JPH0691931B2 - Gas separation membrane and manufacturing method - Google Patents
Gas separation membrane and manufacturing methodInfo
- Publication number
- JPH0691931B2 JPH0691931B2 JP61074873A JP7487386A JPH0691931B2 JP H0691931 B2 JPH0691931 B2 JP H0691931B2 JP 61074873 A JP61074873 A JP 61074873A JP 7487386 A JP7487386 A JP 7487386A JP H0691931 B2 JPH0691931 B2 JP H0691931B2
- Authority
- JP
- Japan
- Prior art keywords
- separation membrane
- gas separation
- porous
- gas
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 この発明は気体分離膜およびその製造法に関する。さら
に詳しくは混合気体から主として水素を分離する気体分
離膜およびその製造法に関する。TECHNICAL FIELD The present invention relates to a gas separation membrane and a method for producing the same. More specifically, it relates to a gas separation membrane that mainly separates hydrogen from a mixed gas and a method for producing the same.
(ロ)従来の技術 混合気体から主として水素を分離する気体分離膜に、高
分子無孔膜と多孔質膜とがあり高分子無孔多膜は分離係
数は大きいが透過量は小さく、一方多孔質膜は分離係数
は小さいが透過量が比較的大きい。このうち多孔質膜か
らなる気体分離膜には、多孔質ガラス膜を用いたものが
知られている。この多孔質ガラス膜は、ホウケイ酸ガラ
スを用いて高温溶融→成形→分相→溶出過程を経て多孔
質状に形成されたものである。(B) Conventional technology There are polymer non-porous membranes and porous membranes in gas separation membranes that mainly separate hydrogen from a mixed gas. Polymer non-porous multi-membranes have a large separation coefficient but a small permeation amount, while porous membranes. The membrane has a small separation coefficient but a relatively large permeation amount. Among them, as a gas separation membrane made of a porous membrane, one using a porous glass membrane is known. This porous glass film is formed by using borosilicate glass through a process of high temperature melting, molding, phase separation, and elution to form a porous film.
(ハ)発明が解決しようとする問題点 しかしながら、上記過程で形成される多孔質ガラス膜
は、その膜厚が0.2mm以上とかなり厚くなり分離能があ
がらず、水素透過性は大きいといっても200×10-9m3/m2
・s・Pa程度が限度である。(C) Problems to be Solved by the Invention However, the porous glass membrane formed in the above process has a considerably large thickness of 0.2 mm or more and does not have sufficient separability, and has a large hydrogen permeability. Also 200 × 10 -9 m 3 / m 2
・ The limit is about s ・ Pa.
この発明はかかる状況に鑑み為されたものであり、こと
に膜厚を薄層化しかつ均一な細孔径を有する気体分離膜
を提供しようとするものである。The present invention has been made in view of the above circumstances, and particularly aims to provide a gas separation membrane having a thin film thickness and a uniform pore diameter.
(ニ)問題点を解決するための手段 かくしてこの発明によれば、気体を自由に透過しうる多
孔質支持体の表面に、所定の気体の選択透過性を有する
均一な膜を密着形成してなり、該膜が金属アルコキシド
の加水分解物からなる膜厚1〜10μmの多孔質ゲルであ
る気体分離膜が提供される。(D) Means for Solving the Problems Thus, according to the present invention, a uniform membrane having a predetermined gas selective permeability is closely formed on the surface of the porous support which can freely permeate gas. Thus, there is provided a gas separation membrane, wherein the membrane is a porous gel having a film thickness of 1 to 10 μm made of a hydrolyzate of a metal alkoxide.
この発明の最も特徴とする点は、金属アルコキシド溶液
から得られるウエットゲルを多孔質支持体に塗布して非
水溶媒中で低温で加熱・乾燥処理することにより薄層で
かつ均一な多孔質のドライゲル膜を有する気体分離膜を
得ていることである。The most characteristic point of the present invention is that a wet gel obtained from a metal alkoxide solution is applied to a porous support and heated and dried at a low temperature in a non-aqueous solvent to form a thin and uniform porous layer. That is, a gas separation membrane having a dry gel membrane is obtained.
この発明に用いる金属アルコキシドとしては、特に限定
されず、加水分解してさらに脱水することによりゲルを
与えうるものであればよく例えば、シリコンアルコキシ
ド、アルミニウムアルコキシド、チタンアルコキシド、
ボロンアルコキシド、ナトリウムアルコキシド、カルシ
ウムアルコキシド、リチウムアルコキシド等が挙げら
れ、シリコンアルコキシド、アルミニウムアルコキシ
ド、チタンアルコキシドが好ましい。The metal alkoxide used in the present invention is not particularly limited as long as it can give a gel by hydrolysis and further dehydration, for example, silicon alkoxide, aluminum alkoxide, titanium alkoxide,
Examples thereof include boron alkoxide, sodium alkoxide, calcium alkoxide, lithium alkoxide and the like, and silicon alkoxide, aluminum alkoxide and titanium alkoxide are preferable.
またアルコキシ基には低級アルコキシ基が適しており、
例えばメトキシ基、エトキシ基、プロピオキシ基等が挙
げられる。Further, a lower alkoxy group is suitable for the alkoxy group,
For example, a methoxy group, an ethoxy group, a propoxy group and the like can be mentioned.
上記金属アルコキシドには例えば、シリコンテトラエト
キシドSi(OC2H5)4、トリエトキシアルミニウムAl(OC
2H5)3、テトラプロピオキシチタンTi(OC3H7)4等が挙げ
られ、シリコンテトラエトキシドが好ましい。Examples of the metal alkoxide include silicon tetraethoxide Si (OC 2 H 5 ) 4 and triethoxyaluminum Al (OC
2 H 5) 3, include tetra propyl oxytitanium Ti (OC 3 H 7) 4 and the like, silicon tetraethoxide is preferred.
また、この発明に用いる上記金属アルコキシドの1つの
アルコキシド基が脂肪族または芳香族の炭化水素基、ア
ミノ基またはアルキルアミノ基で置換された置換アルコ
キシ基であってもよい。Further, one alkoxide group of the above metal alkoxide used in the present invention may be a substituted alkoxy group in which an aliphatic or aromatic hydrocarbon group, an amino group or an alkylamino group is substituted.
上記金属アルコキシドの水性溶媒としては従来法と同様
に、水とメタノール、エタノール、プロパノール等の低
級アルコールとの混合物が用いられる。As the aqueous solvent for the metal alkoxide, a mixture of water and a lower alcohol such as methanol, ethanol or propanol is used as in the conventional method.
また加水分解触媒は従来法と同様に、塩酸、硫酸、アン
モニア水溶液等が用いられる。As the hydrolysis catalyst, hydrochloric acid, sulfuric acid, aqueous ammonia solution or the like is used as in the conventional method.
金属アルコキシドを加水分解してゾルとする場合、金属
アルコキシド含有水性溶液に前記加水分解触媒を添加し
て常温で撹拌して行うことができるが、若干昇温して加
水分解反応を速めてもよい。また上記加水分解反応は、
金属アルコキシド、水または水性溶媒および加水分解触
媒を同時に添加混合して行ってもよい。When the metal alkoxide is hydrolyzed to form a sol, the hydrolysis catalyst may be added to the metal alkoxide-containing aqueous solution and stirred at room temperature, but the temperature may be slightly elevated to accelerate the hydrolysis reaction. . In addition, the hydrolysis reaction
The metal alkoxide, water or aqueous solvent and the hydrolysis catalyst may be added and mixed at the same time.
このようにして得られたゾルは、意図する多孔質支持体
に塗布されて所定温度で放置して(例えば常温〜80℃で
1〜60分)ウエットゲル成形体とされる。The sol thus obtained is applied to the intended porous support and left at a predetermined temperature (for example, at room temperature to 80 ° C. for 1 to 60 minutes) to form a wet gel molded body.
この発明においては、上記得られたウエットゲルを密着
形成した多孔質支持体は、続いて非水溶媒に浸漬して加
熱・乾燥処理してウエットゲルを脱水しドライゲルとす
るが、これは非水溶媒中では該溶媒の粘性のためウエッ
トゲルの脱水が緩慢に行われ、その結果得られるドライ
ゲルの気孔率および細孔径がほぼ均一に保持される点で
重要な意義を有する。In the present invention, the porous support on which the obtained wet gel is closely formed is subsequently immersed in a non-aqueous solvent and subjected to heating / drying treatment to dehydrate the wet gel to obtain a dry gel. The wet gel is dehydrated slowly in the solvent due to the viscosity of the solvent, and as a result, the porosity and the pore diameter of the resulting dry gel are kept substantially uniform, which is important.
上記非水溶媒としては、実質的に水と混和せず沸点が約
200℃を越え、少なくとも約200℃までの温度では安定で
該ウエットゲルに対して不活性な液体であればよく、例
えば流動パラフィン、シリコンオイル、なたね油等が上
げられる。The non-aqueous solvent is substantially immiscible with water and has a boiling point of about
Any liquid that is stable above 200 ° C. and at least about 200 ° C. and is inert to the wet gel may be used, and examples thereof include liquid paraffin, silicone oil, and rapeseed oil.
上記加熱・乾燥条件は、ウエットゲルの脱水が均一に行
われかつ意図する気孔率が得られるように適宜選択され
るが、通常30〜80%の気孔率を得るためには上記非水溶
媒中で、200℃以下で24時間程度処理され、特に温度は1
00〜200℃で行うのが脱水時間が短くなるので好まし
い。また200℃を越えると製品が変形したり割れが生じ
始めるので好ましくない。The heating / drying conditions are appropriately selected so that the dehydration of the wet gel is uniformly performed and the intended porosity is obtained, but in order to obtain a porosity of 30 to 80%, the non-aqueous solvent is usually used. It is processed at 200 ℃ or below for about 24 hours, especially at a temperature of 1
It is preferable to carry out at 00 to 200 ° C because the dehydration time becomes short. Further, if the temperature exceeds 200 ° C, the product may be deformed or cracks may start to occur, which is not preferable.
この発明において、上記ドライゲルの強度を増大させる
ため、該ゲルに必要に応じてさらに加熱処理してもよ
い。In the present invention, in order to increase the strength of the dry gel, the gel may be further heat-treated, if necessary.
上記加熱条件は、通常300〜900℃程度の高温度下で徐々
に行うのが得られるゲルの気孔率の均一性の点で好まし
い。この場合、1000℃以上でかつ24時間以上の処理をす
ると多孔質性が失われるので好ましくない。上記のごと
くして得られるドライゲルの細孔径としては、200Å以
下が適しており、主として水素を分離する場合に好まし
い。この細孔径の調製は上記処理中ゲル化条件および乾
燥条件を調節することにより行われる。The above heating conditions are preferably carried out gradually at a high temperature of about 300 to 900 ° C., in view of the uniformity of the porosity of the gel obtained. In this case, if the treatment is performed at 1000 ° C. or higher for 24 hours or longer, the porosity is lost, which is not preferable. As the pore size of the dry gel obtained as described above, 200 Å or less is suitable, which is preferable when mainly separating hydrogen. The pore size is adjusted by adjusting the gelling condition and the drying condition during the above treatment.
この発明の気体分離膜は、前記ゾルを意図する多孔質支
持体に塗布した後、前記のごとく処理して形成される
が、この場合形成される塗布膜の膜厚は、該膜が保持す
る気孔率に応じて若干選択されるが、例えば上記気孔率
を有しかつ透過率を損なわないものとしては、0.1〜100
μmが適しており、1〜10μmが好ましい。The gas separation membrane of the present invention is formed by applying the sol to the intended porous support and then treating as described above. In this case, the thickness of the formed coating film is retained by the film. Although it is selected slightly depending on the porosity, for example, those having the above porosity and not impairing the transmittance are 0.1 to 100.
μm is suitable and 1 to 10 μm is preferable.
またこの発明の気体分離膜は、該膜を構成するゾルが流
動性を有するうちに意図する支持体表面に塗布して放置
しその後前記のごとく加熱・乾燥処理して形成する。Further, the gas separation membrane of the present invention is formed by coating the surface of an intended support while the sol constituting the membrane has fluidity, leaving it to stand, and then heating and drying it as described above.
この発明の気体分離膜に用いる多孔質支持体は、材質と
しては、アルミナ、シルコニア、ムライト、マグネシ
ア、窒化ケイ素等のセラミックが適している。Suitable materials for the porous support used in the gas separation membrane of the present invention are ceramics such as alumina, zirconia, mullite, magnesia, and silicon nitride.
また、この多孔質支持体の細孔径は、0.1〜100μmが適
しており、主として水素を分離する場合は1〜10μmが
好ましい。The pore size of the porous support is preferably 0.1 to 100 μm, and is preferably 1 to 10 μm when mainly separating hydrogen.
上記の多孔質支持体は、どんな形状で用いられてもよ
く、例えば板状、チューブ状、粒子状等が挙げられ、用
途に応じて適宜選択される。The above-mentioned porous support may be used in any shape, and examples thereof include a plate shape, a tube shape, and a particle shape, which are appropriately selected depending on the application.
(ホ)作用 この発明によれば、金属アルコキシドの加水分解物から
なるゾルの塗布により薄膜状のウエットゲル膜を得るこ
とができる。このゲル膜は粘性を有する非水溶媒中で加
熱・乾燥処理されることによりこのゲルからの脱水が徐
々に行われかつ脱水してできた水の蒸発が粘性によって
押さえらることによりゲル全体として均一に分散した部
分からの脱水がおこなわれ均一な細孔径でかつ均一に分
散した多孔質のドライゲル膜が得られる。(E) Action According to the present invention, a thin wet gel film can be obtained by applying a sol comprising a hydrolyzate of a metal alkoxide. This gel film is heated and dried in a viscous non-aqueous solvent to gradually dehydrate the gel, and the evaporation of water produced by the dehydration is suppressed by the viscosity, resulting in the gel as a whole. Dehydration is performed from the uniformly dispersed portion to obtain a porous dry gel film having a uniform pore size and a uniform dispersion.
以下実施例によりこの発明を詳細に説明するが、これに
よりこの発明は限定されるものではない。Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
(ヘ)実施例 Si(OC2H5)410ml,水5mlおよび1.0N-HCl0.1mlを混合撹拌
して加水分解し、均一なゾル溶液とした。これに0.1N-N
H4OHでpHを5.0に調整した後このゾル溶液を多孔質アル
ミナ支持体(細孔径約1.5〜4.0μm)上に流し出して塗
布し、常温で30分程度放置してゲル化させ厚さ約2.0μ
mのウエットゲル膜を形成した。(F) Example 10 ml of Si (OC 2 H 5 ) 4 , 5 ml of water and 0.1 ml of 1.0N-HCl were mixed and stirred for hydrolysis to obtain a uniform sol solution. 0.1 NN for this
After adjusting the pH to 5.0 with H 4 OH, pour this sol solution onto a porous alumina support (pore size about 1.5 to 4.0 μm) and apply it, and leave it at room temperature for about 30 minutes to gel it to a thickness. About 2.0μ
m wet gel film was formed.
その後この支持体をウエットゲル膜全体が流動パラフィ
ン中に浸漬するように入れ80℃で24時間加熱・乾燥処理
による脱水をおこなった。この間ゲルは見掛け上収縮せ
ず割れなかった。これを流動パラフィン中より取り出し
てアセトンで洗浄後、空気中で120℃で1時間乾燥し、
多孔質のドライゲル膜を得た。この得られたゲルの細孔
径は160〜30Å、気孔率は約76.4%であった。Thereafter, this support was placed so that the entire wet gel film was immersed in liquid paraffin, and dehydrated by heating and drying at 80 ° C. for 24 hours. During this time, the gel apparently did not shrink and did not crack. This was taken out from the liquid paraffin, washed with acetone, and then dried in air at 120 ° C for 1 hour.
A porous dry gel film was obtained. The obtained gel had a pore size of 160 to 30Å and a porosity of about 76.4%.
以上のごとくして得られた多孔質ドライゲル膜(膜厚0.
9μm)を密着形成した気体分離膜(a)を第1図に示
すごとく用い、H2、He,N2、O2それぞれの純ガスを一方の
流路(1)から流入し、気体分離膜(2)を隔てて他方
の流路(3)へ透過する気体量を該流路(3)に接続さ
れたセッケン膜流量計(図示しない)により測定した。
なおこの測定に用いた気体分離膜(a)は直径30mm(≒
7.1cm2)のものである。The porous dry gel film (thickness 0.
The gas separation membrane (a) in which 9 μm) is closely formed is used as shown in FIG. 1, and pure gases of H 2 , He, N 2 , and O 2 are introduced from one of the flow paths (1), and the gas separation membrane (a) is introduced. The amount of gas passing through the other channel (3) across (2) was measured by a soap membrane flow meter (not shown) connected to the channel (3).
The gas separation membrane (a) used for this measurement had a diameter of 30 mm (≈
7.1 cm 2 ).
この実施例における多孔質膜を流れる上記各気体はクヌ
ーセン流として扱うことができるので、上記結果から透
過速度(m3/m2・s・Pa)と気体分子量Mの平方根の逆
数(M-1/2)との関係を求め、第2図に示す結果を得
た。Since each of the above gases flowing through the porous membrane in this example can be treated as a Knudsen flow, from the above results, the reciprocal of the square root of the permeation rate (m 3 / m 2 · s · Pa) and the gas molecular weight M (M −1). / 2 ) and the results shown in Fig. 2 were obtained.
このときの分離係数は気体分離膜(a)を使用したもの
でH2/N2=3.18であった。理論値はH2/N2=3.74である。The separation coefficient at this time was H 2 / N 2 = 3.18 using the gas separation membrane (a). The theoretical value is H 2 / N 2 = 3.74.
この結果から、従来の多孔質ガラスからなる膜を形成し
た気体分離膜に比べてこの発明の気体分離膜はいずれも
透過度が10000倍程度増加している。From this result, the permeability of each of the gas separation membranes of the present invention is increased by about 10,000 times as compared with the conventional gas separation membrane formed of the porous glass.
(ト)発明の効果 この発明によれば、金属アルコキシドの加水分解により
得られるウエットゲルを、非水溶媒中で加熱・乾燥処理
して脱水することにより細孔径からなる均一な多孔質度
を有するドライゲルが得られ、このドライゲルは、多孔
質支持体表面に薄層状に密着形成することが可能である
ので、透過量の増大した気体分離膜が得られ、とくに水
素分離膜として好適なものである。(G) Effect of the Invention According to the present invention, a wet gel obtained by hydrolysis of a metal alkoxide is heated and dried in a non-aqueous solvent to be dehydrated to have a uniform porosity composed of pore diameters. A dry gel is obtained, and since this dry gel can be formed into a thin layer in close contact with the surface of the porous support, a gas separation membrane with an increased amount of permeation can be obtained, which is particularly suitable as a hydrogen separation membrane. .
第1図はこの発明の気体分離膜の気体透過量を測定する
装置を例示する構成説明図、第2図は第1図の装置によ
る各気体の透過速度と対応する気体の分子量の平方根の
逆数との関係を示すグラフ図である。FIG. 1 is a structural explanatory view illustrating an apparatus for measuring the gas permeation amount of a gas separation membrane of the present invention, and FIG. 2 is the reciprocal of the square root of the molecular weight of the gas corresponding to the permeation rate of each gas by the apparatus of FIG. It is a graph which shows the relationship with.
Claims (4)
面に、所定の気体の選択透過性を有する均一な膜を密着
形成してなり、該膜が金属アルコキシドの加水分解物か
らなる膜厚1〜10μmの多孔質ゲルである気体分離膜。1. A uniform film having a predetermined gas selective permeability is adhered and formed on the surface of a porous support which is freely permeable to gas, and the film is composed of a hydrolyzate of a metal alkoxide. A gas separation membrane which is a porous gel having a thickness of 1 to 10 μm.
1項記載の気体分離膜。2. The gas separation membrane according to claim 1, wherein the predetermined gas is hydrogen.
し、このゾルを多孔質支持体上に塗布して所定温度で放
置してウエットゲル膜とし、該ウエットゲル膜を200℃
までの加熱温度下で、該加熱温度以上の沸点を有する非
水溶媒中に浸漬した状態で加熱乾燥してドライゲル膜と
し、さらに必要に応じて該ドライゲル膜を加熱処理する
ことにより、支持体表面上に均一な膜厚1〜10μmの多
孔質ゲルからなる選択透過性膜を密着形成することを特
徴とする気体分離膜の製造法。3. A sol is prepared by hydrolyzing a metal alkoxide, and the sol is applied onto a porous support and left at a predetermined temperature to form a wet gel film, and the wet gel film is heated to 200 ° C.
The surface of the support is heated to a dry gel film by heating and drying in a state of being immersed in a non-aqueous solvent having a boiling point higher than the heating temperature up to a heating temperature of up to A method for producing a gas separation membrane, which comprises closely forming a selectively permeable membrane made of a porous gel having a uniform thickness of 1 to 10 μm on the top.
オイルである特許請求の範囲第3項記載の製造法。4. The method according to claim 3, wherein the non-aqueous solvent is liquid paraffin or silicone oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074873A JPH0691931B2 (en) | 1986-03-31 | 1986-03-31 | Gas separation membrane and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61074873A JPH0691931B2 (en) | 1986-03-31 | 1986-03-31 | Gas separation membrane and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62227421A JPS62227421A (en) | 1987-10-06 |
JPH0691931B2 true JPH0691931B2 (en) | 1994-11-16 |
Family
ID=13559889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61074873A Expired - Lifetime JPH0691931B2 (en) | 1986-03-31 | 1986-03-31 | Gas separation membrane and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691931B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932986A (en) * | 1989-05-09 | 1990-06-12 | Allied-Signal Inc. | Cross-linked gas selective membranes |
US5160352A (en) * | 1991-09-06 | 1992-11-03 | Texaco Inc. | Method of forming membranes useful for separation of gases |
FR2895275B1 (en) * | 2005-12-22 | 2008-07-25 | Framatome Sa | GAS SEPARATION MEMBRANES CONTAINING SILICA MICROPOROUS SILICA LAYER DOPED BY TRIVALENT ELEMENT |
JP6415200B2 (en) * | 2014-09-11 | 2018-10-31 | 株式会社ノリタケカンパニーリミテド | Single-end sealed cylindrical ceramics and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61212309A (en) * | 1985-03-15 | 1986-09-20 | Tdk Corp | Gas separation process |
-
1986
- 1986-03-31 JP JP61074873A patent/JPH0691931B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62227421A (en) | 1987-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930701352A (en) | Process for preparing sol-gel monolith | |
EP0144097A1 (en) | A process for the production of crack-free semi-permeable inorganic membranes | |
EP0040282B1 (en) | Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a method | |
JPH05192545A (en) | Supported porous ceramic membrane | |
US4412921A (en) | Dry, particulate, inorganic ultrafiltration membranes and the production thereof | |
Asaeda et al. | Porous silica-zirconia (50%) membranes for pervaporation of iso-propyl alcohol (IPA)/water mixtures | |
Klein et al. | Pore structures of sol-gel silica membranes | |
CA1313886C (en) | Preparation of titanium ceramic membranes | |
JPH0691931B2 (en) | Gas separation membrane and manufacturing method | |
US5194200A (en) | Method of creating silica ceramic membranes | |
JPH038729A (en) | Production of porous glass | |
JP2005049119A (en) | Column for chromatograph | |
Gallagher et al. | Silica membranes by the sol—Gel process | |
JP2004168615A (en) | Porous silica membrane and method for manufacturing the same | |
Klein et al. | Porous silica by the sol-gel process | |
JP2001261465A (en) | Production process of ceramic porous filter | |
JP4280860B2 (en) | Method for producing porous material formed on substrate | |
RU2088319C1 (en) | Ceramic ultra- and nanofiltration membrane with selective layer based on transition metal oxides and method of manufacturing thereof | |
JP3501951B2 (en) | Carbon dioxide separation membrane | |
JPS62186921A (en) | Porous zirconia composite filter and its production | |
JP2001261464A (en) | Production process of ceramic porous filter | |
JP3349574B2 (en) | Inorganic porous plate | |
RU2093255C1 (en) | Method of manufacturing ultrafiltration cellulose acetate membranes | |
JP2010194438A (en) | Method of removing moisture from liquid | |
Othman et al. | Review on development of ceramic membrane from sol-gel route: parameters affecting characteristics of the membrane |