JPS5938165B2 - Manufacturing method of cubic boron nitride - Google Patents

Manufacturing method of cubic boron nitride

Info

Publication number
JPS5938165B2
JPS5938165B2 JP4056481A JP4056481A JPS5938165B2 JP S5938165 B2 JPS5938165 B2 JP S5938165B2 JP 4056481 A JP4056481 A JP 4056481A JP 4056481 A JP4056481 A JP 4056481A JP S5938165 B2 JPS5938165 B2 JP S5938165B2
Authority
JP
Japan
Prior art keywords
boron nitride
nitride
cubic
cubic boron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4056481A
Other languages
Japanese (ja)
Other versions
JPS57156399A (en
Inventor
忠 遠藤
稔 岩田
脩 福長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP4056481A priority Critical patent/JPS5938165B2/en
Publication of JPS57156399A publication Critical patent/JPS57156399A/en
Publication of JPS5938165B2 publication Critical patent/JPS5938165B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Description

【発明の詳細な説明】 本発明は立方晶窒化はう素の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing cubic boron nitride.

立方晶窒化はう素はダイヤモンド類似型結晶構造をもつ
高硬度物質であることは知られている。
It is known that cubic boron nitride is a highly hard material with a diamond-like crystal structure.

硬度の点ではダイヤモンドに劣るが、一方熱的、化学的
・性質はダイヤモンドのそれより優れているので、焼入
鋼、特殊鋼、セラミックス等の新しい研摩、切削材とし
ての用途が開発されている。
Although it is inferior to diamond in terms of hardness, its thermal, chemical, and properties are superior to those of diamond, so its use as a new polishing and cutting material for hardened steel, special steel, ceramics, etc. is being developed. .

また適当な元素をその結晶格子中にドープすることによ
り、P型N型両性半導体の製造が可能で、その優れた熱
伝導率を生かして電子材料としての応用への期待も大き
い。
Furthermore, by doping a suitable element into the crystal lattice, it is possible to manufacture a P-type and N-type amphoteric semiconductor, and there are great expectations for its application as an electronic material by taking advantage of its excellent thermal conductivity.

このような観点から所望の粒径ならびに結晶形態をもつ
高純度高品質の立方晶窒化はう素の単結晶が要望されて
いる。
From this point of view, there is a demand for a high-purity, high-quality single crystal of cubic boron nitride having a desired grain size and crystal morphology.

従来、立方晶窒化はう素は六方晶窒化はう素に触媒物質
を用いて変換させる製造法が知られている。
Conventionally, a manufacturing method is known in which cubic boron nitride is converted into hexagonal boron nitride using a catalyst substance.

その触媒物質としては、元素周期律表におけるIa、I
[a、Ha族元素と、それらの窒化物あるいは合金が主
として用いられていた。
The catalyst materials include Ia and I in the periodic table of elements.
[a, Ha group elements and their nitrides or alloys were mainly used.

他に錫、鉛、アンチモンの単体または合金、尿素、アン
モニウム塩等も知られている。
In addition, tin, lead, antimony alone or alloys, urea, ammonium salts, etc. are also known.

しかしながら、前記の金属触媒を使用すると、不安定は
う化物、遊離はう素が副生成され、得られる立方晶窒化
はう素の結晶中に、はう素が混入され結晶は黒色、不透
明で、その粒子強度も著しく小さくなる欠点がある。
However, when the above-mentioned metal catalyst is used, unstable borides and free boron are produced as by-products, and boron is mixed into the resulting cubic boron nitride crystals, making the crystals black and opaque. However, the particle strength is also significantly reduced.

才だ窒化物を使用すると未反応窒化物が残留し、得られ
る立方晶窒化はう素結晶中にも窒化物がとじ込められ、
高品質のものが得られなかった。
When nitrides are used, unreacted nitrides remain, and the resulting cubic nitrides contain nitrides in the boron crystals.
I couldn't get anything of high quality.

一方、尿素またはアンモニウム塩を使用すると、得られ
る立方晶窒化はう素の粒子径は0.1〜0.5ミクロン
と極めて小さいものしか得られず、加えてこれらの触媒
で六方晶窒化はう素から立方晶窒化はう素への変換する
機構が未だ解明されず、所望の結晶を得る条件の設定が
困難である欠点がある。
On the other hand, when urea or ammonium salts are used, the particle size of cubic nitride nitride is extremely small, 0.1 to 0.5 microns, and in addition, with these catalysts, hexagonal nitride nitride cannot be obtained. Cubic nitridation has the drawback that the mechanism of conversion from elemental to boron has not yet been elucidated, and it is difficult to set conditions for obtaining desired crystals.

また、Ba3N2.5r3N2 を触媒として使用する
ことも知られているが、HBNと窒化物との反応が均一
でないため、未反応窒化物が残留し、得られるCBN結
晶中にこれらが閉じ込められたり、過剰な窒素が不純物
として含有される。
It is also known to use Ba3N2.5r3N2 as a catalyst, but since the reaction between HBN and nitride is not uniform, unreacted nitride remains and is trapped in the resulting CBN crystal. Excess nitrogen is contained as an impurity.

その結果、高品位な結晶が得難く、且つ粒子強度が小さ
くなる欠点がある。
As a result, it is difficult to obtain high-quality crystals and the particle strength is low.

さきに、本発明者らは六方晶窒化はう素を立方晶窒化は
う素・\変換させる方法として、六方晶窒化はう素の溶
媒となる窒化はう素カルシウムを用いて、その溶融状態
を実現する温度以上、立方晶窒化はう素の熱力学的安定
圧力域下で処理する方法を発明した。
First, the present inventors developed a method for converting hexagonal boron nitride into cubic boron nitride by using calcium nitride, which is a solvent for hexagonal boron nitride, in its molten state. We have invented a method in which cubic nitriding is carried out at temperatures above the thermodynamically stable pressure range of boron.

この方法により、高品質、高純度の単結晶が得られた。By this method, high quality, high purity single crystals were obtained.

。しかし、この方法により、良質結晶状態
や面の整った立方晶窒化はう素結晶を得ようとすると、
立方晶窒化はう素と六方晶窒化はう素の相平衡線の極く
近傍(温度にして30℃以内)にある圧力と温度の下に
、この反応系を数十分間保持することが必要である。
. However, when trying to obtain a cubic nitrided boron crystal with a good crystalline state and well-aligned surfaces using this method,
This reaction system can be maintained for several tens of minutes at a pressure and temperature very close to the phase equilibrium line of cubic boron nitride and hexagonal boron nitride (within 30°C). is necessary.

しかし、一般に立方晶窒化はう素の製造は50000気
圧以上の高圧力の下で行われるので、このような超高圧
を加えつつ、その上相平衡線の近傍の温度以内に保つこ
とは難かしく再現性に乏しい。
However, since cubic boron nitride is generally produced under high pressures of 50,000 atmospheres or more, it is difficult to maintain the temperature within the vicinity of the phase equilibrium line while applying such ultra-high pressures. Poor reproducibility.

加うるに、より大粒の立方晶窒化はう素の単結晶を得よ
うとすると、数十時間所定の温度、圧力の条件に保持す
る必要があり、そのためには特別な注意を払うことが要
求される14しかしながら、実際には立方晶窒化はう素
の製造に際し、熱電対を高圧、反応容器内に挿入して温
度を直接測定することが困難なので、加熱温度を供給す
る電力法により制御する手段等によらざるを得なく、そ
のため温度制御が不正確となる。
In addition, in order to obtain a single crystal of cubic nitrided boron with larger grains, it is necessary to hold the material under specified temperature and pressure conditions for several tens of hours, which requires special care. 14 However, in reality, when producing cubic boron nitride, it is difficult to directly measure the temperature by inserting a thermocouple into the high-pressure reaction vessel, so the heating temperature is controlled by an electric power method that supplies the heating temperature. Therefore, temperature control becomes inaccurate.

従って、この製造法では精密な温度および圧力制御が達
成されない限り、技術的な限界がある。
Therefore, this manufacturing method has technical limitations unless precise temperature and pressure control is achieved.

本発明はこれらの問題点を解消しようとするものであり
、その目的は結晶粒子の大きい立方晶窒化はう素を容易
に製造し得られる方法を提供するにある。
The present invention aims to solve these problems, and its purpose is to provide a method for easily producing cubic boron nitride having large crystal grains.

本発明は窒化はう素ストロンチウム (Sr3B2N4)または窒化はう素バリウム(5a3
B2N4 )と六方晶窒化はう素とを、立方晶窒化はう
素の熱力学的安定圧力の下で、立方晶窒化はう素の種結
晶の存在下で、1250°C以上の温度で加熱すること
により解決し得た。
The present invention is based on strontium nitride (Sr3B2N4) or barium nitride (5a3).
B2N4 ) and hexagonal boron nitride are heated at a temperature of 1250°C or higher under the thermodynamically stable pressure of cubic boron nitride and in the presence of cubic boron nitride seed crystals. I was able to solve the problem by doing this.

本発明の方法によると、温度、圧力領域の許容値幅が広
いので、結晶粒成長速度の制御が容易であり、しかも種
結晶が存在するため、そのため、大粒径で高純度、良質
の立方晶窒化はう素の単結晶を容易に製造することがで
きる優れた効果を有する。
According to the method of the present invention, since the permissible value range in the temperature and pressure range is wide, it is easy to control the grain growth rate, and since seed crystals are present, it is possible to produce cubic crystals with large grain size, high purity, and good quality. Nitriding has the excellent effect of making it possible to easily produce single crystals of boron.

本発明において使用する窒化はう素ストロンチウムは金
属ストロンチウムまたは窒化ストロンチウムと六方晶窒
化はう素とをストロンチウム対はう素のモル比で3対2
0割合で混合し、窒素気流中で950〜1200℃で2
時間以上加熱することによって得られる。
The strontium nitride used in the present invention is composed of metallic strontium or strontium nitride and hexagonal boron nitride in a molar ratio of strontium to boron of 3:2.
0 ratio and heated at 950-1200℃ in a nitrogen stream for 2 hours.
Obtained by heating for more than an hour.

また窒化はう素バリウムも前記のストロンチウムに代え
バリウムを用いることによって同様にして得られる。
Further, barium nitride can also be obtained in the same manner by using barium in place of strontium.

本発明の製造原料としては窒化はう素ストロンチウムま
たは窒化はう素バリウムに六方晶窒化はう素を混和する
か、あるいは、窒化はう素ストロンチウムまたは窒化は
う素バリウムを前記の方法で製造する際に過剰量の六方
晶窒化はう素を予め使用し、過剰分の六方晶窒化はう素
を含有せしめたものが使用される。
As raw materials for the production of the present invention, hexagonal boron nitride is mixed with strontium boron nitride or barium boron nitride, or strontium boron nitride or barium boron nitride is produced by the method described above. In this case, an excess amount of hexagonal boron nitride is used in advance, and an excess amount of hexagonal boron nitride is used.

六方晶窒化はう素の混合割合は、窒化はう素ストロンチ
ウムまたは窒化はう素バリウムに対して35重量%以上
であることが好ましい。
The mixing ratio of hexagonal boron nitride is preferably 35% by weight or more based on strontium boron nitride or barium boron nitride.

本発明における立方晶窒化はう素の合成可能な温度、圧
力条件の関係は第1図に示す通りである。
The relationship between the temperature and pressure conditions under which cubic nitridation of boron can be synthesized in the present invention is as shown in FIG.

図中、13は窒化はう素ストロンチウムを使用した場合
における立方晶窒化はう素の合成可能域と安定域との境
界曲線、14に窒化はう素バリウムを使用した場合にお
ける同じ境界曲線、15は立方晶窒化はう素と六方晶窒
化はう素との熱力学的平衡線を示す。
In the figure, 13 is the boundary curve between the synthesis possible range and the stable range of cubic boron nitride when strontium boron nitride is used, 14 is the same boundary curve when barium boron nitride is used, and 15 indicates the thermodynamic equilibrium line between cubic boron nitride and hexagonal boron nitride.

A域は立方晶窒化はう素の合成可能域、B域は立方晶窒
化はう素の安定域、C域は六方晶窒化はう素の安定域で
ある。
Region A is a region where cubic boron nitride can be synthesized, region B is a stable region of cubic boron nitride, and region C is a stable region of hexagonal boron nitride.

図面で明らかなように、約1350℃、1250℃はそ
れぞれ、窒化はう素ストロンチウム、窒化はう素バリウ
ムを用いて得られる立方晶窒化はう素の合成下限温度で
ある。
As is clear from the drawings, approximately 1350° C. and 1250° C. are the lower limit temperatures for synthesizing cubic boron nitride obtained using strontium boron nitride and barium boron nitride, respectively.

また原料である六方晶窒化はう素は高純度で、酸素含有
量が2〜3重量重量上以下ることが好ましい。
Further, it is preferable that the raw material hexagonal boron nitride has high purity and an oxygen content of 2 to 3 or less by weight.

従って、例えは1気圧の窒素ガス雰囲気中で約2000
℃の温度にさらすと酸素含有量は1重量製以下に減少さ
せることができる。
Therefore, for example, in a nitrogen gas atmosphere of 1 atm, approximately 2000
Upon exposure to temperatures of 0.degree. C., the oxygen content can be reduced to less than 1 wt.

比較例 1 第2図、第3図および第4図は試料構成の縦断面図を示
す。
Comparative Example 1 FIGS. 2, 3, and 4 show longitudinal cross-sectional views of the sample structure.

第2図に示す試料構成で試験を行った。The test was conducted using the sample configuration shown in FIG.

図中1は黒鉛抵抗発熱体、2は黒鉛円板で、交流または
直流電流をその両端に印加して所定の温度を反応室内部
に供給する。
In the figure, 1 is a graphite resistance heating element, 2 is a graphite disk, and AC or DC current is applied to both ends of the graphite disk to supply a predetermined temperature inside the reaction chamber.

3および4はそれぞれ食塩円筒および円板で、高温下で
反応室内の圧力の均一性をはかる。
3 and 4 are a salt cylinder and a disk, respectively, which measure the uniformity of the pressure inside the reaction chamber under high temperature.

反応室は5および6のモリブデン円筒および円板により
囲まれ、食塩との直接の接触を防いでいる。
The reaction chamber is surrounded by 5 and 6 molybdenum cylinders and discs, preventing direct contact with the common salt.

7は六方晶窒化はう素円板または栓、8は窒化はう素ス
トロンチウム粉末を錠剤成型器により2.0トン/cr
itの荷重で加圧成形したもので、六方晶窒化はう素円
板と交互に積層して充填する。
7 is a hexagonal boron nitride disk or plug, 8 is a strontium nitride powder made by a tablet molding machine at 2.0 tons/cr.
It is press-formed under a load of 100 liters, and is filled by laminating alternately with hexagonal boron nitride disks.

窒化はう素ストロンチウムと六方晶窒化はう素の割合は
、重量で1対3の割合とする。
The ratio of strontium boron nitride to hexagonal boron nitride is 1:3 by weight.

これをベルト型高温高圧装置により54000気圧、1
350℃で約60分間処理した。
This is heated to 54,000 atmospheres and 1
It was treated at 350°C for about 60 minutes.

その後加熱電源を切り、容器の温度を急速に下げ、除圧
後結晶を取り出した。
Thereafter, the heating power was turned off, the temperature of the container was rapidly lowered, the pressure was removed, and the crystals were taken out.

得られた結晶をX線回折法、超硬合金板への引かき試験
および顕微鏡観察したところ、立方晶窒化はう素結晶で
あることが確認された。
When the obtained crystal was subjected to X-ray diffraction, a scratch test on a cemented carbide plate, and microscopic observation, it was confirmed that the cubic nitride was a boron crystal.

反応生成物中に含まれる窒化はう素ストロンチウムは弱
酸により容易に分解するために、これによる処理により
容易に取り除かれる。
Since the strontium nitride contained in the reaction product is easily decomposed by a weak acid, it can be easily removed by treatment with a weak acid.

また未反応六方晶窒化はう素との境界に晶出した立方晶
窒化はう素結晶は熱濃硫酸中に弗化ナトリウムを加えた
溶液で溶解分離し、その後、重液により比重分離を行っ
た。
In addition, unreacted hexagonal nitride crystals crystallized at the boundary with boron were dissolved and separated in a solution containing sodium fluoride in hot concentrated sulfuric acid, and then subjected to specific gravity separation using a heavy liquid. Ta.

得られた立方晶窒化はう素は六面体と八面体の合わさっ
た形状をもつ淡黄色透明、約170ミクロン径の単結晶
であり、そのHBNからCBN−\の変換率は45%前
後であった。
The obtained cubic boron nitride was a pale yellow transparent single crystal with a diameter of about 170 microns and had a combination of hexahedrons and octahedrons, and the conversion rate from HBN to CBN-\ was around 45%. .

なお、本比較例での圧力の値は、室温下におけるビスマ
ス、タリウム、バリウムの相転移圧点を、各々25.5
キロバール、37キロバール、55キロバールとして作
成された荷重−圧力発生曲線に基づくものである。
Note that the pressure values in this comparative example are the phase transition pressure points of bismuth, thallium, and barium at room temperature of 25.5, respectively.
It is based on load-pressure development curves prepared for kilobar, 37 kilobar and 55 kilobar.

また試料部中央の温度は、白金−白金13係ロジウム熱
電対を用いて温度−消費電力曲線を作成、黒鉛抵抗発熱
体に印加した電力値により所定の温度を推定した。
Further, for the temperature at the center of the sample section, a temperature-power consumption curve was created using a platinum-platinum 13 rhodium thermocouple, and a predetermined temperature was estimated from the power value applied to the graphite resistance heating element.

比較例 2 比較例1において用いた食塩円筒の代りに、六方晶窒化
はう素円筒を用いた試料構成第3図のもので実験を行っ
た。
Comparative Example 2 In place of the common salt cylinder used in Comparative Example 1, an experiment was conducted using a sample configuration shown in FIG. 3 using a hexagonal boron nitride cylinder.

窒化はう素バリウム粉末を錠剤成型器により約2.0ト
ン/crAの荷重で成形したもの8を、六方晶窒化はう
素円板7と交互に積層し、六方晶窒化はう素円筒9内に
充填した。
Barium nitride powder is molded using a tablet molding machine at a load of about 2.0 tons/crA 8 and is alternately laminated with hexagonal boron nitride disks 7 to form a hexagonal boron nitride cylinder 9. filled inside.

これを57000気圧、1500℃で約70分間高温高
圧処理し、立方晶窒化はう索車結晶を実施例1と同様に
して得た。
This was subjected to high-temperature and high-pressure treatment at 57,000 atmospheres and 1,500° C. for about 70 minutes to obtain a cubic nitride crawler crystal in the same manner as in Example 1.

結晶粒径は大で約80ミクロン(多くは60ミクロン以
下)、無色透明結晶(淡黄色透明結晶も1都合まれてい
る)で、主として八面体からなり、各(111)面は全
く平滑な美しい結晶であった。
The crystal grain size is large, about 80 microns (mostly 60 microns or less), colorless and transparent crystals (one pale yellow transparent crystal is also available), and mainly consists of octahedrons, with each (111) plane being completely smooth and beautiful. It was crystal.

HBNからCBN−\の変換率は30%前後であった。The conversion rate from HBN to CBN-\ was around 30%.

実施例 1 比較例1に用いた試料構成と同様なもので、3および4
はそれぞれ食塩円筒および円板で、六方晶窒化はう素か
ら立方晶窒化はう素の変換時に生ずる体積減少に基づく
見掛けの発生圧力の低下をさける目的で、これらを第4
図に示す試料構成器内に挿入した。
Example 1 Sample composition similar to that used in Comparative Example 1, 3 and 4
are a salt cylinder and a disk, respectively, and in order to avoid a decrease in the apparent pressure generated due to the volume reduction that occurs during the conversion from hexagonal boron nitride to cubic boron nitride, these are
It was inserted into the sample constructor shown in the figure.

黒鉛抵抗発熱体1の中央部と底部とには温度勾配を生ず
るので、六方晶窒化はう素と立方晶窒化はう素の微細結
晶(大きさ約1〜3ミクロン)を混和成形したものを高
温部7に配置し、低温部に立方晶窒化はう素(約4oo
ミクロン)の種子結晶10を配置した。
Since there is a temperature gradient between the center and bottom of the graphite resistance heating element 1, a mixture of fine crystals (about 1 to 3 microns in size) of hexagonal boron nitride and cubic boron nitride is used. placed in the high temperature section 7, and cubic boron nitride (approximately 4 oo
Micron) seed crystals 10 were placed.

従ってこの試料構成においては下半分のみが有効試料空
間を形成している。
Therefore, in this sample configuration, only the lower half forms the effective sample space.

下半分に充填するもの11および12は、六方晶窒化は
う素、パイロフィライト、滑石、シリカガラス、食塩等
であってもよいが、高温高圧条件下で相転移または分解
を伴い体積減少しないものを用いることが好ましい。
The materials 11 and 12 filled in the lower half may be hexagonal boron nitride, pyrophyllite, talc, silica glass, salt, etc., but do not undergo phase transition or decomposition under high temperature and high pressure conditions, resulting in volume reduction. It is preferable to use

本実施例では11に食塩円板、12に六方晶窒化はう素
円板を用いた。
In this example, a salt disk was used as 11, and a hexagonal boron nitride disk was used as 12.

なお、Fe−AA10%合金薄板を窒化はう素ストロン
チウムと立方晶窒化はう素種子結晶の間に挿入した。
Note that a Fe-AA 10% alloy thin plate was inserted between the strontium boron nitride and the cubic boron nitride seed crystal.

これは反応初期好ましくは、窒化はう素が窒化はう素ス
トロンチウム溶液に飽和されるまで、種子結晶が窒化は
う素ストロンチウムに溶解するのをさけるために用いた
This is preferably used at the beginning of the reaction to avoid dissolving the seed crystals in the strontium boron nitride until the boron nitride is saturated in the strontium boron nitride solution.

これを55000気圧、1570℃で約24時間処理し
た。
This was treated at 55,000 atm and 1,570°C for about 24 hours.

得られた立方晶窒化はう素結晶は約2.2叫径まで種子
結晶表面から成長している状況が観察された。
The obtained cubic boron nitride crystal was observed to have grown from the surface of the seed crystal to a diameter of approximately 2.2 mm.

この結晶は(100)面を持つ八面体結晶で黄色透明で
あった。
This crystal was an octahedral crystal with (100) planes and was transparent and yellow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は立方晶窒化はう素の合成可能域の温度と圧力と
の関係図、第2図、第3図および第4図は試料構成の断
面図を示し、第2図及び第3図は比較例、第4図は本発
明の実施態様を示す。 、1:黒鉛抵抗発熱体、2:黒鉛円板、3:食塩円筒、
4:食塩円板、5:モリブデン円筒、6:モリブデン円
板、7:六方晶窒化はう素円板、8:溶媒部(Sr3B
2N4或いはBa3B2N4 )、9:六方晶窒化はう
素円筒、10:立方晶窒化はう素種子結晶、11:食塩
円板、12:六方晶窒化はう素円板、A:立方晶窒化は
う素の合成可能域、B:立方晶窒化はう素の安定域、C
:六方晶窒化はう素の安定域。
Figure 1 is a diagram showing the relationship between temperature and pressure in the synthesis possible range of cubic boron nitride, Figures 2, 3 and 4 are cross-sectional views of the sample structure; 4 shows a comparative example, and FIG. 4 shows an embodiment of the present invention. , 1: graphite resistance heating element, 2: graphite disk, 3: salt cylinder,
4: Salt disk, 5: Molybdenum cylinder, 6: Molybdenum disk, 7: Hexagonal boron nitride disk, 8: Solvent part (Sr3B
2N4 or Ba3B2N4), 9: Hexagonal boron nitride cylinder, 10: Cubic nitride boron seed crystal, 11: Salt disk, 12: Hexagonal boron nitride disk, A: Cubic nitride foil Synthesizable range of elements, B: Cubic nitridation is the stable range of boron, C
: Hexagonal nitridation is the stable region of boron.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化はう素ストロンチウムオたは窒化はう素バリウ
ムと六方晶窒化はう素とを、立方晶窒化はう素の種結晶
の存在下で、立方晶窒化はう素の熱力学的安定圧力下、
1250℃以上で加熱することを特徴とする立方晶窒化
はう素の製造方法。
1. Strontium nitride or barium boron nitride and hexagonal boron nitride are combined in the presence of a seed crystal of cubic boron nitride to achieve the thermodynamic stability pressure of cubic boron nitride. under,
A method for producing cubic boron nitride, which comprises heating at 1250°C or higher.
JP4056481A 1981-03-20 1981-03-20 Manufacturing method of cubic boron nitride Expired JPS5938165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056481A JPS5938165B2 (en) 1981-03-20 1981-03-20 Manufacturing method of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056481A JPS5938165B2 (en) 1981-03-20 1981-03-20 Manufacturing method of cubic boron nitride

Publications (2)

Publication Number Publication Date
JPS57156399A JPS57156399A (en) 1982-09-27
JPS5938165B2 true JPS5938165B2 (en) 1984-09-14

Family

ID=12583957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056481A Expired JPS5938165B2 (en) 1981-03-20 1981-03-20 Manufacturing method of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS5938165B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973410A (en) * 1982-10-15 1984-04-25 Showa Denko Kk Preparation of boron nitride of cubic system
JPS6168398A (en) * 1984-09-13 1986-04-08 Showa Denko Kk Growing method of cubic type boron nitride crystal
DE3770889D1 (en) * 1986-07-30 1991-07-25 De Beers Ind Diamond MANUFACTURE OF CUBIC BORNITRIDE.

Also Published As

Publication number Publication date
JPS57156399A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
US3852078A (en) Mass of polycrystalline cubic system boron nitride and composites of polycrystalline cubic system boron nitride and other hard materials, and processes for manufacturing the same
US4469802A (en) Process for producing sintered body of boron nitride
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
JPH0134925B2 (en)
US4409193A (en) Process for preparing cubic boron nitride
US5169832A (en) Synthesis of refractory metal boride powders of predetermined particle size
JPS5938165B2 (en) Manufacturing method of cubic boron nitride
US3442616A (en) Method of making synthetic diamond crystals
Singhal et al. Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg–Al alloy catalyst solvent
CN109811415B (en) Method for preparing mullite whiskers from kaolin at low temperature
CN108176329B (en) Synthesis method of cubic boron nitride
US4287164A (en) Process for producing cubic system boron nitride
JPWO2002034972A1 (en) Nitride single crystal containing Group III or IV metal element and method for producing the same
CN100354199C (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using same
JPS5938164B2 (en) Manufacturing method of cubic boron nitride
JPH0372940A (en) Preparation of cubic boron nitride
JPH08198681A (en) Production of boron nitride composite
US3457043A (en) Method of converting carbonaceous material to diamond
JPS60131811A (en) Method for synthesizing boron nitride
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
Agarwala et al. A study of graphite-diamond conversion using nickel, invar and monel as catalyst-solvents
KR100636415B1 (en) Manufacturing method of cubic boron nitride
US3773903A (en) Method of manufacturing diamond crystals
JP2628668B2 (en) Cubic boron nitride sintered body
Gameza et al. Kinetic Features of Crystallization of Cubic Boron Nitride Single Crystals in the BN LiH (N, Se) System