JPS6168398A - Growing method of cubic type boron nitride crystal - Google Patents

Growing method of cubic type boron nitride crystal

Info

Publication number
JPS6168398A
JPS6168398A JP59190606A JP19060684A JPS6168398A JP S6168398 A JPS6168398 A JP S6168398A JP 59190606 A JP59190606 A JP 59190606A JP 19060684 A JP19060684 A JP 19060684A JP S6168398 A JPS6168398 A JP S6168398A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
seeds
plate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59190606A
Other languages
Japanese (ja)
Other versions
JPS6357098B2 (en
Inventor
Eiichi Iizuka
栄一 飯塚
Shinji Kashima
加島 慎治
Masakazu Maki
牧 昌和
Tomoji Santo
山東 知二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59190606A priority Critical patent/JPS6168398A/en
Publication of JPS6168398A publication Critical patent/JPS6168398A/en
Publication of JPS6357098B2 publication Critical patent/JPS6357098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Abstract

PURPOSE:To obtain crystals having small distribution width of grain sizes and excellent mechanical characteristics at high productivity by despising cubic boron nitride particles in a specific form and growing the same until the crystal particles having the specific grain size are obtd. CONSTITUTION:Many recesses 2 for contg. the cubic boron nitride seeds are perforated to a flux material plate. The recesses 2 are regularly perforated at equal intervals in such a manner that the spaces l between the adjacent recesses are 20-200mu as the spaces between the adjacent crystal particles after the crystal growth. The flux material plate embedded with the seeds 3 in the recesses 2 is superposed on a low pressure phase (hexagonal) boron nitride plate 4 in such a manner that the surface disposed with the cubic boron nitride seeds is positioned on the boundary (opposite) side. Such superposed plates or the laminated plates laminated with the plural superposed plates are subjected to the pressure and temp. conditions in the stable region of the cubic boron nitride crystal, by which the cubic boron nitride crystals are grown.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温、高圧下で立方晶型窒化硼素(以下、[
CBNJという)を合成する際、種子となる立方晶型窒
化硼素粒子を用い、結晶を成長させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the production of cubic boron nitride (hereinafter referred to as [
This invention relates to a method of growing crystals using cubic boron nitride particles as seeds when synthesizing CBNJ.

従来の技術 静水圧法でCBN ’i合成する場合、発生する核の数
を制御し、相平衡線のごく近傍にある温度と圧力の下に
成長させることが、包有物の少ない、形の良い結晶を収
率良く得るうえで重要である。種子を用いる結晶成長法
は、核の数を制御する有効な手段である。
Conventional technology When synthesizing CBN 'i using the hydrostatic method, it is possible to control the number of generated nuclei and grow them at a temperature and pressure very close to the phase equilibrium line, which results in a well-shaped structure with few inclusions. This is important in obtaining good crystals in good yield. Crystal growth using seeds is an effective means of controlling the number of nuclei.

静水圧法によるCBHの結晶成長法には、温度差成長法
と薄膜成長法とがある。前者は、種子と原料源を温度勾
配のある溶媒物質金倉して存在させ、低温側の種子全成
長させる方法であり、後者は、CBN粒子の周囲に付着
した溶媒物質の薄い膜を介して、低圧相(六方晶)窒化
硼素(以下、「HBN」という。)を溶解させ、1(B
NとCBNの溶解度差によってCBN結晶を成長させる
方法である。後者では、その結晶サイズは基本的には合
成に必要な時間、立方晶核の発生量、供給される原料H
BNの量に依存する。核の発生にあたり種子を用いれば
核の数の制御は可能であるが、核の偏在化、試料内の位
置における核成長の時間的ズレ、核あるいは成長粒子同
志の干渉等要因により、粒径のそろった立方晶窒化硼素
の結晶を収率良く得ることは困難である。
CBH crystal growth methods using the hydrostatic pressure method include a temperature difference growth method and a thin film growth method. The former is a method in which seeds and raw material sources are exposed to a solvent substance with a temperature gradient, and the seeds on the lower temperature side are fully grown. Low-pressure phase (hexagonal) boron nitride (hereinafter referred to as "HBN") is dissolved to form 1(B
This is a method of growing CBN crystals based on the solubility difference between N and CBN. In the latter case, the crystal size basically depends on the time required for synthesis, the amount of cubic nuclei generated, and the raw material H supplied.
Depends on the amount of BN. It is possible to control the number of nuclei by using seeds for nuclear generation, but the particle size may be reduced due to factors such as uneven distribution of nuclei, time lag in the growth of nuclei at their positions within the sample, and interference between nuclei or growing particles. It is difficult to obtain uniform cubic boron nitride crystals in good yield.

また、種子の使用によって核の数全制御し得たとしても
、窒化硼素濃度の過飽和度の高い領域で結晶成長させた
場合は、良い結晶は得られない。
Further, even if the number of nuclei can be completely controlled by using seeds, good crystals cannot be obtained if crystal growth is performed in a region with a high degree of supersaturation of boron nitride concentration.

結晶の形も悪くなり、また溶媒物質、原料物質、気泡な
ど不純物の包有も多くなる。過飽和度を下げるには、相
平衡線のごく近傍にある温度、圧力条件に保持する必要
がある。しかし工業的な超高圧合成装置において、反応
部の温度と圧力を定常的に測定し、目的とする値にコン
トロールすることは極めて困難である。
The shape of the crystal becomes worse, and more impurities such as solvent substances, raw material substances, and air bubbles are included. In order to reduce the degree of supersaturation, it is necessary to maintain temperature and pressure conditions very close to the phase equilibrium line. However, in industrial ultra-high pressure synthesis equipment, it is extremely difficult to constantly measure the temperature and pressure in the reaction zone and control them to desired values.

また、溶媒物質と原料HhNとCBN種子とを混合し、
混合物を円柱状に成型し、高圧装置に装填して、その中
で結晶を成長させる方法が知られている。この方法は、
種子を混合物中に均一に分散させるのが困難であり、結
晶成長にバラツキを生じ易い。
Also, by mixing the solvent substance, the raw material HhN, and the CBN seeds,
A known method is to mold a mixture into a cylinder, load it into a high-pressure device, and grow crystals therein. This method is
It is difficult to disperse the seeds uniformly in the mixture, which tends to cause variations in crystal growth.

発明が解決しようとする問題点 本発明の目的は、上記のような従来の技術の問題点を解
決し、粒度の分布幅が小さく、且つ、圧壊強度その他の
機械的特性に優るCBN結晶を高い生産性を以って型造
できる方法を提供するにある。
Problems to be Solved by the Invention The purpose of the present invention is to solve the problems of the conventional technology as described above, and to develop CBN crystals with a small particle size distribution width and excellent crushing strength and other mechanical properties. The purpose of the present invention is to provide a method that enables molding with high productivity.

本発明に係るCBN結晶の成長法は、溶媒物質板および
T(BN板の少くとも一方の板の面上に多数のCBN種
子全配置し、該CBN種子配置面が界面側に位置するよ
うに溶媒物質板とHBN板とを重ね合せた重合板または
そのような重合板全複数積層した積層物、あるいは、溶
媒物質とHBNとの混合物の板の面上に多数のCBN種
子を配置した板またはそのような板を複数積層した積層
物をCBN安定領域の圧力・温度条件下においてCBN
結晶を成長せしめる方法であって、CBN種子として粒
径150μm以下のCBN粒子を実質的に等間隔に且つ
結晶成長後の隣接結晶粒子間の間隔が20〜200μm
となるように規則的に配置し、さらに種子粒径の1.5
倍以上の径を有するCBN結晶粒子が得られるまで成長
せしめることを特徴とする。
The method for growing CBN crystals according to the present invention involves arranging a large number of CBN seeds on at least one surface of a solvent material plate and a T (BN plate) such that the CBN seed arrangement surface is located on the interface side. A polymeric board in which a solvent material board and an HBN board are stacked together, or a laminate in which a plurality of such polymeric boards are laminated, or a board in which a large number of CBN seeds are arranged on the surface of a board made of a mixture of a solvent material and HBN, or CBN is produced by laminating a plurality of such plates under pressure and temperature conditions in the CBN stability region.
A method for growing crystals, in which CBN particles with a particle size of 150 μm or less are grown as CBN seeds at substantially equal intervals, and the distance between adjacent crystal grains after crystal growth is 20 to 200 μm.
1.5 of the seed particle size.
It is characterized in that it is grown until CBN crystal particles having a diameter twice or more are obtained.

溶媒物質板およびHBN板の少くとも一方の板の面上ま
たはそのような溶媒物質とHBNとの混合物の板の面上
にCBN種子を実質的に等間隔に且つ結晶成長後の隣接
結晶粒子間の間隔が所定範囲となるように規則的に配置
する。
CBN seeds are placed on the surface of at least one of the solvent material plate and the HBN plate or on the surface of the plate of a mixture of such solvent material and HBN at substantially equal intervals and between adjacent crystal grains after crystal growth. are arranged regularly so that the intervals between them fall within a predetermined range.

種子となるCBN粒子を規則的に配置するには種種の方
法を採ることができる。最も好ましい方法は、板の面上
に多数の凹孔を穿設し、各凹孔にCBN粒子を1個宛入
れる方法である。溶媒物質板、HBN板または溶媒物質
と)1BNとの混合物の板に凹孔を穿つには微小径ドリ
ル等を用いる機械的方法によることができ、また、溶媒
物質板が金属板の場合には機械的方法の外に、フォトエ
ツチングを含むエツチング法、放電加工による方法、レ
ーデ加工による方法などが適用出来る。
Various methods can be used to regularly arrange the CBN particles that serve as seeds. The most preferred method is to drill a large number of holes on the surface of the plate and place one CBN particle in each hole. A mechanical method using a micro-diameter drill etc. can be used to make holes in a solvent material plate, an HBN plate, or a plate of a mixture of solvent material and 1BN. In addition to mechanical methods, etching methods including photo-etching, electrical discharge machining methods, radar machining methods, etc. can be applied.

なお、溶媒物質として窒化物または窒化硼素化物を用い
る場合は、溶媒物質に直接穿孔するのは困難であるので
、別に補助板を用意して、これに穿孔して種子を入れ、
これを溶媒物質板と重ね合せて使用するか、または、H
BN板に穿孔すればよい。補助板としてはCu、 Co
、 Ni、 Ta、 Wなどを用いることができる。
In addition, when using nitride or boron nitride as the solvent substance, it is difficult to drill holes directly into the solvent substance, so prepare a separate auxiliary plate, drill holes in it, and insert the seeds.
Use this in conjunction with a solvent material plate, or
All you have to do is drill holes in the BN board. As an auxiliary plate, Cu, Co
, Ni, Ta, W, etc. can be used.

各凹孔にCBN種子を入れるには、穿孔板上に種子をば
らまき適当な撮動を与えればよい。この場合、CBN種
子は導電性物質で被覆、特に、金属でメッキされている
ことが好ましい。金属でメッキすることにより種子形状
が丸味を帯び、また帯電防止性が付与されるため凹孔に
入れ易くなる。メッキする金属は溶媒物質として金属を
用いるときはそれと同一金属であることが望ましい。
CBN seeds can be placed in each well by scattering them on a perforated plate and applying appropriate motion. In this case, the CBN seeds are preferably coated with an electrically conductive material, in particular plated with metal. Plating with metal gives the seeds a rounded shape and provides antistatic properties, making them easier to insert into the holes. When a metal is used as a solvent substance, it is desirable that the metal to be plated is the same metal.

また、CBN種子を金属等で被覆しておくと、高圧の結
晶成長条件下にCBN種子が原料HBNと直接接触する
のを断つ利点がある。この場合の金属は溶媒金属と同一
でなくともよい。被覆材料としては、一般に、アルカリ
金属もしくけアルカリ土類金属または周期律表■族もし
くは■族の元素また場合には、通常種子を入れた後、凹
孔の開孔部を金属板等で遮閉する二℃が・奮よ。5、。
Furthermore, coating the CBN seeds with metal or the like has the advantage of cutting off direct contact between the CBN seeds and the raw material HBN under high-pressure crystal growth conditions. The metal in this case does not have to be the same as the solvent metal. The coating material is generally an alkali metal, an alkaline earth metal, or an element from group I or group II of the periodic table. It's 2 degrees Celsius when it closes. 5.

上記凹孔に代えて、貫通孔を穿設してもよいが、貫通孔
でないほうが種子の取扱い上有利である。
Although a through hole may be provided in place of the recessed hole, it is more advantageous to handle the seeds if the hole is not a through hole.

上記のように凹孔を穿設する方法に代えて、板に種子を
直接圧入することもできる。また、表面に微量の接着性
物質全スポット状に塗布し、その部分に裸または金属被
覆された種子を接着させることもできる。また適当な開
孔部を持つ網を使用したり、電子部品自動配置装置を用
いて規則的配置を行なうことができる。
Instead of drilling the holes as described above, it is also possible to press the seeds directly into the board. It is also possible to apply a small amount of an adhesive substance to the surface in the form of a whole spot, and to adhere the bare or metal-coated seeds to the spot. Further, regular placement can be performed using a mesh having appropriate openings or using an automatic electronic component placement device.

第1図は、溶媒物質板にCBN種子を入れるべき多数の
凹孔2を穿設せる状態を示している。第2図は、多数の
凹孔2を実質的に等間隔に且つ隣接凹孔間の間隔tが結
晶成長後の隣接結晶粒子間の間隔として20〜200μ
mとなるように規則的に穿設した状態を示している。凹
孔の配置パターンは、第2図のような基盤目状【限定さ
れるものではなく、各凹孔が実質的に等間隔に保持され
る限9他のA?ターンを採ることができる。
FIG. 1 shows a state in which a number of holes 2 into which CBN seeds are to be placed are bored in a solvent plate. In FIG. 2, a large number of concave holes 2 are arranged at substantially equal intervals, and the distance t between adjacent concave holes is 20 to 200 μm as the distance between adjacent crystal grains after crystal growth.
The figure shows a state in which the holes are drilled regularly so that m is formed. The arrangement pattern of the concave holes may be as shown in FIG. You can take a turn.

凹孔2にCBN種子3を埋設せる溶媒物質板1け、CB
N種子配置「が界面〔対向〕側に位置するように溶媒物
質板1とI(BN板4t?重ね合わせた重合物をそのま
ま、または、第3図に示すように、そのような重合物を
複数積層した積層物としてCBN結晶安定領域の圧力・
温度条件下においてCBN結晶を成長せしめる。
1 solvent material plate for embedding CBN seeds 3 in concave holes 2, CB
Place the superimposed polymers as they are, or as shown in Fig. The pressure in the CBN crystal stability region as a multi-layered laminate
CBN crystals are grown under temperature conditions.

CBN種子は溶媒物質板ではなく、HBN板の面上もし
くは溶媒物質板とHBN板の両方の板の面上に配置する
ことができる。また、溶媒物質粉末とHBN粉末との混
合物をホットプレス等を用いて圧縮成型して作成せる板
の面上に配置することもできる。
The CBN seeds can be placed on the surface of the HBN plate or on both the solvent material plate and the HBN plate rather than the solvent material plate. Alternatively, it can be placed on the surface of a plate made by compression molding a mixture of solvent substance powder and HBN powder using a hot press or the like.

本発明においては、第1に、CBN種子を実質的に等間
隔に且つ結晶成長後の隣接結晶粒子間の間隔が20〜2
00μmとなるように規則的に配置することが肝要であ
る。結晶粒子間の間隔が20μm未満であると、結晶成
長過程において種子相互間の干渉のため粒子同志がくつ
つき合ったシ、成長を阻害されたりして、粒度分布の小
さい良質な成長結晶を得難い。間隔が200μmを超え
ると局部的な過飽和度のアンバランスを生じて結晶成長
にバラツキを生じ易−0従って、粒度分布が大きくなり
がちである。しかも、生産性が低下する。
In the present invention, firstly, the CBN seeds are arranged at substantially equal intervals and the distance between adjacent crystal grains after crystal growth is 20 to 2.
It is important to arrange them regularly so that the distance is 00 μm. If the spacing between crystal grains is less than 20 μm, interference between seeds during the crystal growth process may cause the grains to stick together and inhibit growth, making it difficult to obtain high-quality grown crystals with a small particle size distribution. If the spacing exceeds 200 μm, local unbalance in supersaturation occurs, which tends to cause variations in crystal growth. Therefore, the particle size distribution tends to become large. Moreover, productivity decreases.

本発明の第2の主特徴は、CBN種子として粒径150
μm以下の粒子を用いて少くとも1.5倍(粒径におい
て)成長せしめることである。このような結晶成長を行
うことによって高品質、特て圧壊強度その他機械的強度
に優る結晶金得ることができる。種子の粒径が150μ
mより大であると触媒膜が均一に覆うことが困難となる
。好ましくは、粒径10〜50μmのものが用のられる
。また、成長倍率は格別限定されないが、粒径において
、一般に1.5〜10倍、特に好ましくは約3〜5倍で
ある。
The second main feature of the present invention is that CBN seeds with a particle size of 150
The goal is to grow at least 1.5 times (in terms of particle size) using particles smaller than μm. By performing such crystal growth, it is possible to obtain crystalline gold of high quality, particularly superior crushing strength and other mechanical strength. Seed particle size is 150μ
When it is larger than m, it becomes difficult to cover the catalyst film uniformly. Preferably, those having a particle size of 10 to 50 μm are used. Further, the growth rate is not particularly limited, but in terms of particle size, it is generally 1.5 to 10 times, particularly preferably about 3 to 5 times.

溶媒物質としては、リチウムその他のアルカリ金属、カ
ルシウム、!グネシウムなどのアルカリ土類金属、およ
びこれらの窒化物(L 13N I Ca 5 N 2
など)、複合窒化物(LiCaBN2.Li3BN2な
ど)を用いることができる。
Solvent substances include lithium and other alkali metals, calcium,! Alkaline earth metals such as gnesium, and their nitrides (L 13N I Ca 5 N 2
etc.), composite nitrides (LiCaBN2, Li3BN2, etc.) can be used.

また、結晶の過度の成長速度を抑え、形状のよい結晶を
得るために原料中に31. Mo、Zr、 ’ri。
In addition, in order to suppress the excessive growth rate of crystals and obtain well-shaped crystals, 31. Mo, Zr, 'ri.

At、 Sn、 PL、 Pb、 B+ Cおよびこれ
らの硅化物、硼化物、窒化物を少量添加することができ
る。
At, Sn, PL, Pb, B+C, and their silicides, borides, and nitrides can be added in small amounts.

CBN安定領域の圧力・温度条件下においてCBN結晶
の成長を行う。一般に、温度1250〜1850℃、圧
力45〜70 kbの範囲が採られる。
CBN crystals are grown under pressure and temperature conditions in the CBN stable region. Generally, temperatures in the range of 1250 to 1850°C and pressures in the range of 45 to 70 kb are employed.

上記のような系において、その反応系に期待し得るCB
Nの線成長11を、種子の数と種子1個当りの平均成長
希望量の積に一致するように撫子の数を決めてやれば、
狙った粒度のCBNを分布中挟く得ることができる。総
成長量(期待値)?系統的に知るには、最終荷重を変え
た合成をすれば良い。
In the above system, CB that can be expected in the reaction system
If the number of dianthus is determined so that the line growth 11 of N matches the product of the number of seeds and the average desired growth amount per seed, then
It is possible to obtain CBN with a targeted particle size in the distribution. Total growth (expected value)? To know it systematically, you can synthesize it by changing the final load.

量を多く取るためには、合成装置に許される範囲内で、
最終荷重を高くすることが必要である。と−って、種子
密度が高くなシすぎると成長した粒同志が干渉し合うよ
うになる。なお、粒度分布中を狭くする別の方法として
、反応部の温度分布、圧力分布を考慮に入れ、半径方向
と上下方向の種子配列の間隔、種子の大きさを適宜変え
ることが有効である。
In order to obtain a large amount, within the range allowed by the synthesis equipment,
It is necessary to increase the final load. Therefore, if the seed density is too high, the grown grains will interfere with each other. In addition, as another method for narrowing the particle size distribution, it is effective to take into account the temperature distribution and pressure distribution of the reaction part, and change the spacing between the seed arrays in the radial direction and the vertical direction, and the size of the seeds as appropriate.

発明の効果 種子となるCBN粒子を上記要件を満足するように規則
正しく配置することにより、種子ごとに生ずる結晶成長
の条件のバラツキは小さくなり、また反応空間内の温度
・圧力のミクロなバラツキも減少し、近接し過ぎた種子
の成長に、伴なう神子相互間の干渉もなくなり、非常に
粒度分布中のせま1、ncBN結晶粒子を得ることがで
きる。また、そのような結晶成長を行うことによって機
械的強度に優れた高品質のCBN結晶を得ることができ
る。
Effects of the invention By regularly arranging the CBN particles that serve as seeds so as to satisfy the above requirements, variations in crystal growth conditions that occur for each seed are reduced, and micro variations in temperature and pressure within the reaction space are also reduced. However, there is no interference between the seeds caused by the growth of seeds that are too close to each other, and it is possible to obtain ncBN crystal particles having a very uniform particle size distribution. Moreover, by performing such crystal growth, a high quality CBN crystal with excellent mechanical strength can be obtained.

実施例 次に実施例をあげて本発明を説明する。Example Next, the present invention will be explained with reference to Examples.

実施例1 外径2866螺φ、内径26mφ、長さ38慎の黒鉛製
円筒の中に反応物質として、直径26填φ、厚さ1.4
++mのHBN成型体円板と直径26蝙φ、厚さ1.5
酬のリチウムカルシウムピロンナイト2イド(LiCa
BN2)成型体円板とを交互に多数種重ねて配置した。
Example 1 A reactant was placed in a graphite cylinder with an outer diameter of 2866 mm, an inner diameter of 26 m, and a length of 38 mm, and a diameter of 26 mm and a thickness of 1.4 mm.
++m HBN molded disk, diameter 26mm, thickness 1.5
Lithium Calcium Pyronite 2ide (LiCa)
BN2) A large number of molded body disks were alternately stacked and arranged.

この反応系において、HBN成型体円板には、予め、中
心間隔0.4mとなるように基盤目の交点にうがりた0
、15wφX 0.25 rras dの凹孔の中に、
粒度90〜110μmの種子となるCBN粒子を1ケづ
つ入れておいた。両端をろう石板で保温し、さらに鉄製
の蓋をし、ベルト型超高圧合成装置に装着して加圧する
と共に、黒鉛円筒に通電し間接加熱により昇温させた。
In this reaction system, the HBN molded disk was preliminarily filled with 0.0 mm at the intersection of the base grains so that the center spacing was 0.4 m.
, in a concave hole of 15wφX 0.25 rras d,
One CBN particle serving as a seed with a particle size of 90 to 110 μm was placed in each container. Both ends were kept warm with waxstone plates, and an iron lid was placed on the tube, which was then attached to a belt-type ultra-high pressure synthesis device and pressurized, while electricity was applied to the graphite cylinder to raise the temperature by indirect heating.

この場合の反応条件は圧力的57 、kb 、温度約1
450℃であった。
The reaction conditions in this case are a pressure of 57 kb and a temperature of about 1
The temperature was 450°C.

反応時間は15分とした。The reaction time was 15 minutes.

この結果、約69のCBNが得られたが、約40係が2
50〜300μmに集中していた。茶色透明でブロッキ
ーな良質結晶の収率け、同量の種子と)(BN粉末と上
記L I Ca BN 2粉末との混合物から得た成型
体を使用した従来法では約404であったが、上記本発
明例では804と2倍に向上した。
As a result, approximately 69 CBNs were obtained, but approximately 40 staff members were
It was concentrated in the range of 50 to 300 μm. The yield of brown, transparent, blocky, high-quality crystals was approximately 404 in the conventional method using a molded body obtained from a mixture of BN powder and the above-mentioned L I Ca BN 2 powder (with the same amount of seeds). In the above-mentioned example of the present invention, the improvement was 804, which was twice as high.

実施例2 実施例1で用いたものと同一の黒鉛製円筒内に反応物質
として直径26mφ、厚さ1.5瓢の1(BN成型体円
板と直径26填φ、厚さ1.5MRのCa5B戸。
Example 2 In the same graphite cylinder as that used in Example 1, a BN molded disk with a diameter of 26 mφ and a thickness of 1.5 MR (a BN molded disk and a cylinder with a diameter of 26 mφ and a thickness of 1.5 MR) were placed as reactants. Ca5B door.

成型体円板とを交互に多数重ねて配置した。積重ねるに
際し、)(BN円板とCa、82N4円板との間にけ直
径26mφ、厚さ0.3mの銅板を介在せしめた。
A large number of molded body disks were alternately stacked and arranged. During stacking, a copper plate with a diameter of 26 mφ and a thickness of 0.3 m was interposed between the BN disk and the Ca, 82N4 disk.

この銅(触媒)板には、予め、中心間隔0.4wmとな
るように基盤目の交点に穿った0、1鱈φの孔(孔の先
端が一部貫通するように穿設した)中に種子となるCB
N粒子(粒度60〜80μm ) t−1ケづつ入れて
おいた。両端をろう石板で保温し、さらに鉄製の蓋をし
、ベルト型超高圧合成装置に装着して加圧すると共に、
黒鉛円筒に通電し間接加熱によシ昇温させた。反応条件
は次のように設定した。すなわち、圧力e50kbとし
、温度を1500℃にし、次いで20分間をかけて圧力
を徐々に57kbまで上昇した。結果は実施例1と同様
であったり 実施例3 実施例2と同一な方法によってCBN結晶の成長を行っ
た。但し、銅板に代えて、直径26門φ、厚さ0,3I
II11のマグネシウム(触媒)板を用い、この板に、
中心間隔0.5mとなるように基盤目の交点に0.2 
wsφの孔を穿設した。種子として粒度30〜40μm
のCBN粒子にCuでコートして粒度100〜120μ
mにしたものを用いた。反応条件は次のように設定した
。すなわち、圧力’fr: 50 kbとし、温度を1
500℃にし、次いで40分間をかけて圧力を徐々に5
7kbまで上昇した。結果は実施例1と同様でちった。
In this copper (catalyst) plate, holes of 0 and 1 diameter were drilled in advance at the intersections of the base grains so that the center spacing was 0.4 wm (the tips of the holes were drilled partially through them). CB that becomes a seed in
N particles (particle size: 60 to 80 μm) were placed in an amount of t-1 each. Both ends are insulated with wax stone plates, then covered with an iron lid, attached to a belt-type ultra-high pressure synthesis device, and pressurized.
Electricity was applied to the graphite cylinder and the temperature was raised by indirect heating. The reaction conditions were set as follows. That is, the pressure was set to e50 kb, the temperature was set to 1500°C, and then the pressure was gradually increased to 57 kb over 20 minutes. The results were similar to those in Example 1. Example 3 CBN crystals were grown by the same method as in Example 2. However, instead of the copper plate, 26 gates in diameter φ and 0.3I in thickness
Using II11 magnesium (catalyst) plate, on this plate,
0.2 at the intersection of the base grains so that the center distance is 0.5 m.
A hole of wsφ was drilled. Particle size as seeds: 30-40μm
CBN particles coated with Cu to obtain a particle size of 100-120μ
m was used. The reaction conditions were set as follows. That is, the pressure 'fr: 50 kb and the temperature 1
500°C, then gradually increase the pressure to 500°C over 40 minutes.
It increased to 7kb. The results were similar to those in Example 1.

比較例1 実施例2と同様な方法によってCBN結晶の成長を行っ
た。但し、種子として粒度300〜350μmのCBN
粒子を用い、また、銅板には中心間隔0.9鱈となるよ
うに基盤目の交点に0.5wφの孔を穿設した。反応条
件は実施例2と同様に設定した。
Comparative Example 1 A CBN crystal was grown in the same manner as in Example 2. However, CBN with a particle size of 300 to 350 μm as seeds
Using particles, holes of 0.5 wφ were bored in the copper plate at the intersections of the base grains so that the center spacing was 0.9 mm. The reaction conditions were set in the same manner as in Example 2.

収量は6grであり、成長結晶の多くは粒度700〜8
00μmであった。結晶成長は不均一で、ブロッキーな
結晶はほとんど得られなかった。
The yield is 6 gr, and most of the grown crystals have a grain size of 700-8.
It was 00 μm. Crystal growth was non-uniform and blocky crystals were hardly obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、立方晶型窒化硼素(CBN )種子を配置す
るための凹孔を穿設せる溶媒物質板の断面図であυ、 第2図は、第1図に示す溶媒物質板の平面図であυ、 第3図は、第1図および第2−に示す溶媒物質板に多数
のCBN種子を配置したものと原料窒化硼素(T(BN
)板とを多数交互に積層した状態を示す断面図である。 1:溶媒物質板、2:凹孔、3:CBN種子、4: H
BN板。
Figure 1 is a cross-sectional view of a solvent material plate in which holes are drilled for placing cubic boron nitride (CBN) seeds, and Figure 2 is a plan view of the solvent material plate shown in Figure 1. Fig. 3 shows the solvent material plate shown in Fig. 1 and Fig.
) is a sectional view showing a state in which a large number of plates are alternately stacked. 1: Solvent material plate, 2: Hole, 3: CBN seed, 4: H
BN board.

Claims (1)

【特許請求の範囲】 1、溶媒物質板および低圧相窒化硼素板の少くとも一方
の板の面上に多数の立方晶型窒化硼素種子を配置し、該
立方晶型窒化硼素種子配置面が界面側に位置するように
溶媒物質板と低圧相窒化硼素板とを重ね合せた重合板ま
たはそのような重合板を複数積層した積層物、あるいは
、溶媒物質と低圧相窒化硼素との混合物の板の面上に多
数の立方晶型窒化硼素種子を配置した板またはそのよう
な板を複数積層した積層物を立方晶型窒化硼素安定領域
の圧力・温度条件下において立方晶型窒化硼素結晶を成
長せしめる方法であって、立方晶型窒化硼素種子として
粒径150μm以下の立方晶型窒化硼素粒子を実質的に
等間隔に且つ結晶成長後の隣接結晶粒子間の間隔が20
〜200μmとなるように規則的に配置し、さらに種子
粒径の1.5倍以上の径を有する立方晶型窒化硼素結晶
粒子が得られるまで成長せしめることを特徴とする立方
晶型窒化硼素結晶の成長法。 2、溶媒物質板および低圧相窒化硼素板の少くとも一方
の板の面上に多数の凹孔を、実質的に等間隔に且つ隣接
凹孔周縁間の間隔が結晶成長後の隣接結晶粒子間の間隔
として20〜200μmとなるように規則的に穿設し、
各凹孔に立方晶型窒化硼素種子を1個宛入れる特許請求
の範囲第1項記載の立方晶型窒化硼素結晶の成長法。 3、溶媒物質板の面上に多数の凹孔を穿設する特許請求
の範囲第2項記載の立方晶型窒化硼素結晶の成長法。 4、立方晶型窒化硼素種子に金属メッキを施したうえ各
凹孔に入れる特許請求の範囲第2項または第3項記載の
立方晶型窒化硼素結晶の成長法。
[Claims] 1. A large number of cubic boron nitride seeds are arranged on the surface of at least one of the solvent material plate and the low-pressure phase boron nitride plate, and the surface on which the cubic boron nitride seeds are arranged is an interface. A polymer plate consisting of a solvent material plate and a low-pressure phase boron nitride plate stacked side by side, or a laminate of a plurality of such polymer plates, or a plate of a mixture of a solvent substance and a low-pressure phase boron nitride plate. A plate with a large number of cubic boron nitride seeds arranged on its surface, or a laminate of multiple such plates, is used to grow cubic boron nitride crystals under pressure and temperature conditions in the cubic boron nitride stable region. A method comprising cubic boron nitride particles having a grain size of 150 μm or less as cubic boron nitride seeds at substantially equal intervals, and an interval between adjacent crystal grains after crystal growth of 20 μm.
Cubic boron nitride crystals are grown until cubic boron nitride crystal particles are regularly arranged so as to have a diameter of ~200 μm and have a diameter of 1.5 times or more the seed grain size. How to grow. 2. A large number of concave holes are formed on at least one surface of the solvent material plate and the low pressure phase boron nitride plate at substantially equal intervals, and the distance between the peripheries of adjacent concave holes is equal to the distance between adjacent crystal grains after crystal growth. The holes are regularly drilled at intervals of 20 to 200 μm,
The method for growing cubic boron nitride crystals according to claim 1, wherein one cubic boron nitride seed is placed in each recessed hole. 3. A method for growing a cubic boron nitride crystal according to claim 2, wherein a large number of concave holes are formed on the surface of the solvent material plate. 4. A method for growing cubic boron nitride crystals according to claim 2 or 3, in which cubic boron nitride seeds are plated with metal and placed in each of the recesses.
JP59190606A 1984-09-13 1984-09-13 Growing method of cubic type boron nitride crystal Granted JPS6168398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190606A JPS6168398A (en) 1984-09-13 1984-09-13 Growing method of cubic type boron nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190606A JPS6168398A (en) 1984-09-13 1984-09-13 Growing method of cubic type boron nitride crystal

Publications (2)

Publication Number Publication Date
JPS6168398A true JPS6168398A (en) 1986-04-08
JPS6357098B2 JPS6357098B2 (en) 1988-11-10

Family

ID=16260865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190606A Granted JPS6168398A (en) 1984-09-13 1984-09-13 Growing method of cubic type boron nitride crystal

Country Status (1)

Country Link
JP (1) JPS6168398A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS57156399A (en) * 1981-03-20 1982-09-27 Natl Inst For Res In Inorg Mater Preparation of boron nitride of cubic system
JPS5836977A (en) * 1980-12-22 1983-03-04 ゼネラル・エレクトリツク・カンパニイ Diamond and cubic boron nitride abrasive compact using size selective granule layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS5836977A (en) * 1980-12-22 1983-03-04 ゼネラル・エレクトリツク・カンパニイ Diamond and cubic boron nitride abrasive compact using size selective granule layer
JPS57156399A (en) * 1981-03-20 1982-09-27 Natl Inst For Res In Inorg Mater Preparation of boron nitride of cubic system

Also Published As

Publication number Publication date
JPS6357098B2 (en) 1988-11-10

Similar Documents

Publication Publication Date Title
US4551195A (en) Method for growing boron nitride crystals of cubic system
US4547257A (en) Method for growing diamond crystals
US7585366B2 (en) High pressure superabrasive particle synthesis
US4632817A (en) Method of synthesizing diamond
US6627168B1 (en) Method for growing diamond and cubic boron nitride crystals
US7404857B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US7306441B2 (en) High pressure crystal growth apparatuses and associated methods
US7371280B2 (en) High pressure crystal growth apparatuses and associated methods
KR101603032B1 (en) Process for manufacturing synthetic single crystal diamond material
JPS6020804A (en) Polycrystalline diamond equipped with high surface irregularpart and production thereof
US4699687A (en) Method of synthesizing cubic system boron nitride
JPS6168398A (en) Growing method of cubic type boron nitride crystal
JPS6357099B2 (en)
JPS6348579B2 (en)
JP4190196B2 (en) Diamond synthesis method
JPS59169910A (en) Crystal growth of cubic boron nitride
JPH0433489B2 (en)
JPH0360797B2 (en)
JPH052369B2 (en)
JP3597033B2 (en) Crystal growth method of diamond or cubic boron nitride
JPH0435213B2 (en)
KR960000943B1 (en) Synthesis of diamond
JPS62153106A (en) Synthesis of cubic boron nitride crystal
JPS59164609A (en) Method for synthesizing diamond
JPH0685865B2 (en) Diamond synthesis