JPH069216A - Production of superconducting thin film of oxide - Google Patents

Production of superconducting thin film of oxide

Info

Publication number
JPH069216A
JPH069216A JP10362493A JP10362493A JPH069216A JP H069216 A JPH069216 A JP H069216A JP 10362493 A JP10362493 A JP 10362493A JP 10362493 A JP10362493 A JP 10362493A JP H069216 A JPH069216 A JP H069216A
Authority
JP
Japan
Prior art keywords
thin film
substrate
superconducting thin
oxide superconducting
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10362493A
Other languages
Japanese (ja)
Other versions
JP3289395B2 (en
Inventor
Takao Nakamura
孝夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10362493A priority Critical patent/JP3289395B2/en
Publication of JPH069216A publication Critical patent/JPH069216A/en
Application granted granted Critical
Publication of JP3289395B2 publication Critical patent/JP3289395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prepare a superconducting thin film of oxide having excellent clarity of surface, crystallinity and superconductivity only by film formation without carrying out after-treatment. CONSTITUTION:A chamber 2 is evacuated to <=1X10<-9>Torr, O2 containing 5-70% O3 and pure N2O or pure NO2 are fed to the vicinity of a substrate 4 and the pressure is made to be 6X10<-6> to 8X10<-5>Torr. Three cells having set metal Y, metal Ba and metal Cu, respectively, are used as K cells 3 and heated to about 1,150-1,350 deg.C, about 570-640 deg.C and about 950-1,090 deg.C. The substrate temperature is adjusted to 650-730 deg.C, a film is formed at 5-20Angstrom /minute. When the thin film reaches given thickness, the temperature is dropped in the atmosphere of the film formation as it is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導薄膜の作
製方法に関する。より詳細には、成膜後に熱処理等を行
わずに表面清浄性、結晶性、超電導特性の優れた酸化物
超電導薄膜をMBE法により作製する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting thin film. More specifically, the present invention relates to a method for producing an oxide superconducting thin film having excellent surface cleanability, crystallinity, and superconducting properties by MBE without performing heat treatment after film formation.

【0002】[0002]

【従来の技術】酸化物超電導体は、従来の金属系超電導
体に比較して臨界温度が高く、実用性がより高いと考え
られている。例えば、Y−Ba−Cu−O系酸化物超電導体
の臨界温度は80K以上であり、Bi−Sr−Ca−Cu−O系酸
化物超電導体およびTl−Ba−Ca−Cu−O系酸化物超電導
体の臨界温度は 100K以上と発表されている。酸化物超
電導体の超電導特性には結晶異方性があり、特に臨界電
流密度は結晶のc軸に垂直な方向が最も大きい。そのた
め、酸化物超電導体を使用する場合には、結晶方向に注
意を払う必要がある。
2. Description of the Related Art Oxide superconductors are considered to have a higher critical temperature and higher practicability than conventional metal-based superconductors. For example, the critical temperature of the Y-Ba-Cu-O-based oxide superconductor is 80 K or higher, and the Bi-Sr-Ca-Cu-O-based oxide superconductor and the Tl-Ba-Ca-Cu-O-based oxide are included. It has been announced that the critical temperature of superconductors is over 100K. The superconducting property of the oxide superconductor has a crystal anisotropy, and the critical current density is the largest in the direction perpendicular to the c-axis of the crystal. Therefore, when using an oxide superconductor, it is necessary to pay attention to the crystal orientation.

【0003】酸化物超電導体を超電導素子、超電導集積
回路等いわゆる超電導エレクトロニクス技術に応用する
場合、一般には酸化物超電導体を薄膜化して使用しなけ
ればならない。酸化物超電導体を薄膜化した場合には、
上記の超電導特性の結晶異方性の問題はより顕著にな
る。また、高性能な超電導素子、超電導集積回路を実現
するためには、基板に平行な方向に電流が流れる超電導
電流路と、基板に垂直な方向に電流が流れる超電導電流
路とが必要となる。例えば、電極等は基板に平行な方向
の電流が流れ、層間配線には基板に垂直な方向の電流が
流れる。従って、酸化物超電導体を超電導素子、超電導
集積回路に使用する場合、基板に平行な方向の臨界電流
密度が高いc軸配向の酸化物超電導薄膜と、基板に垂直
な方向の臨界電流密度が高いa軸配向(またはb軸配
向、以下本明細書ではより一般的なa軸配向に代表させ
て記す)の酸化物超電導薄膜とを作製しなければならな
い。
When the oxide superconductor is applied to so-called superconducting electronics technology such as superconducting elements and superconducting integrated circuits, it is generally necessary to use the oxide superconductor in a thin film. When the oxide superconductor is thinned,
The problem of the crystal anisotropy of the superconducting property becomes more remarkable. Further, in order to realize a high-performance superconducting element and a superconducting integrated circuit, a superconducting conductive channel through which a current flows in a direction parallel to the substrate and a superconducting conductive channel through which a current flows in a direction perpendicular to the substrate are required. For example, a current flows in a direction parallel to the substrate through the electrodes and the like, and a current flows in a direction perpendicular to the substrate through the interlayer wiring. Therefore, when the oxide superconductor is used in a superconducting device or a superconducting integrated circuit, the c-axis oriented oxide superconducting thin film having a high critical current density in the direction parallel to the substrate and the critical current density in a direction perpendicular to the substrate are high. An oxide superconducting thin film having an a-axis orientation (or a b-axis orientation, which will be hereinafter represented by a more general a-axis orientation in the present specification) must be produced.

【0004】多層構造の超電導素子、超電導集積回路を
作製する場合、上記のc軸配向の酸化物超電導薄膜とa
軸配向の酸化物超電導薄膜とを積層する必要がある。酸
化物超電導薄膜を配向性は、成膜温度(一般には成膜時
の基板温度である)で制御される。即ち、a軸配向の酸
化物超電導薄膜を形成する場合には、c軸配向の酸化物
超電導薄膜を形成する場合の基板温度よりも約50〜100
℃低い基板温度で成膜を行えばよい。
When manufacturing a superconducting device or a superconducting integrated circuit having a multilayer structure, the above-mentioned c-axis oriented oxide superconducting thin film and a
It is necessary to stack an axially oriented oxide superconducting thin film. The orientation of the oxide superconducting thin film is controlled by the film forming temperature (generally the substrate temperature during film forming). That is, when forming an a-axis oriented oxide superconducting thin film, the substrate temperature is about 50 to 100% higher than the substrate temperature when forming a c-axis oriented oxide superconducting thin film.
The film formation may be performed at a substrate temperature lower by ° C.

【0005】[0005]

【発明が解決しようとする課題】一般に複数の薄膜を積
層する場合、下層の薄膜の表面の清浄性、結晶性が問題
になる。下層の薄膜の表面が清浄でないと、下層の薄膜
の表面に堆積した汚染物質、下層の薄膜の表面に形成さ
れた酸化物等により界面において上層の薄膜と下層の薄
膜とが物理的あるいは電気的に不連続となってしまう。
また、超電導薄膜同士を積層する場合には、不必要な弱
結合が形成されてしまう。従って、素子、集積回路の性
能が所定の値にならなかったり、動作しなかったりする
ことがある。
Generally, when laminating a plurality of thin films, the cleanliness and crystallinity of the surface of the lower thin film become problems. If the surface of the lower thin film is not clean, the contaminants deposited on the surface of the lower thin film and the oxides formed on the surface of the lower thin film may cause the upper and lower thin films to physically or electrically interact at the interface. It becomes discontinuous.
Moreover, when superconducting thin films are stacked, unnecessary weak bonds are formed. Therefore, the performance of the element or integrated circuit may not reach a predetermined value or may not operate.

【0006】特に酸化物超電導体は、コヒーレンス長が
非常に短いので、酸化物超電導薄膜を下層の薄膜として
その上にさらに薄膜を積層する場合には、酸化物超電導
薄膜の表面状態に特に注意を払わなければならない。さ
らに酸化物超電導体結晶中の酸素は、比較的不安定で結
晶中から容易に抜けることがある。酸素を失うと、酸化
物超電導体の超電導特性は極めて低下し、極端な場合に
は超電導性を示さない場合がある。即ち、下層の薄膜と
して使用する酸化物超電導薄膜の表面は、清浄であり、
結晶性、超電導性に優れていることが要求される。
In particular, oxide superconductors have a very short coherence length. Therefore, when an oxide superconducting thin film is used as a lower layer and a thin film is further laminated thereon, particular attention should be paid to the surface state of the oxide superconducting thin film. I have to pay. Further, oxygen in the oxide superconductor crystal is relatively unstable and may easily escape from the crystal. When oxygen is lost, the superconducting property of the oxide superconductor is extremely deteriorated, and in extreme cases, the superconducting property may not be exhibited. That is, the surface of the oxide superconducting thin film used as the lower thin film is clean,
Excellent crystallinity and superconductivity are required.

【0007】従来酸化物超電導薄膜上に他の薄膜を積層
する場合には、下層の酸化物超電導薄膜を成膜後高真空
中で加熱処理して表面を清浄にしていた。しかしなが
ら、この方法では、酸化物超電導薄膜を構成する酸化物
超電導体中の酸素が失われて酸化物超電導薄膜の超電導
性が失われてしまうことがあった。
Conventionally, when laminating another thin film on the oxide superconducting thin film, the lower layer oxide superconducting thin film was formed and then heat-treated in a high vacuum to clean the surface. However, in this method, oxygen in the oxide superconductor forming the oxide superconducting thin film may be lost, and the superconductivity of the oxide superconducting thin film may be lost.

【0008】そこで、本発明の目的は、上記従来技術の
問題点を解決した、後処理なしで表面の各状態が優れた
酸化物超電導薄膜を作製する方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an oxide superconducting thin film having excellent surface states without post-treatment, which solves the above-mentioned problems of the prior art.

【0009】[0009]

【課題を解決するための手段】本発明に従うと、基板上
にMBE法により酸化物超電導薄膜を作製する方法にお
いて、1×10-9Torr以下の圧力に排気された真空チャン
バ内に、該排気を行いながらO3 を5〜70体積%含むO
2 、純N2Oまたは純NO2を供給して該真空チャンバ内
の圧力を6×10-6〜8×10-5Torrに維持し、前記基板を
加熱しながら成膜を行うことを特徴とする酸化物超電導
薄膜の作製方法が提供される。
According to the present invention, in a method for producing an oxide superconducting thin film on a substrate by the MBE method, the exhaust gas is introduced into a vacuum chamber evacuated to a pressure of 1 × 10 -9 Torr or less. O containing 5 to 70% by volume of O 3 while performing
2 , pure N 2 O or pure NO 2 is supplied to maintain the pressure in the vacuum chamber at 6 × 10 −6 to 8 × 10 −5 Torr, and the film is formed while heating the substrate. A method for producing an oxide superconducting thin film is provided.

【0010】本発明では、成膜を行った後、成膜時の雰
囲気下で基板温度を室温まで降温することが好ましい。
In the present invention, it is preferable that after the film formation, the substrate temperature is lowered to room temperature in the atmosphere during the film formation.

【0011】また、本発明においては、1×10-9Torr以
下の圧力に排気された真空チャンバ内に、該排気を行い
ながらO3 を5〜70体積%含むO2、純N2Oまたは純N
2を供給して該真空チャンバ内の基板近傍の圧力を6
×10-6〜8×10-5Torrに維持し、650〜730℃に加熱した
基板上に、金属Yがセットされた1150〜1350℃のクヌー
ドセンセル蒸発源からYを、金属Baがセットされた570
〜640℃のクヌードセンセル蒸発源からBaを、金属Cuが
セットされた950〜1090℃のクヌードセンセル蒸発源か
らCuを供給して成膜を行い、成膜後成膜時の雰囲気下で
基板温度を室温まで降温することを特徴とする酸化物超
電導薄膜の作製方法が提供される。
[0011] In the present invention, the 1 × 10 -9 vacuum chamber Torr was evacuated to a pressure of less than, O 2 including O 3 5 to 70 vol% while the exhaust, pure N 2 O or Pure N
O 2 is supplied to adjust the pressure in the vicinity of the substrate in the vacuum chamber to 6
On the substrate heated to 650 to 730 ° C., which was maintained at × 10 −6 to 8 × 10 −5 Torr, Y was transferred from the Knudsen cell evaporation source at 1150 to 1350 ° C. where the metal Y was set to the metal Ba. 570 set
Ba is supplied from the Knudsen cell evaporation source at ~ 640 ° C and Cu is supplied from the Knudsen cell evaporation source at 950 to 1090 ° C in which metallic Cu is set to form a film. There is provided a method for producing an oxide superconducting thin film, which comprises lowering the substrate temperature to room temperature below.

【0012】上記本発明の方法においては、1×10-9To
rr以下の圧力に排気された真空チャンバ内に、該排気を
行いながらO3 を8体積%含むO2 を供給して該真空チ
ャンバ内の基板近傍の圧力を5×10-5Torrに維持し、70
0℃に加熱した基板上に、金属Yがセットされた1220℃
のクヌードセンセル蒸発源からYを、金属Baがセットさ
れた620℃のクヌードセンセル蒸発源からBaを、金属Cu
がセットされた1000℃のクヌードセンセル蒸発源からCu
を供給して成膜を行い、成膜後成膜時の雰囲気下で基板
温度を室温まで降温することが好ましい。
In the above method of the present invention, 1 × 10 -9 To
O 2 containing 8% by volume of O 3 is supplied to the vacuum chamber evacuated to a pressure of rr or less to maintain the pressure in the vicinity of the substrate in the vacuum chamber at 5 × 10 -5 Torr. , 70
1220 ℃ with metal Y set on the substrate heated to 0 ℃
Y from the Knudsen cell evaporation source, and Ba from the Knudsen cell evaporation source at 620 ° C in which metal Ba is set, and metal Cu.
Cu from the Knudsen cell evaporation source set to 1000 ℃
Is preferably supplied to perform film formation, and after the film formation, the substrate temperature is lowered to room temperature in the atmosphere during film formation.

【0013】[0013]

【作用】本発明の方法は、1×10-9Torr以下のバックグ
ラウンド圧力の真空チャンバ内に、O3 を5〜70体積%
含むO2 、純N2Oまたは純NO2を供給して従来よりも
低い6×10-6〜8×10-5Torrの圧力下でMBE法による
成膜を行うところにその主要な特徴がある。真空チャン
バ内のバックグラウンド圧力が、1×10-9Torr以下と非
常に低く、リークやチャンバ内のガス発生がないので、
本発明の方法で作製される酸化物超電導薄膜上には汚染
物質(炭化水素、金属炭化物)が堆積しない。
According to the method of the present invention, 5 to 70% by volume of O 3 is contained in a vacuum chamber having a background pressure of 1 × 10 -9 Torr or less.
The main characteristic is that the film formation by the MBE method is carried out under the pressure of 6 × 10 −6 to 8 × 10 −5 Torr lower than the conventional one by supplying containing O 2 , pure N 2 O or pure NO 2. is there. The background pressure in the vacuum chamber is very low, less than 1 × 10 -9 Torr, and there is no leak or gas generation in the chamber.
No contaminants (hydrocarbons, metal carbides) are deposited on the oxide superconducting thin film produced by the method of the present invention.

【0014】本発明の方法では、上記の成膜を行った
後、成膜時の雰囲気下で基板温度を室温まで降温するこ
とが好ましい。この降温時に酸化物超電導薄膜を構成す
る酸化物超電導体結晶は、正方晶から斜方晶へ変態す
る。
In the method of the present invention, it is preferable that after the above film formation, the substrate temperature is lowered to room temperature in the atmosphere during film formation. When the temperature is lowered, the oxide superconductor crystal forming the oxide superconducting thin film transforms from a tetragonal system to an orthorhombic system.

【0015】本発明の方法は、より具体的には、1×10
-9Torr以下の圧力に排気された真空チャンバ内に、該排
気を行いながらO3 を5〜70体積%含むO2 、純N2
または純NO2を供給して該真空チャンバ内の圧力を6
×10-6〜8×10-5Torrに維持し、650〜730℃に加熱した
基板上に、約1150〜1350℃の金属Yがセットされたクヌ
ードセンセル蒸発源からYを、約570〜640℃の金属Baが
セットされたクヌードセンセル蒸発源からBaを、約950
〜1090℃の金属Cuがセットされたクヌードセンセル蒸発
源からCuを供給して成膜を行い、成膜後成膜時の雰囲気
下で基板温度を室温まで降温する方法とすることができ
る。
The method of the present invention more specifically comprises 1 × 10 5.
In a vacuum chamber which is evacuated to a pressure of less than -9 Torr, O 2 including O 3 5 to 70 vol% while the exhaust, pure N 2 O
Alternatively, pure NO 2 is supplied to increase the pressure in the vacuum chamber to 6
X is about 570 from a Knudsen cell evaporation source in which metal Y of about 1150 to 1350 ° C. is set on a substrate heated to 650 to 730 ° C. while maintaining at × 10 −6 to 8 × 10 −5 Torr. Approximately 950 Ba from the Knudsen cell evaporation source with metal Ba set at ~ 640 ° C.
A method can be used in which Cu is supplied from a Knudsen cell evaporation source in which metallic Cu of ~ 1090 ° C is set to form a film, and then the substrate temperature is lowered to room temperature in the atmosphere during film formation. .

【0016】本発明の方法において、基板温度が650℃
未満の場合は、a軸配向の部分とc軸配向の部分が混在
した多結晶の酸化物超電導薄膜となってしまう。また、
基板温度が730℃を超えると、Cuが酸化されずY1Ba2Cu3
7-X酸化物超電導体が生成されない。MBE法により
酸化物超電導薄膜を成膜する場合には、クヌードセンセ
ルの温度が極めて重要であるが、各クヌードセンセルの
温度は蒸発源に使用する材料だけでなく、MBE装置各
部の幾何学的な配置、クヌードセンセルの材質等により
異なる値となる。本発明の方法では、各クヌードセンセ
ルの温度を上記の範囲に設定することにより、特性の優
れた酸化物超電導薄膜を成膜することができる。本発明
の方法における典型的な値としては、基板温度700℃、
金属Yのクヌードセンセル1220℃、金属Baのクヌードセ
ンセル620℃、金属Cuのクヌードセンセル1000℃が挙げ
られる。
In the method of the present invention, the substrate temperature is 650 ° C.
If it is less than the above, a polycrystalline oxide superconducting thin film in which a-axis oriented portions and c-axis oriented portions are mixed is obtained. Also,
When the substrate temperature exceeds 730 ℃, Cu is not oxidized and Y 1 Ba 2 Cu 3
No O 7-X oxide superconductor is generated. When forming an oxide superconducting thin film by the MBE method, the temperature of the Knudsen cell is extremely important, but the temperature of each Knudsen cell is not limited to the material used for the evaporation source, but also the temperature of each part of the MBE apparatus. The value varies depending on the geometrical arrangement and the material of the Knudsen cell. In the method of the present invention, by setting the temperature of each Knudsen cell within the above range, an oxide superconducting thin film having excellent characteristics can be formed. A typical value in the method of the present invention is a substrate temperature of 700 ° C.,
Examples include Knudsen cell 1220 ° C. for metal Y, Knudsen cell 620 ° C. for metal Ba, and Knudsen cell 1000 ° C. for metal Cu.

【0017】本発明の方法では、酸化ガスとしてO3
5〜70体積%含むO2、純N2Oまたは純NO2を使用す
ることが好ましい。これらのガスは、純粋なO2よりも
酸化力が強く、特にチャンバ内の圧力が低いMBE法で
金属を蒸発源に使用して酸化物超電導薄膜を作製する場
合には好ましい。しかしながら、O3を含むO2を使用す
る場合には、O3が70体積%を超えると、却って特性の
よい酸化物超電導薄膜が得られないことがある。従っ
て、本発明の方法で酸化ガスにO3を含むO2を使用する
場合には、O3を5〜70体積%含むO2を使用することが
好ましく、特に8体積%が好ましい。
In the method of the present invention, it is preferable to use O 2 containing 5 to 70% by volume of O 3 , pure N 2 O or pure NO 2 as the oxidizing gas. These gases have a stronger oxidizing power than pure O 2 , and are particularly preferable when an oxide superconducting thin film is prepared by using a metal as an evaporation source by the MBE method in which the pressure in the chamber is low. However, when O 2 containing O 3 is used, if O 3 exceeds 70% by volume, an oxide superconducting thin film having good characteristics may not be obtained. Therefore, when using the O 2 containing O 3 to the oxidizing gas in the process of the invention, it is preferred to use O 2 including O 3 5 to 70% by volume, in particular 8% by volume is preferred.

【0018】さらに、本発明の方法では、酸化物超電導
薄膜の成長速度を5〜20Å/分にすることが好ましい。
酸化物超電導薄膜の成長速度は、基板温度、各クヌード
センセルの温度、MBE装置各部の幾何学的な配置、ク
ヌードセンセルの材質、チャンバ内圧力、チャンバ内の
雰囲気等に影響される。本発明の方法では、酸化物超電
導薄膜の成長速度が上記の範囲内である場合に高品質の
薄膜が得られる。
Further, in the method of the present invention, it is preferable that the growth rate of the oxide superconducting thin film is 5 to 20 Å / min.
The growth rate of the oxide superconducting thin film is affected by the substrate temperature, the temperature of each Knudsen cell, the geometrical arrangement of each part of the MBE device, the material of the Knudsen cell, the pressure in the chamber, the atmosphere in the chamber, etc. . According to the method of the present invention, a high quality thin film can be obtained when the growth rate of the oxide superconducting thin film is within the above range.

【0019】本発明の方法で作製された酸化物超電導薄
膜は、表面が清浄で、結晶性、超電導性に優れているの
で、その上に他の材料の薄膜、配向性が異なる酸化物超
電導薄膜等を積層するのに適している。特に、本発明の
方法では、成膜工程のみで後処理を全く必要とせずに、
表面の状態が優れた酸化物超電導薄膜を作製できるの
で、その上に連続的に他の薄膜を成長させることが可能
であり、生産効率の向上にも寄与する。
Since the oxide superconducting thin film produced by the method of the present invention has a clean surface and is excellent in crystallinity and superconducting property, a thin film of another material and an oxide superconducting thin film having a different orientation are formed on it. Suitable for stacking etc. In particular, in the method of the present invention, the film forming step alone does not require any post-treatment,
Since an oxide superconducting thin film having an excellent surface state can be produced, another thin film can be continuously grown on it, which also contributes to improvement in production efficiency.

【0020】本発明の方法は、任意の酸化物超電導体に
適用することが可能であり、上記のY−Ba−Cu−O系酸
化物超電導体の他に、特にBi−Sr−Ca−Cu−O系酸化物
超電導体、Tl−Ba−Ca−Cu−O系酸化物超電導体に適用
することが好ましい。これらの酸化物超電導体は、臨界
温度を始めとする各種の超電導特性が現在のところ最も
優れているからである。
The method of the present invention can be applied to any oxide superconductor, and in addition to the above-mentioned Y-Ba-Cu-O-based oxide superconductor, in particular Bi-Sr-Ca-Cu. It is preferably applied to an -O-based oxide superconductor and a Tl-Ba-Ca-Cu-O-based oxide superconductor. This is because these oxide superconductors are currently the most excellent in various superconducting properties including the critical temperature.

【0021】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0022】[0022]

【実施例】本発明の方法により、Y1Ba2Cu37-X酸化物
超電導薄膜を作製した。図4を参照して本発明の方法を
実施するMBE装置の構成を説明する。図4に示したM
BE装置は、主排気系1を備えた真空チャンバ2と、こ
の真空チャンバ2の底部に装着された蒸発源を収容する
ためのクヌードセンセル(以下、Kセルと記載する)3
および真空チャンバ2の頂部に装着された基板4を保持
するための基板ホルダ5とを具備する。基板ホルダ5に
は、基板4を加熱するためのヒータ5aが設けられてい
る。さらに、試料導入部10や、蒸発源の周囲にコールド
トラップを構成するための液化窒素シュラウド6や、成
膜中の薄膜を観測するための反射高速電子線回折装置
(以下、RHEEDと記載する)8等が装備されてい
る。また、基板4の直前には、成膜処理の断続を制御す
るためのシャッタ9が設けられている。さらに、必要に
応じて、Kセル3を複数設けたり、Kセル3の代わりに
電子銃11を装着する場合もある。
EXAMPLE A Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film was prepared by the method of the present invention. The configuration of the MBE device for carrying out the method of the present invention will be described with reference to FIG. M shown in FIG.
The BE apparatus includes a vacuum chamber 2 having a main exhaust system 1 and a Knudsen cell (hereinafter referred to as K cell) 3 for accommodating an evaporation source mounted on the bottom of the vacuum chamber 2.
And a substrate holder 5 for holding the substrate 4 mounted on the top of the vacuum chamber 2. The substrate holder 5 is provided with a heater 5a for heating the substrate 4. Furthermore, the sample introduction unit 10, the liquefied nitrogen shroud 6 for forming a cold trap around the evaporation source, and a reflection high-energy electron diffraction device (hereinafter, referred to as RHEED) for observing a thin film during film formation Eight etc. are equipped. Further, immediately before the substrate 4, a shutter 9 for controlling the on / off of the film forming process is provided. Further, if necessary, a plurality of K cells 3 may be provided, or an electron gun 11 may be attached instead of the K cells 3.

【0023】図4のMBE装置で特に特徴的なのは、真
空チャンバ2のほぼ中央付近に設けられた絞り手段21お
よびゲートバルブ22と、ゲートバルブ22の基板側に装着
された副排気系20とを備えている点である。絞り手段21
は、中央に貫通孔を有する板状の部材により構成されて
いる。この貫通孔は、Kセル3および電子銃11から基板
4に向かって照射される分子ビームを妨げないように設
けられている。このような絞り手段21を真空チャンバ2
内に設けることにより、真空チャンバ2内の基板4側と
蒸発源側との間の実効的な口径が小さくなり、基板4側
と蒸発源側との間に差圧を発生させ易くなる。尚、絞り
手段21の構成は、これに限定されるものではなく、真空
チャンバ内で、基板側と蒸発源側との間の気体の流通を
妨害できるようなものであれば、如何なるものでも使用
できる。
The MBE apparatus of FIG. 4 is particularly characteristic in that it includes a throttle means 21 and a gate valve 22 provided near the center of the vacuum chamber 2 and an auxiliary exhaust system 20 mounted on the substrate side of the gate valve 22. It is a point to have. Aperture means 21
Is composed of a plate-shaped member having a through hole in the center. This through hole is provided so as not to interfere with the molecular beam emitted from the K cell 3 and the electron gun 11 toward the substrate 4. Such a diaphragm means 21 is provided in the vacuum chamber 2
By providing it inside, the effective diameter between the substrate 4 side and the evaporation source side in the vacuum chamber 2 becomes small, and it becomes easy to generate a differential pressure between the substrate 4 side and the evaporation source side. The structure of the throttle means 21 is not limited to this, and any structure can be used as long as it can block the flow of gas between the substrate side and the evaporation source side in the vacuum chamber. it can.

【0024】また、ゲートバルブ22は、絞り手段21に設
けられた貫通孔21を閉塞することができるように構成さ
れており、閉じた状態では、真空チャンバ2の基板側と
蒸発源側とを気密に遮断することができるように構成さ
れている。尚、図示されていないが、ゲートバルブ22は
真空チャンバ2の外部からその開閉を操作できるように
構成されている。
Further, the gate valve 22 is constructed so as to be able to close the through hole 21 provided in the throttle means 21, and in the closed state, it connects the substrate side of the vacuum chamber 2 and the evaporation source side. It is configured so that it can be shut off in an airtight manner. Although not shown, the gate valve 22 is constructed so that its opening and closing can be operated from outside the vacuum chamber 2.

【0025】さらに、副排気系20は、絞り手段21および
ゲートバルブ22に対して基板4側に設けられており、真
空チャンバ2の基板側を排気することができる。副排気
系20としてはターボポンプやクライオポンプ等が好まし
い。尚、絞り手段21およびゲートバルブ22に対して蒸発
源側に設けられる主排気系1としては、拡散ポンプ等を
使用することが好ましい。
Further, the sub-evacuation system 20 is provided on the substrate 4 side with respect to the diaphragm means 21 and the gate valve 22 and can exhaust the substrate side of the vacuum chamber 2. A turbo pump, a cryopump or the like is preferable as the auxiliary exhaust system 20. A diffusion pump or the like is preferably used as the main exhaust system 1 provided on the evaporation source side with respect to the throttle means 21 and the gate valve 22.

【0026】上記のMBE装置を使用して、本発明の方
法でc軸配向のY1Ba2Cu37-X酸化物超電導薄膜を作製
した。以下に手順を説明する。最初に基板4を基板ホル
ダ5に、蒸発源をKセル3にそれぞれセットした後、真
空チャンバ2内を1×10-9Torr以下の高真空に排気す
る。本実施例では、基板4にMgOを、蒸発源には金属
Y、金属Baおよび金属Cuをそれぞれ異なるKセルにセッ
トして使用した。続いて、真空チャンバ2の排気を行い
ながら給気系7から、O3を8体積%含むを供給し、基
板4の周辺の圧力を5×10-5Torrに調整する。このMB
E装置には絞り手段21が設けられているので、蒸発源側
は基板周辺よりもさらに一桁以上低い圧力となる。ま
た、給気系7から噴出する酸素ガスが基板の成膜面にあ
たるように装置を構成することにより、成膜面における
実質的な酸素圧を更に高くすることができる。
Using the above MBE apparatus, a c-axis oriented Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film was prepared by the method of the present invention. The procedure will be described below. First, the substrate 4 is set in the substrate holder 5 and the evaporation source is set in the K cell 3, and then the inside of the vacuum chamber 2 is evacuated to a high vacuum of 1 × 10 −9 Torr or less. In this example, MgO was set on the substrate 4, and metal Y, metal Ba, and metal Cu were set in different K cells as evaporation sources. Subsequently, while the vacuum chamber 2 is being evacuated, 8% by volume of O 3 is supplied from the air supply system 7, and the pressure around the substrate 4 is adjusted to 5 × 10 −5 Torr. This MB
Since the E unit is provided with the throttling means 21, the pressure on the evaporation source side is lower than the pressure around the substrate by one digit or more. Further, by configuring the apparatus so that the oxygen gas ejected from the air supply system 7 hits the film forming surface of the substrate, the substantial oxygen pressure on the film forming surface can be further increased.

【0027】上記のO2 の供給と同時に、ヒータ5aお
よびKセル3により、基板および蒸発源をそれぞれ所定
の温度まで加熱する。本実施例では、基板温度は700
℃、各Kセルの温度は、Yセルを1220℃、Baセルを620
℃、Cuセルを1000℃とした。蒸発源から分子ビームが安
定に発生するようになったらシャッタ9を開いて成膜を
開始する。このとき、RHEED8により薄膜の成長状
態を観察することができる。本実施例では、10Å/分の
成膜速度で900Åの厚さの酸化物超電導薄膜を成長させ
た。
Simultaneously with the above-described supply of O 2 , the heater 5a and the K cell 3 heat the substrate and the evaporation source to predetermined temperatures. In this embodiment, the substrate temperature is 700
℃, the temperature of each K cell is 1220 ℃ Y cell, 620 Ba cell
℃, Cu cell was 1000 ℃. When the molecular beam is stably generated from the evaporation source, the shutter 9 is opened and the film formation is started. At this time, the growth state of the thin film can be observed by RHEED8. In this example, an oxide superconducting thin film having a thickness of 900Å was grown at a film forming rate of 10Å / min.

【0028】上記の成膜により、基板4上の薄膜が所定
の膜厚900Åに達したら、成膜時の雰囲気を維持したま
まヒータ5aを切り、基板温度を降温させる。このよう
に作製したc軸配向のY1Ba2Cu37-X酸化物超電導薄膜
の表面を大気にさらさない状態でXPS、LEEDで評
価した。その結果を、図1〜図3に示す。
When the thin film on the substrate 4 reaches a predetermined film thickness of 900Å by the above film formation, the heater 5a is turned off while maintaining the atmosphere during film formation, and the substrate temperature is lowered. The c-axis oriented Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film thus prepared was evaluated by XPS and LEED without exposing the surface thereof to the atmosphere. The results are shown in FIGS.

【0029】図1は、上記本発明の方法で作製した酸化
物超電導薄膜のLEED像である。図1のLEED像に
スポットが見られることから、本発明の方法で作製した
酸化物超電導薄膜の表面は結晶性表面である。図2およ
び図3は、上記本発明の方法で作製した酸化物超電導薄
膜のXPSスペクトルである。図2は、Yの3pピーク
と、Cのピークとが見られる領域のスペクトルである。
図2からわかるように、本発明の方法で作製された酸化
物超電導薄膜の表面にはCのピークが観察されない。従
って、本発明の方法で作製された酸化物超電導薄膜の表
面には、汚染物質であるC化合物が存在しておらず、清
浄である。図3は、Cuのピークが見られる領域のスペク
トルである。図3からわかるように、本発明の方法で作
製された酸化物超電導薄膜の表面は、Cuのサテライトピ
ークが強い。これは、表面が良好な超電導性を有するこ
とを示している。
FIG. 1 is a LEED image of an oxide superconducting thin film produced by the method of the present invention. Since spots are seen in the LEED image of FIG. 1, the surface of the oxide superconducting thin film produced by the method of the present invention is a crystalline surface. 2 and 3 are XPS spectra of the oxide superconducting thin film produced by the method of the present invention. FIG. 2 is a spectrum of a region where the 3p peak of Y and the peak of C are seen.
As can be seen from FIG. 2, no C peak is observed on the surface of the oxide superconducting thin film produced by the method of the present invention. Therefore, the surface of the oxide superconducting thin film produced by the method of the present invention is clean because no C compound as a contaminant is present. FIG. 3 is a spectrum of a region where a Cu peak is seen. As can be seen from FIG. 3, the surface of the oxide superconducting thin film produced by the method of the present invention has a strong Cu satellite peak. This indicates that the surface has good superconductivity.

【0030】[0030]

【発明の効果】以上説明したように、本発明に従えば、
良好な表面状態を有する酸化物超電導薄膜を成膜しただ
けで後処理なしで得られる作製方法が提供される。本発
明の方法により作製される酸化物超電導薄膜は、表面の
清浄性、結晶性、超電導特性が優れているので、積層膜
の下層に使用した場合に界面における整合性が良好にな
る。本発明を超電導素子、超電導集積回路の作製に応用
することにより、従来得られなかった高性能な超電導装
置が作製可能である。
As described above, according to the present invention,
Provided is a manufacturing method in which an oxide superconducting thin film having a good surface condition is formed and obtained without post-treatment. Since the oxide superconducting thin film produced by the method of the present invention has excellent surface cleanliness, crystallinity, and superconducting properties, when it is used as the lower layer of the laminated film, the interface consistency becomes good. By applying the present invention to the production of superconducting elements and superconducting integrated circuits, it is possible to produce a high-performance superconducting device which has never been obtained before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で作製した酸化物超電導薄膜の結
晶状態を示す写真である。
FIG. 1 is a photograph showing the crystalline state of an oxide superconducting thin film produced by the method of the present invention.

【図2】本発明の方法で作製した酸化物超電導薄膜の表
面の状態を示すXPSスペクトルである。
FIG. 2 is an XPS spectrum showing the state of the surface of an oxide superconducting thin film produced by the method of the present invention.

【図3】本発明の方法で作製した酸化物超電導薄膜の表
面の状態を示すXPSスペクトルである。
FIG. 3 is an XPS spectrum showing the state of the surface of an oxide superconducting thin film produced by the method of the present invention.

【図4】本発明の方法を実施するMBE装置の一例の概
略図である。
FIG. 4 is a schematic diagram of an example of an MBE apparatus that implements the method of the present invention.

【符号の説明】[Explanation of symbols]

1・・主排気系、 2・・真空チャ
ンバ、3・・クヌードセンセル(Kセル)、 4・・基
板、5・・基板ホルダ、 5a・・ヒ
ータ、6・・液体窒素シュラウド、 7・・給
気系、8・・反射高速電子線回折装置(RHEED)、
9・・シャッタ、 10・・試料導入
部、11・・電子銃、 20・・副排
気系、21・・絞り手段、 22・・ゲ
ートバルブ
1 ... Main exhaust system, 2 ... Vacuum chamber, 3 ... Knudsen cell (K cell), 4 ... Substrate, 5 ... Substrate holder, 5a ... Heater, 6 ... Liquid nitrogen shroud, 7 ...・ Air supply system, 8 ・ ・ Reflection high-speed electron beam diffractometer (RHEED),
9 ・ ・ Shutter, 10 ・ ・ Sample introduction part, 11 ・ ・ Electron gun, 20 ・ ・ Secondary exhaust system, 21 ・ ・ Throttle means, 22 ・ ・ Gate valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上にMBE法により酸化物超電導薄
膜を作製する方法において、1×10-9Torr以下の圧力に
排気された真空チャンバ内に、該排気を行いながらO3
を5〜70体積%含むO2 、純N2Oまたは純NO2を供給
して該真空チャンバ内の圧力を6×10-6〜8×10-5Torr
に維持し、前記基板を加熱しながら成膜を行うことを特
徴とする酸化物超電導薄膜の作製方法。
1. A method for producing an oxide superconducting thin film on a substrate by the MBE method, in which a vacuum chamber evacuated to a pressure of 1 × 10 −9 Torr or less is used while O 3 is being evacuated.
Of 5 to 70% by volume of O 2 , pure N 2 O or pure NO 2 is supplied to adjust the pressure in the vacuum chamber to 6 × 10 −6 to 8 × 10 −5 Torr.
The method for producing an oxide superconducting thin film, characterized in that the film formation is carried out while maintaining the temperature of the substrate while heating the substrate.
【請求項2】 成膜を行った後、成膜時の雰囲気下で基
板温度を室温まで降温することを特徴とする請求項1に
記載の酸化物超電導薄膜の作製方法。
2. The method for producing an oxide superconducting thin film according to claim 1, wherein after the film formation, the substrate temperature is lowered to room temperature in the atmosphere during the film formation.
【請求項3】 基板上にMBE法により酸化物超電導薄
膜を作製する方法において、1×10-9Torr以下の圧力に
排気された真空チャンバ内に、該排気を行いながらO3
を5〜70体積%含むO2 、純N2Oまたは純NO2を供給
して該真空チャンバ内の基板近傍の圧力を6×10-6〜8
×10-5Torrに維持し、650〜730℃に加熱した基板上に、
金属Yがセットされた1150〜1350℃のクヌードセンセル
蒸発源からYを、金属Baがセットされた570〜640℃のク
ヌードセンセル蒸発源からBaを、金属Cuがセットされた
950〜1090℃のクヌードセンセル蒸発源からCuを供給し
て成膜を行い、成膜後成膜時の雰囲気下で基板温度を室
温まで降温することを特徴とする酸化物超電導薄膜の作
製方法。
3. A method for producing an oxide superconducting thin film on a substrate by the MBE method, wherein O 3 is supplied to a vacuum chamber evacuated to a pressure of 1 × 10 −9 Torr or less while the gas is evacuated.
5 to 70% by volume of O 2 , pure N 2 O or pure NO 2 is supplied to adjust the pressure in the vicinity of the substrate in the vacuum chamber to 6 × 10 −6 to 8
While maintaining at × 10 -5 Torr and heating to 650-730 ℃,
Metal Y was set from the Knudsen cell evaporation source of 1150 to 1350 ° C, Ba was set from the Knudsen cell evaporation source of 570 to 640 ° C in which the metal Ba was set, and metal Cu was set.
Fabrication of oxide superconducting thin film characterized in that Cu is supplied from a Knudsen cell evaporation source at 950 to 1090 ° C to form a film, and then the substrate temperature is lowered to room temperature in the atmosphere during film formation Method.
【請求項4】 1×10-9Torr以下の圧力に排気された真
空チャンバ内に、該排気を行いながらO3 を8体積%含
むO2 を供給して該真空チャンバ内の基板近傍の圧力を
5×10-5Torrに維持し、700℃に加熱した基板上に、金
属Yがセットされた1220℃のクヌードセンセル蒸発源か
らYを、金属Baがセットされた620℃のクヌードセンセ
ル蒸発源からBaを、金属Cuがセットされた1000℃のクヌ
ードセンセル蒸発源からCuを供給して成膜を行い、成膜
後成膜時の雰囲気下で基板温度を室温まで降温すること
を特徴とする請求項3に記載の酸化物超電導薄膜の作製
方法。
4. A vacuum chamber evacuated to a pressure of 1 × 10 -9 Torr or less is supplied with O 2 containing 8% by volume of O 3 while the gas is evacuated to obtain a pressure near the substrate in the vacuum chamber. Is maintained at 5 × 10 -5 Torr, and Y is supplied from a Knudsen cell evaporation source of 1220 ° C. with metal Y set on a substrate heated to 700 ° C. Ba is supplied from the sencel evaporation source and Cu is supplied from the Knudsen cel evaporation source at which metal Cu is set at 1000 ° C. to form a film, and then the substrate temperature is lowered to room temperature in the atmosphere during the film formation. The method for producing an oxide superconducting thin film according to claim 3, wherein
JP10362493A 1992-04-10 1993-04-06 Preparation method of oxide superconducting thin film Expired - Fee Related JP3289395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10362493A JP3289395B2 (en) 1992-04-10 1993-04-06 Preparation method of oxide superconducting thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-118015 1992-04-10
JP11801592 1992-04-10
JP10362493A JP3289395B2 (en) 1992-04-10 1993-04-06 Preparation method of oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH069216A true JPH069216A (en) 1994-01-18
JP3289395B2 JP3289395B2 (en) 2002-06-04

Family

ID=26444246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10362493A Expired - Fee Related JP3289395B2 (en) 1992-04-10 1993-04-06 Preparation method of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP3289395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016525A2 (en) 1998-12-29 2000-07-05 Canon Kabushiki Kaisha Liquid-ejecting head, liquid-ejecting method and liquid-ejecting printing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1016525A2 (en) 1998-12-29 2000-07-05 Canon Kabushiki Kaisha Liquid-ejecting head, liquid-ejecting method and liquid-ejecting printing apparatus

Also Published As

Publication number Publication date
JP3289395B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
EP0633331B1 (en) Process for preparing high crystallinity SrTiO3 oxide thin film
JPH069297A (en) Film forming device
JP2000058525A (en) Vapor growth method for metal oxide dielectric film
JP3188358B2 (en) Method for producing oxide superconductor thin film
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JPH0867968A (en) Production of oxide thin film
CA2093729C (en) Process for preparing superconducting thin film formed of oxide superconductor material
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
JP3289395B2 (en) Preparation method of oxide superconducting thin film
JPH07268612A (en) Formation of oxide thin film
US20130052445A1 (en) Composite oxide film and method for producing the same
JP3189634B2 (en) Preparation method of oxide thin film
JPH10182292A (en) Oxide laminated structure and its production
US5438037A (en) Method for depositing another thin film on an oxide thin film having perovskite crystal structure
JP2001077102A (en) Dielectric film and forming method therefor
JP3361016B2 (en) Superconducting member and manufacturing method thereof
JP3111779B2 (en) Preparation method of oxide superconducting thin film
JP2773453B2 (en) Method of laminating oxide superconducting thin film
EP0691418A1 (en) Process for preparing high crystallinity oxide thin film
JPH05194095A (en) Production of thin-film electric conductor
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof
JP2000091533A (en) Ferroelectric thin-film element and manufacture thereof
JPH05194097A (en) Production of thin-film electric conductor
JPH05194096A (en) Production of thin-film oxide electric conductor
JP2000286472A (en) Josephson junction element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

LAPS Cancellation because of no payment of annual fees