Hereinafter, the content of the forced regeneration control according to the present invention of the exhaust gas purification apparatus for an internal combustion engine configured as described above will be described.
As described above, in the continuous regeneration type DPF 22, NO 2 is generated by the upstream side oxidation catalyst 24, and usually, PM deposited on the downstream DPF 26 is continuously oxidized and removed by the generated NO 2 . . However, continuous regeneration is not sufficiently performed under inactive conditions where the temperature of the oxidation catalyst 24 and the DPF 26 is low, and depending on the operating state of the engine 1, the exhaust temperature does not rise and the oxidation catalyst 24 and the DPF 26 remain inactive. In some cases, a large amount of PM accumulates on the DPF 26 without continuous regeneration.

そこで、当該排気浄化装置では、このように堆積したPMを強制的に且つ効率的に焼却除去するようにしている。
[第1実施例]
図2を参照すると、ECU40が実行する、連続再生式DPF22の本発明の第1実施例に係る強制再生制御(強制再生手段)の制御ルーチンがフローチャートで示されており、以下同フローチャートに沿い説明する。
Therefore, in the exhaust purification apparatus, the PM thus deposited is forcibly and efficiently removed by incineration.
[First embodiment]
Referring to FIG. 2, a control routine of forced regeneration control (forced regeneration means) according to the first embodiment of the present invention of the continuous regeneration type DPF 22 executed by the ECU 40 is shown in a flowchart, and will be described along the flowchart. To do.

強制再生制御では、先ず、ステップS10において、強制再生が必要な状況にあるか否かを判別する。詳しくは、DPF26に堆積したPMの堆積量を検出し(堆積量検出手段)、該堆積量が強制再生が必要な所定量に達しているか否かを判別する。
具体的には、排気流量とDPF26によるフィルタ圧損、即ち排気圧との間には比例関係があり、その比例係数はPMの堆積量、即ちDPF26の目詰まりの度合いに応じて変化するものであることから、PMの堆積量は、エアフローセンサ14からの排気流量情報と排気圧センサ21からの排気圧情報とに基づいて容易に推定することができ、当該推定したPMの堆積量が所定量に達しているか否かを判別する。なお、ここではPMの堆積量を排気流量とフィルタ圧損との関係から求めるようにしたが、PMの堆積量の検出方法はこれに限られるものではない。
In forced regeneration control, first, in step S10, it is determined whether or not forced regeneration is necessary. Specifically, the amount of PM deposited on the DPF 26 is detected (deposition amount detection means), and it is determined whether or not the amount of accumulation has reached a predetermined amount that requires forced regeneration.
Specifically, there is a proportional relationship between the exhaust flow rate and the filter pressure loss due to the DPF 26, that is, the exhaust pressure, and the proportionality coefficient changes according to the amount of PM accumulated, that is, the degree of clogging of the DPF 26. Therefore, the PM accumulation amount can be easily estimated based on the exhaust flow rate information from the air flow sensor 14 and the exhaust pressure information from the exhaust pressure sensor 21, and the estimated PM accumulation amount becomes a predetermined amount. It is determined whether or not it has been reached. Here, the PM accumulation amount is obtained from the relationship between the exhaust gas flow rate and the filter pressure loss, but the method for detecting the PM accumulation amount is not limited to this.

ステップS12では、酸化触媒24の温度、即ち触媒温度Tcatが活性温度T0(例えば、200〜300℃)以上であるか否かを判別する。判別結果が偽(No)で触媒温度Tcatが活性温度T0に満たないと判定された場合には、ステップS14に進み、酸化触媒24を昇温させる。
酸化触媒24を昇温させるには、排気温度を上昇させればよく、例えばEGR弁32の開弁量を増大させてEGR量を増加させる。これにより、排気空燃比がリッチ空燃比寄りとなって排気通路20内において未燃HCやCOの燃焼が促進されて排気温度が上昇し、酸化触媒24が昇温する。
In step S12, it is determined whether or not the temperature of the oxidation catalyst 24, that is, the catalyst temperature Tcat is equal to or higher than the activation temperature T0 (for example, 200 to 300 ° C.). If the determination result is false (No) and it is determined that the catalyst temperature Tcat is less than the activation temperature T0, the process proceeds to step S14, and the oxidation catalyst 24 is heated.
In order to raise the temperature of the oxidation catalyst 24, it is only necessary to raise the exhaust gas temperature. For example, the opening amount of the EGR valve 32 is increased to increase the EGR amount. As a result, the exhaust air-fuel ratio becomes closer to the rich air-fuel ratio, the combustion of unburned HC and CO is promoted in the exhaust passage 20, the exhaust temperature rises, and the oxidation catalyst 24 rises in temperature.

なお、ここではEGR量を増加させるようにしたが、これに限られず、膨張行程以降に燃料噴射ノズル4から燃料を噴射(ポスト噴射)することで排気空燃比をリッチ空燃比寄りにするようにしてもよいし、酸化触媒24を外部熱源等で直接加熱するようにしてもよい。
一方、ステップS12の判別結果が真(Yes)で触媒温度Tcatが活性温度T0以上と判定された場合には、ステップS16に進む。酸化触媒24の昇温を行っている場合には昇温を終了する。
Although the EGR amount is increased here, the present invention is not limited to this, and the exhaust air-fuel ratio is made closer to the rich air-fuel ratio by injecting fuel (post-injection) from the fuel injection nozzle 4 after the expansion stroke. Alternatively, the oxidation catalyst 24 may be directly heated by an external heat source or the like.
On the other hand, when the determination result of step S12 is true (Yes) and the catalyst temperature Tcat is determined to be equal to or higher than the activation temperature T0, the process proceeds to step S16. When the temperature of the oxidation catalyst 24 is being increased, the temperature increase is terminated.

ステップS16では、HC添加インジェクタ28から燃料を排気中に噴射し、酸化触媒24にHCを供給する。この際、HC添加インジェクタ28から噴射する燃料の量は、酸化触媒24の大きさ、容量等に応じて適宜設定されればよい。
このように酸化触媒24にHCが供給されると、当該HCが酸化触媒24において酸化される。そして、このとき大量の酸化反応熱が発生することになり、当該酸化反応熱によって、下流のDPF26が加熱され、DPF26に堆積したPMが良好に焼却除去される。
In step S16, fuel is injected into the exhaust gas from the HC addition injector 28, and HC is supplied to the oxidation catalyst 24. At this time, the amount of fuel injected from the HC addition injector 28 may be appropriately set according to the size, capacity, and the like of the oxidation catalyst 24.
When HC is supplied to the oxidation catalyst 24 in this way, the HC is oxidized in the oxidation catalyst 24. At this time, a large amount of oxidation reaction heat is generated, and the downstream DPF 26 is heated by the oxidation reaction heat, and the PM deposited on the DPF 26 is well removed by incineration.

ステップS18では、O2センサ23からの情報に基づき、酸化触媒24から排出されるO2の濃度、即ちO2濃度DO2の変化量dDO2/dt(酸素濃度相関値)を算出し(酸素濃度相関値検出手段)、この変化量dDO2/dtが例えば所定値D1’以上であるか否かを判別する。
つまり、酸化触媒24においてHCが酸化されると触媒上のO2が消費され、O2センサ23において当該O2の減少が検出されるが、このO2の消費量が減少傾向となり、HCの酸化反応が減衰しているか否かを判別する。
In step S18, based on the information from the O 2 sensor 23, the concentration of O 2 discharged from the oxidation catalyst 24, that is, the change amount dDO2 / dt (oxygen concentration correlation value) of the O 2 concentration DO2 is calculated (oxygen concentration correlation value). Value detecting means), it is determined whether or not the amount of change dDO2 / dt is equal to or greater than a predetermined value D1 ′, for example.
That, HC is consumed O 2 on the oxidized catalyst in the oxidation catalyst 24, a decrease of the O 2 is detected in the O 2 sensor 23, the consumption of the O 2 becomes a downward trend, the HC It is determined whether or not the oxidation reaction is attenuated.

ステップS18の判別結果が偽(No)で、変化量dDO2/dtが所定値D1’より小さければ酸化触媒24ではHCの酸化反応が十分実施されていると判定でき、この場合には、ステップS16においてHCの供給を継続する。
一方、ステップS18の判別結果が真(Yes)で、変化量dDO2/dtが所定値D1’以上と判定された場合、即ちO2の消費量が減少傾向となり、HCの酸化反応が減衰していると判定された場合には、ステップS20に進み、HC添加インジェクタ28からのHCの供給を中止し、HC非供給とする。
If the determination result in step S18 is false (No) and the change amount dDO2 / dt is smaller than the predetermined value D1 ′, it can be determined that the oxidation reaction of HC is sufficiently carried out in the oxidation catalyst 24. In this case, in step S16 In HC, the supply of HC is continued.
On the other hand, if the determination result in step S18 is true (Yes) and the change amount dDO2 / dt is determined to be equal to or greater than the predetermined value D1 ′, that is, the consumption amount of O 2 tends to decrease, and the HC oxidation reaction attenuates. If it is determined that there is, the process proceeds to step S20, where the supply of HC from the HC addition injector 28 is stopped and HC is not supplied.

つまり、O2濃度DO2の変化量dDO2/dtは酸化触媒24に蓄えられるO2の濃度と相関が高く、故に、O2の消費量が減少傾向と判定された場合には、酸化触媒24上のO2が使い尽くされ、HCの供給を継続しても、もはや酸化反応熱が発生しなくなる状況と判断でき、この場合にはHCの供給を中止するようにする。
このようにHCの供給を中止すると、排気中のO2が再び酸化触媒24に蓄えられることになる。
In other words, the amount of change in O 2 concentration DO2 dDO2 / dt has a high correlation with the concentration of O 2 to be accumulated in the oxidation catalyst 24, therefore, when the consumption of O 2 is determined to be decreasing, the oxidation catalyst 24 on O 2 is depleted of, be continued supply of HC, longer be determined that the situation in which oxidation reaction heat is not generated, in this case so as to stop the supply of HC.
When the supply of HC is stopped in this way, O 2 in the exhaust is stored in the oxidation catalyst 24 again.

ステップS22では、HCの非供給期間が所定期間t1経過したか否かを判別する。ここに、所定期間t1は、排気中のO2が酸化触媒24に最大限吸蔵されるまでの時間に応じて設定されればよい。具体的には、例えば、酸化触媒24のHCの供給期間、即ち触媒上のO2が使い尽くされる時間と非供給期間、即ちO2が再び酸化触媒24に最大限吸蔵されるまでの時間との期間比率を予め実験により求めておき、実際のHCの供給期間と当該期間比率との積から所定期間t1を求めるようにする。 In step S22, it is determined whether or not the HC non-supply period has passed a predetermined period t1. Here, the predetermined period t1 may be set according to the time until O 2 in the exhaust gas is stored in the oxidation catalyst 24 to the maximum extent. Specifically, for example, the HC supply period of the oxidation catalyst 24, that is, the time when O 2 on the catalyst is exhausted and the non-supply period, that is, the time until O 2 is again stored in the oxidation catalyst 24 to the maximum extent. The predetermined period t1 is obtained from the product of the actual HC supply period and the period ratio.

なお、HCの非供給期間は酸化触媒24やDPF26の温度が低下する傾向にあるため、これら酸化触媒24やDPF26の温度がそれほど低下してしまわない程度に所定期間t1を設定するのがよい。
ステップS22の判別結果が偽(No)で未だ所定期間t1経過していないと判定された場合には、ステップS20においてHC非供給を継続し、一方判別結果が真(Yes)で所定期間t1経過したと判定された場合には、ステップS24に進む。
Since the temperatures of the oxidation catalyst 24 and the DPF 26 tend to decrease during the non-supply period of HC, it is preferable to set the predetermined period t1 to such an extent that the temperatures of the oxidation catalyst 24 and the DPF 26 do not decrease so much.
If it is determined that the determination result in step S22 is false (No) and the predetermined period t1 has not yet elapsed, non-HC supply is continued in step S20, while the determination result is true (Yes) and the predetermined period t1 has elapsed. If it is determined that the process has been performed, the process proceeds to step S24.

ステップS24では、温度センサ27からの情報に基づくDPF26の温度、即ちDPF温度TdpfがPMの焼却に必要な所定温度T10(例えば、400〜600℃)を維持して所定期間t2経過したか否か、つまり強制再生を終了してもよいか否かを判別する。ここに、所定期間t2は、例えば、予め実験等により、DPF温度Tdpfが所定温度T10の下、堆積した所定量のPMがDPF26から完全に焼却除去されるまでの時間(例えば、5〜30min)に設定される。なお、上述したように排気流量とフィルタ圧損との関係等からPMの堆積量ひいてはPMの焼却除去量を求め、これにより酸化触媒24の再生状況を判断して所定期間t2を設定し、或いは直接に強制再生の終了を判別するようにしてもよい。   In step S24, whether or not the temperature of the DPF 26 based on the information from the temperature sensor 27, that is, the DPF temperature Tdpf has maintained a predetermined temperature T10 (for example, 400 to 600 ° C.) necessary for PM incineration and a predetermined period t2 has elapsed. That is, it is determined whether or not the forced regeneration may be terminated. Here, the predetermined period t2 is a time (for example, 5 to 30 min) until the predetermined amount of accumulated PM is completely incinerated and removed from the DPF 26 under the DPF temperature Tdpf at the predetermined temperature T10 by, for example, experiments in advance. Set to As described above, the amount of accumulated PM and hence the amount of incinerated PM removed are obtained from the relationship between the exhaust gas flow rate and the filter pressure loss, etc., thereby determining the regeneration status of the oxidation catalyst 24 and setting the predetermined period t2, or directly Alternatively, the end of forced regeneration may be determined.

ステップS24の判別結果が偽(No)で、未だ所定期間t2経過していないと判定された場合には、ステップS16に戻り、再びHCの供給を行う。つまり、所定期間t2が経過するまで、ステップS16乃至ステップS22の実行を繰り返し、HCの供給と非供給とを繰り返し周期的に実施する。
このように、HCの供給と非供給とを周期的に、即ちHCの供給をパルス状に繰り返し行うようにすると、酸化触媒24に燃焼によって消費されるO2を繰り返し補充しながらHCを酸化触媒24に過剰供給なく供給し、HCの供給時には酸化に寄与するO2量とHC量とを酸化触媒上で過不足なく略一致させるようにでき、効率的に酸化触媒24の酸化反応を促進させて反応熱を確保し、DPF26をPMの焼却に必要な所定温度T10以上に良好に維持することができる。
If the determination result in step S24 is false (No) and it is determined that the predetermined period t2 has not yet elapsed, the process returns to step S16 and HC is supplied again. That is, the execution of steps S16 to S22 is repeated until the predetermined period t2 elapses, and the supply and non-supply of HC are repeated periodically.
As described above, when the supply and non-supply of HC are periodically performed, that is, the supply of HC is repeatedly performed in a pulsed manner, the HC is oxidized by replenishing the oxidation catalyst 24 with O 2 consumed by combustion. 24 can be supplied without excessive supply, and when supplying HC, the amount of O 2 and HC contributing to oxidation can be substantially matched on the oxidation catalyst without excess or deficiency, and the oxidation reaction of the oxidation catalyst 24 can be promoted efficiently. Thus, the heat of reaction can be secured, and the DPF 26 can be well maintained at a predetermined temperature T10 or higher required for PM incineration.

つまり、図3を参照すると、本発明の第1実施例に係る強制再生制御を実施した場合のDPF温度Tdpf(実線)、HC供給量(実線)、酸化触媒下流におけるHC濃度(破線)及びO2濃度DO2(実線)の時間変化がそれぞれ示されており、同図中には、HCを連続供給した場合のDPF温度Tdpf(一点鎖線)、HC供給量(一点鎖線)、酸化触媒下流におけるHC濃度(二点鎖線)及びO2濃度DO2(一点鎖線)の時間変化がそれぞれ併せて示されているが、酸化触媒24の酸化能力の如何に拘わらず、このように、O2濃度DO2(実線)の変化量dDO2/dtが所定値D1’以上になった時点までをHC供給期間とし、O2の補充に必要な所定期間t1をHC供給期間とし、これらHC供給期間とHC非供給期間とを周期的に繰り返し、HC供給をパルス状に実施することにより、HCを連続供給する場合に比べ、DPF温度Tdpfを所定温度T10以上に良好に維持することができ、酸化触媒下流におけるHC濃度を全体的に低く抑えてHCの大気中への排出を良好に防止することができる。 That is, referring to FIG. 3, the DPF temperature Tdpf (solid line), the HC supply amount (solid line), the HC concentration downstream of the oxidation catalyst (broken line), and O when the forced regeneration control according to the first embodiment of the present invention is performed. 2 shows changes over time in the concentration DO2 (solid line). In the figure, the DPF temperature Tdpf (one-dot chain line), HC supply amount (one-dot chain line), and HC downstream of the oxidation catalyst when HC is continuously supplied are shown. the time variation of the concentration (two-dot chain line) and the O 2 concentration DO2 (dashed line) are shown together, respectively, regardless of the oxidative capacity of the oxidation catalyst 24, thus, the O 2 concentration DO2 (solid line ) Is the HC supply period, and the predetermined period t1 required for the replenishment of O 2 is the HC supply period. These HC supply period and HC non-supply period Is repeated periodically to supply HC. By carrying out in a pulse form, the DPF temperature Tdpf can be maintained well above the predetermined temperature T10 compared to the case where HC is continuously supplied, and the HC concentration downstream of the oxidation catalyst is kept low overall, reducing the HC atmosphere. The discharge into the inside can be prevented satisfactorily.

これにより、DPF26に堆積したPMを十分に焼却除去させ、DPF26を確実に再生することができる。
従って、酸化触媒24のO2授受機能が弱く、酸化触媒24がHCの酸化に必要なO2を十分に蓄えておくことができないような場合であっても、酸化触媒24の酸化能力に合った適正なHC供給期間とHC非供給期間の下でHCの供給を繰り返し周期的に実施することにより、例えば、新品のときにはHCを連続供給しても十分な酸化能力を有していた酸化触媒24が経時劣化してO2授受能力が低下した場合であっても、知らないうちにDPF26の再生能力が低下し、或いはHCの大気中への排出量が増大してしまうといった不都合が確実に回避される。
Thereby, PM accumulated on the DPF 26 can be sufficiently incinerated and removed, and the DPF 26 can be reliably regenerated.
Therefore, even when the oxidation catalyst 24 has a weak O 2 transfer function and the oxidation catalyst 24 cannot store enough O 2 necessary for the oxidation of HC, it matches the oxidation capability of the oxidation catalyst 24. For example, an oxidation catalyst that has sufficient oxidation ability even when HC is continuously supplied when it is new, by repeatedly supplying HC periodically under an appropriate HC supply period and HC non-supply period Even when 24 deteriorates with time and the O 2 transfer capacity decreases, the inconvenience that the regeneration capacity of the DPF 26 decreases or the discharge amount of HC into the atmosphere increases without knowledge. Avoided.

[第2実施例]
図4を参照すると、ECU40が実行する、連続再生式DPF22の本発明の第2実施例に係る強制再生制御(強制再生手段)の制御ルーチンがフローチャートで示されており、以下同フローチャートに沿い説明する。なお、当該第2実施例では、上記第1実施例の場合とステップS18の部分が異なるだけであるため、第1実施例と同一部分については説明を省略し、第1実施例と異なる部分についてのみ説明する。
[Second Embodiment]
Referring to FIG. 4, a control routine of forced regeneration control (forced regeneration means) according to the second embodiment of the present invention of the continuous regeneration type DPF 22 executed by the ECU 40 is shown in a flowchart, and will be described along the flowchart. To do. In the second embodiment, since only the step S18 is different from the case of the first embodiment, the description of the same parts as the first embodiment is omitted, and the parts different from the first embodiment are described. Only explained.

ステップS10乃至ステップS16を経てステップS18’では、温度センサ(触媒温度検出手段)25からの温度情報に基づき、酸化触媒24の温度、即ち触媒温度Tcatの変化量dTcat/dt(変化度合い)が所定値T1’(例えば、値0)以下であるか否かを判別する。
つまり、酸化触媒24においてHCが酸化反応を起こすと反応熱により酸化触媒24自身も昇温することになるが、この酸化触媒24の触媒温度Tcatが減少傾向となり、HCの酸化反応が減衰しているか否かを判別する。
In step S18 ′ after step S10 to step S16, based on the temperature information from the temperature sensor (catalyst temperature detection means) 25, the temperature of the oxidation catalyst 24, that is, the change amount dTcat / dt (degree of change) of the catalyst temperature Tcat is predetermined. It is determined whether or not the value is equal to or less than a value T1 ′ (for example, value 0).
That is, when HC undergoes an oxidation reaction in the oxidation catalyst 24, the oxidation catalyst 24 itself also rises in temperature due to reaction heat. However, the catalyst temperature Tcat of the oxidation catalyst 24 tends to decrease, and the oxidation reaction of HC attenuates. It is determined whether or not.

ステップS18’の判別結果が偽(No)で、変化量dTcat/dtが所定値T1’より大きければ酸化触媒24ではHCの酸化反応が十分実施されていると判定でき、この場合には、ステップS16においてHCの供給を継続する。
一方、ステップS18’の判別結果が真(Yes)で、変化量dTcat/dtが所定値T1’以下と判定された場合、即ち触媒温度Tcatが減少傾向となり、HCの酸化反応が減衰していると判定された場合には、ステップS20に進み、HC添加インジェクタ28からのHCの供給を中止し、HC非供給とする。
If the determination result in step S18 ′ is false (No) and the change amount dTcat / dt is larger than the predetermined value T1 ′, it can be determined that the oxidation catalyst 24 has sufficiently performed the oxidation reaction of HC. In S16, the supply of HC is continued.
On the other hand, when the determination result in step S18 ′ is true (Yes) and the change amount dTcat / dt is determined to be equal to or less than the predetermined value T1 ′, that is, the catalyst temperature Tcat tends to decrease, and the HC oxidation reaction is attenuated. If it is determined, the process proceeds to step S20, the supply of HC from the HC addition injector 28 is stopped, and the HC is not supplied.

つまり、触媒温度Tcatの変化量dTcat/dtは酸化触媒24上のO2の濃度と極めて相関が高く、故に、触媒温度Tcatが減少傾向と判定された場合には、上記第1実施例の場合と同様に、酸化触媒24上のO2が使い尽くされ、HCの供給を継続しても、もはや酸化反応熱が発生しなくなる状況と判断でき、この場合にはHCの供給を中止するようにする。 That is, the change amount dTcat / dt of the catalyst temperature Tcat has a very high correlation with the O 2 concentration on the oxidation catalyst 24. Therefore, if it is determined that the catalyst temperature Tcat is decreasing, the case of the first embodiment described above. Similarly, it can be determined that the O 2 on the oxidation catalyst 24 is used up and the heat of oxidation reaction is no longer generated even if the supply of HC is continued. In this case, the supply of HC is stopped. To do.

即ち、上記同様、酸化触媒24上のO2の濃度に応じてHCの供給期間が自ずと設定されることになり、当該HCの供給期間に亘ってHCの供給が行われ、HCの供給期間が経過するとHCの供給が中止される。
以降、ステップS22においてHCの非供給期間が所定期間t1経過するまでの間、HCの供給(ステップS16)と非供給(ステップS20)とが繰り返し周期的に実施される。
That is, similarly to the above, the HC supply period is naturally set according to the O 2 concentration on the oxidation catalyst 24, and HC is supplied over the HC supply period. After a lapse of time, the supply of HC is stopped.
Thereafter, the supply of HC (step S16) and the non-supply (step S20) are repeated periodically until the predetermined period t1 elapses in step S22.

これにより、上記同様に、酸化触媒24の酸化能力に拘わらず、消費されたO2を繰り返し補充しながらHCを酸化触媒24に過剰供給なく供給し、HCの供給時には酸化に寄与するO2量とHC量とを酸化触媒上で過不足なく略一致させるようにでき、効率的に酸化触媒24の酸化反応を促進させて反応熱を確保し、DPF26をPMの焼却に必要な所定温度T10以上に良好に維持することができる。 Thus, similarly to the above, irrespective of the oxidative capacity of the oxidation catalyst 24, the HC while replenishing repeatedly spent O 2 and oversupply supplied without the oxidation catalyst 24, contributes O 2 amount to oxidation during the supply of HC And the amount of HC can be made to substantially coincide with each other on the oxidation catalyst without excess or deficiency, the oxidation reaction of the oxidation catalyst 24 is efficiently promoted to secure reaction heat, and the DPF 26 exceeds the predetermined temperature T10 required for incineration of PM. Can be maintained well.

つまり、図5を参照すると、本発明の第2実施例に係る強制再生制御を実施した場合のDPF温度Tdpf(実線)、HC供給量(実線)、酸化触媒温度Tcat(実線)の時間変化がそれぞれ示されており、同図中には、HCを連続供給した場合のDPF温度Tdpf(一点鎖線)、HC供給量(一点鎖線)、酸化触媒温度Tcat(一点鎖線)の時間変化がそれぞれ併せて示されているが、酸化触媒24の酸化能力の如何に拘わらず、このように、酸化触媒温度Tcat(実線)の変化量dTcat/dtが所定値T1’(例えば、値0)以下になった時点までをHC供給期間とし、O2の補充に必要な所定期間t1をHC供給期間とし、これらHC供給期間とHC非供給期間とを周期的に繰り返し、HC供給をパルス状に実施することにより、HCを連続供給する場合に比べ、DPF温度Tdpfを所定温度T10以上に良好に維持することができ、図示しないものの酸化触媒下流におけるHC濃度を全体的に低く抑えてHCの大気中への排出を良好に防止することができる。
これにより、上記第1実施例の場合と同様に、酸化触媒24の経時劣化に依らず、DPF26に堆積したPMを十分に焼却除去させ、DPF26を確実に再生することができる。
That is, referring to FIG. 5, the time changes of the DPF temperature Tdpf (solid line), the HC supply amount (solid line), and the oxidation catalyst temperature Tcat (solid line) when the forced regeneration control according to the second embodiment of the present invention is performed. In the figure, the time changes of the DPF temperature Tdpf (one-dot chain line), the HC supply amount (one-dot chain line), and the oxidation catalyst temperature Tcat (one-dot chain line) when HC is continuously supplied are also shown. Although shown, the change amount dTcat / dt of the oxidation catalyst temperature Tcat (solid line) has become equal to or less than a predetermined value T1 ′ (for example, value 0) regardless of the oxidation ability of the oxidation catalyst 24. By setting the HC supply period to the point in time, the predetermined period t1 required for O 2 replenishment as the HC supply period, and periodically repeating the HC supply period and the HC non-supply period, and performing the HC supply in a pulsed manner. , A place to supply HC continuously Compared to the above, the DPF temperature Tdpf can be maintained well above the predetermined temperature T10, and although not shown, the HC concentration downstream of the oxidation catalyst can be kept low overall to prevent the discharge of HC into the atmosphere. it can.
As a result, as in the case of the first embodiment, the PM deposited on the DPF 26 can be sufficiently incinerated and removed, and the DPF 26 can be reliably regenerated, regardless of the deterioration of the oxidation catalyst 24 over time.

[第3実施例]
図6を参照すると、ECU40が実行する、連続再生式DPF22の本発明の第3実施例に係る強制再生制御(強制再生手段)の制御ルーチンがフローチャートで示されており、以下同フローチャートに沿い説明する。なお、当該第3実施例では、上記第1、第2実施例の場合とステップS16乃至ステップS22の部分が異なるだけであるため、第1、第2実施例と同一部分については説明を省略し、第1、第2実施例と異なる部分についてのみ説明する。
[Third embodiment]
Referring to FIG. 6, a control routine of forced regeneration control (forced regeneration means) according to the third embodiment of the present invention of the continuous regeneration type DPF 22 executed by the ECU 40 is shown in a flowchart, and will be described along the flowchart. To do. In the third embodiment, only the steps S16 to S22 are different from those in the first and second embodiments. Therefore, the description of the same parts as those in the first and second embodiments is omitted. Only differences from the first and second embodiments will be described.

ステップS10乃至ステップS14を実行した後、ステップS15では、HC添加インジェクタ28から供給するHCの供給波形を、例えば図7に一例を示すように、HC供給量が周期的に増減するような波形に設定する。
つまり、上記第1、第2実施例では、HCの供給期間と非供給期間とをO2濃度DO2の変化量dDO2/dt或いは触媒温度Tcatの変化量dTcat/dt、即ち酸化触媒24上の酸化に寄与するO2の濃度に応じて設定し、HCの供給をパルス状に実施するようにしたが、当該第3実施例では、HCの供給量を周期的に波状に増減変動させるようにする。
After performing Steps S10 to S14, in Step S15, the supply waveform of HC supplied from the HC addition injector 28 is changed to a waveform in which the HC supply amount periodically increases and decreases as shown in an example in FIG. Set.
That is, in the first and second embodiments, the HC supply period and the non-supply period are defined as the change amount dDO2 / dt of the O 2 concentration DO2 or the change amount dTcat / dt of the catalyst temperature Tcat, that is, the oxidation on the oxidation catalyst 24. set in accordance with the concentration of contributing O 2 to, but so as to implement the supply of HC to the pulsed, the in the third embodiment, the supply amount of HC so as to cyclically increase and decrease variations in the wave .

実際には、この場合においても、酸化触媒24上のO2の濃度に応じて変動周期や波形を設定するのがよく、例えば上記O2濃度DO2の変化量dDO2/dtや触媒温度Tcatの変化量dTcat/dtに応じて反転周期を適宜変更設定するのがよい。
そして、ステップS17において、上記のように設定したHCの供給波形に基づいてHCをHC添加インジェクタ28から周期的に噴射する。
Actually, even in this case, it is preferable to set the fluctuation period and waveform in accordance with the O 2 concentration on the oxidation catalyst 24. For example, the change amount DDO2 / dt of the O 2 concentration DO2 and the change in the catalyst temperature Tcat are preferable. It is preferable to appropriately change and set the inversion period according to the amount dTcat / dt.
In step S17, HC is periodically injected from the HC addition injector 28 based on the HC supply waveform set as described above.

このようにしても、やはり、酸化触媒24の酸化能力に拘わらず、消費されたO2を繰り返し補充しながらHCを酸化触媒24に過剰供給なく供給し、効率的に酸化触媒24の酸化反応を促進させて反応熱を確保し、DPF26をPMの焼却に必要な所定温度T10以上に良好に維持することができる。
これにより、上記第1、第2実施例の場合とほぼ同様に、酸化触媒24の経時劣化に依らず、DPF26に堆積したPMを十分に焼却除去させ、DPF26を良好に再生することができる。
Even in this case, regardless of the oxidation ability of the oxidation catalyst 24, HC is supplied to the oxidation catalyst 24 without excessive supply while replenishing the consumed O 2, and the oxidation reaction of the oxidation catalyst 24 is efficiently performed. The heat of reaction can be ensured and the DPF 26 can be satisfactorily maintained at a predetermined temperature T10 or higher required for PM incineration.
As a result, in substantially the same manner as in the first and second embodiments, PM deposited on the DPF 26 can be sufficiently incinerated and removed, and the DPF 26 can be regenerated satisfactorily regardless of the deterioration of the oxidation catalyst 24 over time.

本発明に係る内燃機関の排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention. 本発明の第1実施例に係る強制再生制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the forced regeneration control which concerns on 1st Example of this invention. 本発明の第1実施例に係る強制再生制御を実施した場合のDPF温度Tdpf、HC供給量、酸化触媒下流におけるHC濃度及びO2濃度DO2の時間変化を示すタイムチャートである。DPF temperature Tdpf when the forced regeneration control according to the first embodiment of the present invention was performed, HC supply amount is a time chart showing temporal changes of the HC concentration and the O 2 concentration DO2 in the oxidation catalyst downstream. 本発明の第2実施例に係る強制再生制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the forced regeneration control which concerns on 2nd Example of this invention. 本発明の第2実施例に係る強制再生制御を実施した場合のDPF温度Tdpf、HC供給量、酸化触媒温度Tcatの時間変化を示すタイムチャートである。It is a time chart which shows the time change of DPF temperature Tdpf, HC supply amount, and oxidation catalyst temperature Tcat at the time of performing forced regeneration control concerning the 2nd example of the present invention. 本発明の第3実施例に係る強制再生制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the forced regeneration control which concerns on 3rd Example of this invention. 本発明の第3実施例に係るHCの供給波形の一例を示す図である。It is a figure which shows an example of the supply waveform of HC which concerns on 3rd Example of this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン
4 燃料噴射ノズル
10 吸気通路
14 エアフローセンサ
20 排気通路
21 排気圧センサ
22 連続再生式DPF
23 O2センサ
24 酸化触媒
25 温度センサ
26 ディーゼル・パティキュレートフィルタ(DPF)
27 温度センサ
28 HC添加インジェクタ
30 EGR通路
40 電子コントローラ(ECU)
DESCRIPTION OF SYMBOLS 1 Diesel engine 4 Fuel injection nozzle 10 Intake passage 14 Air flow sensor 20 Exhaust passage 21 Exhaust pressure sensor 22 Continuous regeneration type DPF
23 O 2 sensor 24 Oxidation catalyst 25 Temperature sensor 26 Diesel particulate filter (DPF)
27 Temperature sensor 28 HC addition injector 30 EGR passage 40 Electronic controller (ECU)

Claims (3)

内燃機関の排気通路に介装され、パティキュレートマターを捕捉するパティキュレートフィルタと、
前記排気通路の前記パティキュレートフィルタよりも上流の部分に配設された酸化触媒と、
前記パティキュレートフィルタに捕捉されたパティキュレートマターの堆積量を検出する堆積量検出手段と、
前記堆積量検出手段により検出されるパティキュレートマターの堆積量が所定量に達したとき、前記酸化触媒に炭化水素を供給して酸化させ、該炭化水素の酸化反応熱により前記パティキュレートフィルタに捕捉された前記パティキュレートマターを強制的に燃焼除去して前記パティキュレートフィルタを強制再生させる強制再生手段とを備え、
前記強制再生手段は、前記酸化触媒に炭化水素を周期的に供給することを特徴とする内燃機関の排気浄化装置。
A particulate filter interposed in the exhaust passage of the internal combustion engine and capturing particulate matter;
An oxidation catalyst disposed in a portion of the exhaust passage upstream of the particulate filter;
A deposition amount detecting means for detecting a deposition amount of the particulate matter captured by the particulate filter;
When the accumulated amount of particulate matter detected by the accumulated amount detection means reaches a predetermined amount, hydrocarbons are supplied to the oxidation catalyst for oxidation, and captured by the particulate filter by the oxidation reaction heat of the hydrocarbons. Forcibly regenerating the particulate filter by forcibly burning and removing the particulate matter,
The exhaust purification device of an internal combustion engine, wherein the forced regeneration means periodically supplies hydrocarbons to the oxidation catalyst.
さらに、前記酸化触媒における酸素濃度または酸素濃度相関値を検出する酸素濃度相関値検出手段を備え、
前記強制再生手段は、前記酸素濃度相関値検出手段により検出される酸素濃度または酸素濃度相関値に基づいて前記炭化水素の供給期間と非供給期間とを設定し、前記炭化水素を該供給期間に亘りパルス状に供給することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
And oxygen concentration correlation value detecting means for detecting oxygen concentration or oxygen concentration correlation value in the oxidation catalyst,
The forced regeneration means sets a supply period and a non-supply period of the hydrocarbon based on an oxygen concentration or an oxygen concentration correlation value detected by the oxygen concentration correlation value detection means, and the hydrocarbon is supplied to the supply period. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas is supplied in a pulse form.
さらに、前記酸化触媒の温度を検出する触媒温度検出手段を備え、
前記強制再生手段は、前記触媒温度検出手段により検出される前記酸化触媒の温度の変化度合いに基づいて前記炭化水素の供給期間と非供給期間とを設定し、前記炭化水素を該供給期間に亘りパルス状に供給することを特徴とする、請求項1記載の内燃機関の排気浄化装置。
Furthermore, a catalyst temperature detecting means for detecting the temperature of the oxidation catalyst is provided,
The forced regeneration means sets a supply period and a non-supply period of the hydrocarbon based on a degree of change in the temperature of the oxidation catalyst detected by the catalyst temperature detection means, and the hydrocarbon is supplied over the supply period. 2. An exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is supplied in a pulse form.
JP2003331865A 2003-09-24 2003-09-24 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4328949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331865A JP4328949B2 (en) 2003-09-24 2003-09-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331865A JP4328949B2 (en) 2003-09-24 2003-09-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005098184A true JP2005098184A (en) 2005-04-14
JP4328949B2 JP4328949B2 (en) 2009-09-09

Family

ID=34460395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331865A Expired - Fee Related JP4328949B2 (en) 2003-09-24 2003-09-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4328949B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026809A1 (en) * 2005-09-01 2007-03-08 Hino Motors, Ltd. Method for regenerating particulate filter
JP2007187077A (en) * 2006-01-13 2007-07-26 Bosch Corp Exhaust gas after-treatment device
JP2008019792A (en) * 2006-07-13 2008-01-31 Denso Corp Rapid catalyst warm-up control device for internal combustion engine
JP2010144660A (en) * 2008-12-19 2010-07-01 Ud Trucks Corp Exhaust gas post-processing unit
KR101610061B1 (en) 2010-09-06 2016-04-07 현대자동차주식회사 Exhaust gas purification system of vehicle
JP2016173076A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Abnormality detection device for filter
JP2018096210A (en) * 2016-12-08 2018-06-21 いすゞ自動車株式会社 Exhaust emission control system and its controlling method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026809A1 (en) * 2005-09-01 2007-03-08 Hino Motors, Ltd. Method for regenerating particulate filter
JPWO2007026809A1 (en) * 2005-09-01 2009-03-12 日野自動車株式会社 Particulate filter regeneration method
JP4709220B2 (en) * 2005-09-01 2011-06-22 日野自動車株式会社 Particulate filter regeneration method
US8006486B2 (en) 2005-09-01 2011-08-30 Hino Motors, Ltd. Method for regenerating particulate filter
JP2007187077A (en) * 2006-01-13 2007-07-26 Bosch Corp Exhaust gas after-treatment device
JP2008019792A (en) * 2006-07-13 2008-01-31 Denso Corp Rapid catalyst warm-up control device for internal combustion engine
JP4557176B2 (en) * 2006-07-13 2010-10-06 株式会社デンソー Catalyst early warm-up control device for internal combustion engine
JP2010144660A (en) * 2008-12-19 2010-07-01 Ud Trucks Corp Exhaust gas post-processing unit
KR101610061B1 (en) 2010-09-06 2016-04-07 현대자동차주식회사 Exhaust gas purification system of vehicle
JP2016173076A (en) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 Abnormality detection device for filter
JP2018096210A (en) * 2016-12-08 2018-06-21 いすゞ自動車株式会社 Exhaust emission control system and its controlling method

Also Published As

Publication number Publication date
JP4328949B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5118331B2 (en) Exhaust purification device
JP4521824B2 (en) Exhaust purification device
JP2003254133A (en) Device for controlling exhaust gas of internal combustion engine
JP4935983B2 (en) Exhaust gas purification device for internal combustion engine
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
US8191353B2 (en) Device and method for controlling internal combustion engine
JP2010265873A (en) Exhaust emission control device
JP4174685B1 (en) Exhaust gas purification device for internal combustion engine
JP2011241690A (en) Dpf regeneration device
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP2007187006A (en) Exhaust emission control device for internal combustion engine
JP4328949B2 (en) Exhaust gas purification device for internal combustion engine
WO2015129463A1 (en) Exhaust purification apparatus for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP5534011B2 (en) Exhaust temperature raising device and method for removing clogging of fuel supply valve
KR102019867B1 (en) Method for judging the regeneration strategy of the diesel particulate filter with ISG and calculating the amount of soot combustion in a controlled diesel particulate filter
JP4895019B2 (en) Exhaust gas purification device for internal combustion engine
JP2009121264A (en) Exhaust gas after-treatment device
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP2006274907A (en) Exhaust emission control device
JP2009299617A (en) Exhaust emission control device for internal combustion engine
JP2013092075A (en) Exhaust emission control device of internal combustion engine
JP2006274980A (en) Exhaust emission control device
JP2015075011A (en) Exhaust emission control device for internal combustion engine
JP6398401B2 (en) Exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees