JPH0691955B2 - Method for synthesizing high quality cubic boron nitride single crystal - Google Patents

Method for synthesizing high quality cubic boron nitride single crystal

Info

Publication number
JPH0691955B2
JPH0691955B2 JP14225686A JP14225686A JPH0691955B2 JP H0691955 B2 JPH0691955 B2 JP H0691955B2 JP 14225686 A JP14225686 A JP 14225686A JP 14225686 A JP14225686 A JP 14225686A JP H0691955 B2 JPH0691955 B2 JP H0691955B2
Authority
JP
Japan
Prior art keywords
boron nitride
single crystal
cubic boron
cbn
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14225686A
Other languages
Japanese (ja)
Other versions
JPS62297203A (en
Inventor
純司 出川
修示 矢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14225686A priority Critical patent/JPH0691955B2/en
Priority to EP86112787A priority patent/EP0220462B1/en
Priority to DE8686112787T priority patent/DE3674329D1/en
Priority to US06/909,263 priority patent/US4699687A/en
Publication of JPS62297203A publication Critical patent/JPS62297203A/en
Publication of JPH0691955B2 publication Critical patent/JPH0691955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/0645Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/066Boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 立方晶型窒化硼素(以下CBNと記す)はダイヤモンドに
次ぐ硬度を有し、鉄系材料の研削加工用砥粒として人工
合成されたものが広く用いられている。最近合成技術が
進歩し20/30USメッシュサイズの単結晶粉末が合成され
るようになった。CBNのダイヤに対する有利な点は、鉄
族金属との反応性が少ない点である。ダイヤモンドは既
に1カラットを越える直径6mm以上の単結晶が超高圧下
での合成に成功している。近年超精密加工技術への要求
が強まり、ダイヤモンドの単結晶を用いたバイトが広く
用いられているが、前述した如く鉄系材料との反応性の
為にこれ等の超精密加工を行なうことが出来ず、ダイヤ
モンドに替る工具材の開発が望まれていた。
DETAILED DESCRIPTION OF THE INVENTION Industrial field Cubic boron nitride (hereinafter referred to as CBN) has hardness second only to diamond, and artificially synthesized abrasive grains are widely used as abrasive grains for grinding iron-based materials. Has been. Recently, the synthesis technology has advanced and single crystal powder of 20/30 US mesh size has been synthesized. The advantage of CBN with respect to diamond is that it has low reactivity with iron group metals. Diamond has already succeeded in synthesizing a single crystal with a diameter of 6 mm or more exceeding 1 carat under ultrahigh pressure. In recent years, the demand for ultra-precision machining technology has increased, and bites made of diamond single crystals are widely used. However, as mentioned above, it is not possible to perform these ultra-precision machining due to their reactivity with iron-based materials. It was not possible, and the development of tool materials to replace diamond was desired.

本発明はこのような用途にも使用できる大型のCBN単結
晶を再現性良く合成する方法に関するものである。
The present invention relates to a method for synthesizing a large CBN single crystal that can be used in such applications with good reproducibility.

従来の技術とその問題点 CBNの合成は通常、立方晶型窒化硼素(以下hBNと記す)
を原料とし、アルカリ金属、アルカリ土類金属、または
これ等の窒化物、硼窒化物を触媒とし、超高圧高温下で
行なわれる。良く用いられる触媒としてはLi,Mg,Ca,Li3
N,Mg3N2,Ca3N2,Li3BN2,Mg3B2N4,Ca3B2N4等であ
る。合成に当ってhBNとこれ等の触媒物質との混合物を
容器に充填し、これを超高圧装置に入れ、第1図に示し
たCBNの安定領域に加圧、加熱する。このような方法で
はCBNの自然核生成は生じ多数の微粒CBN単結晶が得られ
る。このような粉末状CBNとしては20/30USメッシュサイ
ズ,即ち約0.7mmまでの単結晶が工業的に製造されてい
る。しかし、例えば超精密加工用の単結晶バイトとして
利用するためには、ミリメートルサイズの大型単結晶の
合成が不可欠である。
Conventional technology and its problems CBN is usually synthesized by cubic boron nitride (hBN).
Is used as a raw material, and an alkali metal, an alkaline earth metal, or a nitride or boronitride of these is used as a catalyst, and it is carried out at ultrahigh pressure and high temperature. Commonly used catalysts are Li, Mg, Ca, Li 3
N, Mg 3 N 2 , Ca 3 N 2 , Li 3 BN 2 , Mg 3 B 2 N 4 , Ca 3 B 2 N 4, etc. In the synthesis, a container is filled with a mixture of hBN and these catalytic substances, which is placed in an ultrahigh pressure apparatus, and pressurized and heated in the stable region of CBN shown in FIG. By such a method, natural nucleation of CBN occurs and many fine CBN single crystals are obtained. As such powdery CBN, 20/30 US mesh size, that is, a single crystal up to about 0.7 mm is industrially manufactured. However, for use as a single crystal bite for ultra-precision machining, for example, it is essential to synthesize a millimeter-sized large single crystal.

発明の構成 高高圧下の単結晶育成の例はダイヤモンドについて既に
広く知られている。(例えばUSP3,297,407)CBNの場合
も窒化硼素を原料とし、これを適度に溶解する溶媒があ
れば、温度差による溶解度の変化を利用する、いわゆる
温度差法により大型単結晶の育成が可能なはずである。
Configuration of the Invention An example of single crystal growth under high pressure is already widely known for diamond. (For example, USP3,297,407) In the case of CBN as well, if boron nitride is used as a raw material and there is a solvent that dissolves this appropriately, it is possible to grow a large single crystal by the so-called temperature difference method, which utilizes the change in solubility due to temperature difference. Should be.

発明者らはこの考えに基づき第2図に示す試料構成で前
述のアルカリ金属、アルカリ土類金属、又はこれ等の窒
化物、硼窒化物等の触媒を用いて、温度差法による大型
単結晶の合成を試みた満足な結果は得られなかった。更
に詳細な実験を行なった結果、これ等の触媒は温度差法
を行なう充分な窒化硼素の溶解能を有していないことが
わかった。但し、Li糸触媒のみは充分な窒化硼素溶解能
を有していたが、1972年のジャーナル,オブ,クリスタ
ル,グロース第13,14巻88〜92頁にデブリーズ等はLi糸
触媒では温度の関数としての窒化硼素の溶解度にあまり
差がなく、温度差法の適用は無理であると述べている。
本研究でも同様のことが観測された。
Based on this idea, the inventors used a catalyst such as the above-mentioned alkali metal, alkaline earth metal, or nitride or boronitride of the sample constitution shown in FIG. No satisfactory results were obtained when trying to synthesize As a result of a more detailed experiment, it was found that these catalysts do not have sufficient ability to dissolve boron nitride subjected to the temperature difference method. However, only the Li thread catalyst had sufficient ability to dissolve boron nitride, but in 1972, Journal, Ob, Crystal, Growth Vol. 13, 14 pages 88-92, Debreez et al. It is stated that there is not much difference in the solubility of boron nitride as described above, and it is impossible to apply the temperature difference method.
The same thing was observed in this study.

そこで本発明者らが鋭意研究を重ねた結果、アルカリ金
属の硼酸塩、アルカリ土類金属の硼酸塩の1種以上(以
下A成分とする)Li3N,Li3BN2の1種以上(以下B成分
とする)、Sr3N2,Ba3N2,Sr3B2N4,Ba3B2N4の1種以上
(以下C成分とする)の混合物が窒化硼素の溶解能に優
れ、温度差法によるCBN単結晶の合成用溶媒に最適であ
ることを見い出した。これによりミリメートルサイズの
高品質大型CBN単結晶の合成が可能になった。
Therefore, as a result of intensive studies by the present inventors, one or more kinds of borate of alkali metal and borate of alkaline earth metal (hereinafter referred to as A component) one or more kinds of Li 3 N and Li 3 BN 2 ( hereinafter referred to as component B), the dissolving ability of Sr 3 N 2, Ba 3 N 2, Sr 3 B 2 N 4, Ba 3 mixture boron nitride of one or more B 2 N 4 (hereinafter referred to as component C) It has been found that it is excellent and is most suitable as a solvent for the synthesis of CBN single crystals by the temperature difference method. This enabled the synthesis of high quality large CBN single crystals of millimeter size.

本発明により得られたCBN単結晶は黄色透明であり、従
来の温度差法によらない合成法によるCBN粉末や、特開
昭57−156399号公報,又は特開昭60−131811号公報で開
示されているアルカリ金属又はアルカリ土類金属の硼窒
化物のみを溶媒として用いた温度差法によるCBN単結晶
と比較しても著しく不純物や、欠陥の少ない高品質単結
晶である。
The CBN single crystal obtained by the present invention is yellow and transparent, and is disclosed in CBN powder by a synthesis method that does not rely on the conventional temperature difference method, JP-A-57-156399, or JP-A-60-131811. It is a high quality single crystal with significantly less impurities and defects than the CBN single crystal obtained by the temperature difference method using only the boron nitride of an alkali metal or alkaline earth metal as a solvent.

本発明において使用する溶媒が有効に働く組成は、B成
分が1〜10重量%、C成分が5〜30重量%の範囲であ
る。望ましくはB成分1〜5重量%、C成分5〜20重量
%がよい。各成分について2種以上の混合物を用いる場
合にはその合計重量が上記の範囲である。又、この溶媒
の構成成分のうちA成分としてはM2B4O7,M2B2O4,(M:
アルカリ金属)M′3B2O6,M′B2O4,(M′:アルカリ
土類金属)等種々のものを用いることができる。B成分
としては、Li3Nを含むことが望ましい。Li3Nを含むこと
により生成するCBNは高純度のものとなる。これは特開
昭56−140013号公報で触れられているようにLi3Nが不純
物を選択的に捕集するためであると思われる。C成分と
してはSr3B2N4及び/又はBa3B2N4を用いたときに特に好
結果が得られた。
The composition in which the solvent used in the present invention works effectively is in the range of 1 to 10% by weight of component B and 5 to 30% by weight of component C. Desirably, the B component is 1 to 5% by weight, and the C component is 5 to 20% by weight. When a mixture of two or more kinds of each component is used, the total weight thereof is within the above range. Among the constituent components of this solvent, the component A is M 2 B 4 O 7 , M 2 B 2 O 4 , (M:
Alkali metal) M '3 B 2 O 6 , M'B 2 O 4, (M': it is possible to use an alkali earth metal) as such a variety. It is desirable that the B component contains Li 3 N. The CBN produced by containing Li 3 N becomes highly pure. This is probably because Li 3 N selectively collects impurities as described in JP-A-56-140013. Particularly good results were obtained when Sr 3 B 2 N 4 and / or Ba 3 B 2 N 4 was used as the C component.

本発明において用いる原料窒化硼素としては、hBN,CBN,
WBN,(ウルツ鉱型窒化硼素)、aBN(アモルファス状窒
化硼素)等、特に結晶形は問わない。但し、できる限り
高純度のものを選択する実験ではCBNとhBNの混合物を用
いたときに最もよい結果が得られた。
The raw material boron nitride used in the present invention, hBN, CBN,
WBN, (wurtzite type boron nitride), aBN (amorphous boron nitride), etc. may be of any crystal form. However, the best results were obtained when a mixture of CBN and hBN was used in the experiment in which the highest purity was selected.

本発明を行なう場合の圧力、温度条件は第1図のA域で
且つ溶媒物質の融点以上の温度である。溶媒の融点は、
A成分として用いる物質及びその混合比率、又A,B,C,3
成分の混合比率等により適宜変えることができるので一
概には言えない。特に前者による効果は大であるので、
A成分を適当に選択することにより、特願昭60−211848
号に示されているような多段合成も可能である。以下、
実施例により具体的に説明する。
The pressure and temperature conditions for carrying out the present invention are temperatures in the region A of FIG. 1 and above the melting point of the solvent substance. The melting point of the solvent is
Substance used as A component and its mixture ratio, A, B, C, 3
This cannot be generally stated because it can be appropriately changed depending on the mixing ratio of the components. Since the former effect is particularly large,
By appropriately selecting the component A, Japanese Patent Application No. 60-211848
It is also possible to perform multi-step synthesis as shown in No. Less than,
This will be specifically described with reference to examples.

実施例1 CBN粉末とhBN粉末を重量で1:1の比に混合して型押、成
型し原料とした。溶媒はSr3B2O6,Li3N,Sr3B2N4を重量
で80:5:15の比で混合し型押、成型して調製した。これ
らを第2図に示した試料室に、径約0.7mmのCBN種結晶6
ケとともに配置した。これをベルト型超高圧装置に入
れ、53Kb、原料部の温度が1600℃になるように加圧、加
熱し24時間その条件を保持した后取り出した種結晶は一
部溶解しており、溶媒下部に黄色透明で径1.5〜2.0mmの
CBN単結晶が残った種結晶上に3ケ、自発核発生により
径0.5〜1mmの結晶が5ケ生成していた。原料がすべてCB
Nの場合も同様な結果であった。
Example 1 CBN powder and hBN powder were mixed in a weight ratio of 1: 1 and embossed and molded to obtain a raw material. The solvent was prepared by mixing Sr 3 B 2 O 6 , Li 3 N and Sr 3 B 2 N 4 in a weight ratio of 80: 5: 15, embossing and molding. These were placed in the sample chamber shown in FIG.
Placed with Ke. Put this in a belt type ultra-high pressure apparatus, pressurize and heat it so that the temperature of the raw material part is 1600 ° C at 53 Kb, and keep that condition for 24 hours. Yellow transparent with a diameter of 1.5 ~ 2.0mm
Three CBN single crystals remained on the seed crystal, and five crystals with a diameter of 0.5 to 1 mm were generated due to spontaneous nucleation. All raw materials are CB
Similar results were obtained for N.

実施例2 実施例1におけるSr3B2O6にかえてCa3B2O6とNaBO2の重
量比で4:1の混合物を用いた。これを51Kb原料部の温度1
550℃で24時間保持したところ、種結晶は溶解していた
が、溶媒下部に径1.0〜1.5mmの黄色透明なCBN単結晶が
数ケ自発核発生により生成していた。
Example 2 Instead of Sr 3 B 2 O 6 in Example 1, a 4: 1 weight ratio mixture of Ca 3 B 2 O 6 and NaBO 2 was used. This is 51 Kb raw material temperature 1
When kept at 550 ℃ for 24 hours, the seed crystals were dissolved, but a few yellow transparent CBN single crystals with a diameter of 1.0 to 1.5 mm were formed in the lower part of the solvent by spontaneous nucleation.

実施例3 溶媒と種結晶の間に、厚さ1mmのSr3B2O6円板を挿入した
他は、実施例1と同様の試料構成にしたSr3B2O6単独で
は、CBNを殆ど溶解しないので反応初期、上部溶媒とこ
のSr3B2O6が均一に混じりあうまでの種結晶溶解防止効
果が期待された。これを51Kb原料部の温度1600℃で72時
間保持したところ種結晶上にのみ径約4mmの黄色透明のC
BN単結晶が成長していた。
Example 3 With the Sr 3 B 2 O 6 disk having a thickness of 1 mm inserted between the solvent and the seed crystal, SBN was prepared with Sr 3 B 2 O 6 alone having the same sample constitution as in Example 1 to obtain CBN. Since it hardly dissolves, a seed crystal dissolution preventing effect was expected at the initial stage of the reaction until the upper solvent and this Sr 3 B 2 O 6 were uniformly mixed. When this was kept for 72 hours at a temperature of the raw material part of 51 Kb of 1600 ° C. for 72 hours, a yellow transparent C with a diameter of about 4 mm was formed only on the seed crystal.
The BN single crystal had grown.

実施例4 実施例3におけるLi3Nにかえて、Li3BN2を用いて51Kb原
料部の温度1600℃で48時間保持した径3.5mmのCBN単結晶
が得られた。但し、色はやや黒みがかっていた。
Example 4 A CBN single crystal having a diameter of 3.5 mm was obtained by using Li 3 BN 2 instead of Li 3 N in Example 3 and holding the 51 Kb raw material part at a temperature of 1600 ° C. for 48 hours. However, the color was slightly blackish.

実施例5 溶媒としてK2B4O7,Li3N、Ba3B2N4,hBNを85:3:10:2の重
量比に混合したものを用いた以外は、実施例1と同じ試
料構成にした。2重量%のhBNは特開昭60−131811号公
報にあるように反応初期の種結晶溶解防止効果を期待し
たものである。これを55Kb原料部の温度1550℃で36時間
保持した種結晶上にのみ径約2.5mmの黄色透明のCBN単結
晶が成長していた。
Example 5 Same as Example 1 except that K 2 B 4 O 7 , Li 3 N, Ba 3 B 2 N 4 , and hBN were mixed in a weight ratio of 85: 3: 10: 2 as a solvent. The sample configuration was adopted. 2% by weight of hBN is expected to prevent seed crystal dissolution at the initial stage of the reaction, as described in JP-A-60-131811. A transparent yellow CBN single crystal having a diameter of about 2.5 mm was grown only on the seed crystal which was kept at a temperature of 1550 ° C for 55 Kb for 36 hours.

発明の効果 以上述べたように、本発明の方法によれば、ミリメート
ルサイズの大型CBN単結晶が再現性よく得られる。これ
によって、従来は研削に頼っていた鉄糸金属の超精密切
削加工ができるようになり、その効果ははかり知れない
ものがある。又、CBN単結晶のバンドギャップの高さ、
熱伝導の良さ等を利用した半導体材料への道も開けてき
た。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a large millimeter-sized CBN single crystal can be obtained with good reproducibility. As a result, it has become possible to perform ultra-precision cutting of ferrous metal, which has hitherto relied on grinding, and its effect is immeasurable. Also, the height of the band gap of CBN single crystal,
It has also opened the way to semiconductor materials that take advantage of good thermal conductivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のCBN単結晶合成条件を説明するための
窒化硼素の温度、圧力相図である。第2図は本発明を実
施する合成試料室構成の例である。 第1図中Aは高圧相型窒化硼素安定域、Bは立方晶一六
方晶型窒化硼素平衡線、Cは六方晶型窒化硼素安定域を
示す。 1:パイロフイライトスリーブ 2:黒鉛ヒーター 3:窒化硼素原料 4:溶媒 5:CBN種結晶 6:白金製シードベッド 7:hBN焼結体 8:Ta製容器
FIG. 1 is a temperature / pressure phase diagram of boron nitride for explaining the CBN single crystal synthesis conditions of the present invention. FIG. 2 is an example of a synthetic sample chamber configuration for carrying out the present invention. In FIG. 1, A is a high-pressure phase type boron nitride stable region, B is a cubic-hexagonal type boron nitride equilibrium line, and C is a hexagonal type boron nitride stable region. 1: Pyrophyllite sleeve 2: Graphite heater 3: Boron nitride raw material 4: Solvent 5: CBN seed crystal 6: Platinum seed bed 7: hBN sintered body 8: Ta container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】立方晶型窒化硼素種結晶の存在下、原料窒
化硼素と溶媒物質を併存させ立方晶型窒化硼素が安定な
圧力、温度条件下で且つ溶媒物質の融点以上の温度で、
立方晶型窒化硼素を合成するにあたり、前記溶媒物質と
してアルカリ金属の硼酸塩,アルカリ土類金属の硼酸塩
の1種以上、Li3N,Li3BN2の1種以上、Sr3N2,Ba3N2
Sr3B2N4,Ba3B2N4の1種以上の混合物を用いることを特
徴とする高品質立方晶型窒化硼素単結晶の合成方法。
1. A raw material boron nitride and a solvent substance are allowed to coexist in the presence of a cubic boron nitride seed crystal, and the cubic boron nitride is under stable pressure and temperature conditions and at a temperature not lower than the melting point of the solvent substance.
In synthesizing cubic boron nitride, the solvent substance is one or more of alkali metal borate, alkaline earth metal borate, one or more of Li 3 N and Li 3 BN 2 , Sr 3 N 2 , Ba 3 N 2 ,
A method for synthesizing a high-quality cubic boron nitride single crystal, which comprises using a mixture of one or more of Sr 3 B 2 N 4 and Ba 3 B 2 N 4 .
【請求項2】Li3N,Li3BN2の1種以上が1〜10重量%、
Sr3N2,Ba3N2,Sr3B2N4,Ba3B2N4の1種以上が5〜30重
量%残部がアルカリ金属の硼酸塩,アルカリ土類金属の
硼酸塩の1種以上である特許請求の範囲第1項記載の高
品質立方晶型窒化硼素単結晶の合成方法。
2. 1 to 10% by weight of at least one of Li 3 N and Li 3 BN 2 ,
5 to 30% by weight of one or more of Sr 3 N 2 , Ba 3 N 2 , Sr 3 B 2 N 4 , and Ba 3 B 2 N 4 balance 1 borate of alkali metal or borate of alkaline earth metal The method for synthesizing a high-quality cubic boron nitride single crystal according to claim 1, which comprises at least one kind.
JP14225686A 1985-09-24 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal Expired - Lifetime JPH0691955B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14225686A JPH0691955B2 (en) 1986-06-17 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal
EP86112787A EP0220462B1 (en) 1985-09-24 1986-09-16 Method of synthesizing cubic system boron nitride
DE8686112787T DE3674329D1 (en) 1985-09-24 1986-09-16 METHOD FOR SYNTHESISING BORNITRIDE OF THE CUBIC SYSTEM.
US06/909,263 US4699687A (en) 1985-09-24 1986-09-19 Method of synthesizing cubic system boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14225686A JPH0691955B2 (en) 1986-06-17 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal

Publications (2)

Publication Number Publication Date
JPS62297203A JPS62297203A (en) 1987-12-24
JPH0691955B2 true JPH0691955B2 (en) 1994-11-16

Family

ID=15311090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14225686A Expired - Lifetime JPH0691955B2 (en) 1985-09-24 1986-06-17 Method for synthesizing high quality cubic boron nitride single crystal

Country Status (1)

Country Link
JP (1) JPH0691955B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202521B2 (en) * 1999-04-08 2008-12-24 昭和電工株式会社 Method for producing cubic boron nitride
WO2004061040A1 (en) * 2003-01-06 2004-07-22 Showa Denko K.K. Cubic boron nitride abrasive grains and method for producing the same, and grindstone and polishing cloth or paper using the same
JP4608970B2 (en) * 2004-07-01 2011-01-12 住友電気工業株式会社 Method for producing nitride single crystal

Also Published As

Publication number Publication date
JPS62297203A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
JPH06182184A (en) Synthesis of single crystal diamond
US5837214A (en) Method for producing cubic boron nitride
JPH0691955B2 (en) Method for synthesizing high quality cubic boron nitride single crystal
JPS60131811A (en) Method for synthesizing boron nitride
US6984448B1 (en) Cubic boron nitride clusters
US4406871A (en) Process for growing diamonds
KR100572418B1 (en) Substance containing crystals
JPH02115034A (en) Synthesis of cubic boron nitride crystal
Yan et al. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent
JPS60145958A (en) Synthesis of boron nitride
JPS5938164B2 (en) Manufacturing method of cubic boron nitride
KR100636415B1 (en) Manufacturing method of cubic boron nitride
WO2008094933A1 (en) Method for preparation of new superhard b-c-n material and material made therefrom
JPS6253218B2 (en)
JP2767896B2 (en) Hard abrasive
US5869015A (en) Method for producing cubic boron nitride using melamine as a catalyst
JPS6225601B2 (en)
US3773903A (en) Method of manufacturing diamond crystals
JPH0594B2 (en)
JPH0595B2 (en)
JPS5938165B2 (en) Manufacturing method of cubic boron nitride
JPS6225602B2 (en)
JPS6077110A (en) Synthesis of cubic boron nitride
JPH04300300A (en) Unsupported sintered cubic integrally bonded boron nitride/diamond molding and method of manufacuring same
JPS5848483B2 (en) Synthesis method of cubic boron titanide