JPS62227421A - Gas separating membrane and manufacture of same - Google Patents

Gas separating membrane and manufacture of same

Info

Publication number
JPS62227421A
JPS62227421A JP7487386A JP7487386A JPS62227421A JP S62227421 A JPS62227421 A JP S62227421A JP 7487386 A JP7487386 A JP 7487386A JP 7487386 A JP7487386 A JP 7487386A JP S62227421 A JPS62227421 A JP S62227421A
Authority
JP
Japan
Prior art keywords
porous
gel
membrane
gas separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7487386A
Other languages
Japanese (ja)
Other versions
JPH0691931B2 (en
Inventor
Hiroyoshi Mizuguchi
博義 水口
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61074873A priority Critical patent/JPH0691931B2/en
Publication of JPS62227421A publication Critical patent/JPS62227421A/en
Publication of JPH0691931B2 publication Critical patent/JPH0691931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a hydrogen separated membrane carrying an increased penetration volume by forming closely a uniform membrane of porous gel porous glass constituted with hydrolytic substance of metallic alcoxide on the surface of a porous substrate. CONSTITUTION:A hydrolytic catalyst is added and mixed with an aqueous solution of metallic alcoxide such as silicon tetraethoxide, triethoxyaluminum, tetrapropoxytitanium and the like. Said mixture sol is coated on a porous substrate left in a normal temperature -80 deg.C for 1-10min to form up a wet gel molded material. Then, said molded material is dipped in a nonaqueous solvent, heated, dry treated and dehydrated to form up a dry gel. As nonaqueous solvent, it is not actually mixed with water and a liquid carrying a boiling point of more than 200 deg.C and inactive to wet gel. Dehydration treatment is carried out in a temperature of less than 200 deg.C for approximately 24hr.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は気体分離膜およびその製造法に関する。さら
に詳しくは混合気体から主として水素を分離する気体分
離膜およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a gas separation membrane and a method for manufacturing the same. More specifically, the present invention relates to a gas separation membrane that mainly separates hydrogen from a mixed gas and a method for producing the same.

(ロ)従来の技術 混合気体から主として水素を分離する気体分離膜に、高
分子無孔膜と多孔質膜とがあり高分子無孔膜は分離係数
は大きいが透過量は小さく、一方多孔質膜は分離係数は
小さいが透過量が比較的大きい。このう゛ち多孔質膜か
らなる気体分離膜には、多孔質ガラス膜を用いたものが
知られている。
(b) Conventional technology Gas separation membranes that mainly separate hydrogen from mixed gases include nonporous polymer membranes and porous membranes. Nonporous polymer membranes have a large separation coefficient but a small permeation rate, while porous membranes Membranes have a small separation coefficient, but a relatively large amount of permeation. Among these gas separation membranes made of porous membranes, those using porous glass membranes are known.

この多孔質ガラス膜は、ホウケイ酸ガラスを用いて高温
溶融−成形→分相−溶出過程を経て多孔質状に形成され
たものである。
This porous glass membrane is formed into a porous shape using borosilicate glass through a process of high temperature melting, molding, phase separation, and elution.

(ハ)発明が解決しようとする問題点 しかしながら、上記過程で形成される多孔質ガラス膜は
、その膜厚が0.2mm以上とかなり厚くなり分離能が
あがらず、水素透過性は大きいといっても200X 1
0−@m’/m” m s−P a程度が限度である。
(c) Problems to be solved by the invention However, the porous glass membrane formed in the above process has a thickness of 0.2 mm or more, which is quite thick, and the separation performance is not improved, and the hydrogen permeability is high. Even 200X 1
The limit is about 0-@m'/m" m s-Pa.

この発明はかかる状況に鑑み為されたものであり、こと
に膜厚を薄層化しかつ均一な細孔径を有する気体分離膜
を提供しようとする乙のである。
The present invention was made in view of the above situation, and is particularly intended to provide a gas separation membrane having a thinner membrane and uniform pore diameter.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、気体を自由に透過しうる多
孔質支持体の表面に、所定の気体の選択透過性を有する
均一な膜を密着形成してなり、該層が金属アルコキシド
の加水分解物からなる多孔質ゲルまたは多孔質ガラスで
ある気体分離膜が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a uniform membrane having a predetermined gas selective permeability is closely formed on the surface of a porous support through which gases can freely permeate. A gas separation membrane is provided in which the layer is a porous gel or porous glass made of a metal alkoxide hydrolyzate.

この発明の最も特徴とする点は、金属アルコキシド溶液
から得られるウェットゲルを多孔質支持体に塗布して非
水溶媒中で低温で加熱・乾燥処理することにより薄層で
かつ均一な多孔質のドライゲル膜を宵する気体分離膜を
得ていることである。
The most distinctive feature of this invention is that a wet gel obtained from a metal alkoxide solution is coated on a porous support and heated and dried in a non-aqueous solvent at low temperatures to form a thin and uniform porous layer. The goal is to obtain a gas separation membrane that uses a dry gel membrane.

この発明に用いる金属アルコキッドとしては、特に限定
されず、加水分解してさらに脱水することによりゲルま
たはガラスを与えうるものであればよく例えば、ソリコ
ンアルコキッド、アルミニウムアルコキッド、チタンア
ルコキシド、ボロンアルコキシド、ナトリウムアルコキ
シド、カルノウムアルコキシド、リチウムアルコキシド
等が挙げられ、シリコンアルコキシド、アルミニウムア
ルコキシド、チタンアルコキシドが好ましい。
The metal alkokids used in this invention are not particularly limited, and any metal alkokids that can be hydrolyzed and further dehydrated to form a gel or glass may be used, for example, solicon alkokids, aluminum alkokids, titanium alkoxides, boron alkoxides, etc. Examples include alkoxide, sodium alkoxide, carnoum alkoxide, lithium alkoxide, and the like, with silicon alkoxide, aluminum alkoxide, and titanium alkoxide being preferred.

またアルコキシ基には低級アルコキシ基が適しており、
例えばメトキシ基、エトキシ基、プロピオキシ基等が挙
げられる。
In addition, a lower alkoxy group is suitable for the alkoxy group,
Examples include methoxy group, ethoxy group, propioxy group, and the like.

上記金属アルコキシドには例えば、シリコンテトラエト
キシドS i(OCtHS)4、トリエトキシアルミニ
ウムA I(OCtHs)s、テトラプロピオキンチタ
ンT i(OC3H?)4等が挙げられ、シリコンテト
ラエトキシドが好ましい。
Examples of the metal alkoxides include silicon tetraethoxide S i (OCtHS) 4 , triethoxyaluminum A I (OCtHs) s, and tetrapropiokine titanium Ti (OC3H?) 4 . preferable.

また、この発明に用いる上2己金属アルコキシドの1つ
のアルコキシド基が脂肪族または芳香族の炭化水素基、
アミノ基またはアルキルアミノ基で置換された置換アル
コキシ基であってもよい。
Further, one alkoxide group of the upper 2-self metal alkoxide used in this invention is an aliphatic or aromatic hydrocarbon group,
It may also be a substituted alkoxy group substituted with an amino group or an alkylamino group.

上記金属アルコキシドの水性溶媒としては従来法と同様
に、水とメタノール、エタノール、プロパツール等の低
級アルコールとの混合物が用いられる。
As the aqueous solvent for the metal alkoxide, a mixture of water and a lower alcohol such as methanol, ethanol, propatool, etc. is used, as in the conventional method.

また加水分解触媒は従来法と同様に、塩酸、硫酸、アン
モニア水溶液等が用いられる。
Further, as the hydrolysis catalyst, hydrochloric acid, sulfuric acid, ammonia aqueous solution, etc. are used as in the conventional method.

金属アルコキシドを加水分解してゾルとする場合、金属
アルコキシド含有水性溶液に前記加水分解触媒を添加し
て常温で撹拌して行うことができるが、若干昇温しで加
水分解反応を速めてもよい。
When a metal alkoxide is hydrolyzed to form a sol, the hydrolysis catalyst can be added to an aqueous solution containing the metal alkoxide and stirred at room temperature, but the hydrolysis reaction may be accelerated by slightly raising the temperature. .

また上記加水分解反応は、金属アルコキシド、水または
水性溶媒および加水分解触媒を同時に添加混合して行う
てもよい。
Further, the above hydrolysis reaction may be carried out by simultaneously adding and mixing the metal alkoxide, water or an aqueous solvent, and a hydrolysis catalyst.

このようにして得られたゾルは、意図する多孔質支持体
に塗布されて所定温度で放置して(例えば常温〜80℃
で1〜60分)ウェットゲル成形体とされる。
The sol thus obtained is applied to the intended porous support and left at a predetermined temperature (e.g. room temperature to 80°C).
(1 to 60 minutes) to form a wet gel molded body.

この発明においては、上記得られたウェットゲルを密着
形成した多孔質支持体は、続いて非水溶媒に浸漬して加
熱・乾燥処理してウェットゲルを脱水しドライゲルとす
るが、これは非水溶媒中では該溶媒の粘性のためウェッ
トゲルの脱水が緩慢に行われ、その結果得られるドライ
ゲルの気孔率および細孔径がほぼ均一に保持される点で
重要な意義を有する。
In this invention, the porous support on which the wet gel obtained above is closely formed is then immersed in a non-aqueous solvent and heated and dried to dehydrate the wet gel and obtain a dry gel. In a solvent, the wet gel is slowly dehydrated due to the viscosity of the solvent, and as a result, the porosity and pore diameter of the resulting dry gel are maintained substantially uniform, which is an important point.

上記非水溶媒としては、実質的に水と混和せず沸点が約
200℃を越え、少なくとも約200℃までの温度では
安定で該ウェットゲルに対して不活性な液体であればよ
く、例えば流動パラフィン、ソリコンオイル、なたね油
等が上げられる。
The nonaqueous solvent may be any liquid that is substantially immiscible with water, has a boiling point exceeding about 200°C, is stable at temperatures up to at least about 200°C, and is inert to the wet gel. Examples include paraffin, soric oil, and rapeseed oil.

上記加熱・乾燥条件は、ウェットゲルの脱水が均一に行
われかつ意図する気孔率が得られるように適宜選択され
るが、通常30〜80%の気孔率を得るためには上記非
水溶媒中で20Q℃以下で24時間程度処理され、特に
温度は100〜200℃で行うのが脱水時間が短くなる
ので好ましい。また200℃を越えると製品が変形した
り割れが生じ始めるので好ましくない。
The above heating and drying conditions are appropriately selected so that the wet gel is dehydrated uniformly and the intended porosity is obtained. The treatment is carried out for about 24 hours at a temperature of 20Q°C or lower, and it is particularly preferable to carry out the treatment at a temperature of 100 to 200°C because the dehydration time is shortened. Furthermore, if the temperature exceeds 200°C, the product may become deformed or cracks may begin to occur, which is not preferable.

この発明において、上記ドライゲルの強度を増太さ仕る
ため、該ゲルに必要に応じてさらに加熱処理してもよい
In this invention, in order to increase the strength of the dry gel, the gel may be further heat-treated as required.

上記加熱条件は、通常300〜900℃程度の高温度下
で徐々に行うのが得られるゲルの気孔率の均一性の点で
好ましい。該条件を制御することにより通常、05〜1
2時間で所望の多孔質ガラスが得られる。この場合、1
000℃以上でかつ24時間以上の処理をすると多孔質
性が失われるので好ましくない。上記のごとくして得ら
れるドライゲルの細孔径としては、 200Å以下が適
しており、主として水素を分離する場合に好ましい。こ
の細孔径の調整は上記処理中ゲル化条件および乾燥条件
を調節することにより行われる。
The above heating conditions are preferably gradually carried out at a high temperature of usually about 300 to 900° C. from the viewpoint of uniformity of the porosity of the resulting gel. By controlling the conditions, usually 05 to 1
The desired porous glass is obtained in 2 hours. In this case, 1
If the treatment is carried out at a temperature of 000° C. or higher and for a period of 24 hours or more, the porosity will be lost, which is not preferable. The pore diameter of the dry gel obtained as described above is suitably 200 Å or less, and is preferable mainly when hydrogen is to be separated. The pore size is adjusted by adjusting the gelling conditions and drying conditions during the above treatment.

この発明の気体分離膜は、前記ゾルを意図する多孔質支
持体に塗布した後、前記のごとく処理して形成されるが
、この場合形成される塗布膜の膜厚は、該層が保持する
気孔率に応じて若干選択されるが、例えば上記気孔率を
有しかつ透過率を損なわないものとしては、0.1〜1
00μmが適しており、1〜10μmが好ましい。
The gas separation membrane of the present invention is formed by applying the sol to the intended porous support and then treating it as described above. It is selected slightly depending on the porosity, but for example, one having the above porosity and not impairing the transmittance is 0.1 to 1.
00 μm is suitable, and 1 to 10 μm is preferred.

またこの発明の気体分離膜は、該層を構成するゾルが流
動性を存するうちに意図する支持体表面に塗布して放置
しその後前記のごとく加熱・乾燥処理して形成する。
The gas separation membrane of the present invention is formed by coating the sol constituting the layer on the surface of the intended support while it has fluidity, leaving it to stand, and then heating and drying it as described above.

この発明の気体分離膜に用いる多孔質支持体は、材質と
しては、アルミナ、ノルコニア、ムライト、マグネシア
、窒化ケイ素等のセラミックが適している。
Suitable materials for the porous support used in the gas separation membrane of the present invention include ceramics such as alumina, norconia, mullite, magnesia, and silicon nitride.

また、この多孔質支持体の細、孔径は、0.1〜1o。Moreover, the fine pore diameter of this porous support is 0.1 to 1o.

μmが適しており、主として水素を分離する場合は1〜
10μmが好ましい。
μm is suitable, and when mainly separating hydrogen, 1 to 1 μm is suitable.
10 μm is preferred.

上記の多孔質支持体は、どんな形状で用いられてもよく
、例えば板状、チューブ状、粒子状等が挙げられ、用途
に応じて適宜選択される。
The above-mentioned porous support may be used in any shape, such as a plate shape, a tube shape, a particulate shape, etc., and is appropriately selected depending on the purpose.

(ホ)作用 この発明によれば、金属アルコキシドの加水分解物から
なるゾルの塗布により薄膜状のウェットゲル膜を得るこ
とができる。このゲル膜は粘性を有する非水溶媒中で加
熱・乾燥処理されることによりこのゲルからの脱水が徐
々に行われかつ脱水してできた水の蒸発が粘性によって
押さえらることによりゲル全体として均一に分散した部
分からの脱水がおこなわれ均一な細孔径でかつ均一に分
散しT二条孔質のドライゲル膜が得られる。
(E) Function According to the present invention, a thin wet gel film can be obtained by applying a sol made of a hydrolyzate of a metal alkoxide. This gel film is heated and dried in a viscous non-aqueous solvent, so that water is gradually removed from the gel, and the viscosity suppresses the evaporation of the dehydrated water, resulting in the gel as a whole. Dehydration is performed from the uniformly dispersed portion to obtain a dry gel membrane with T double pores having a uniform pore diameter and uniformly dispersed.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 S l(OCvH5)41011L水 5ra(!およ
び1.ON −HClo、1m(を混合撹拌して加水分
解し、均一なゾル溶液とした。これに0.IN −N 
H、OHでpl(を5゜0に調整した後このゾル溶液を
多孔質アルミナ支持体(細孔径約1,5〜4.0μm)
上に流し出して塗布し、常温で30分程度放置してゲル
化させ厚さ約2.0μmのウェットゲル膜を形成した。
(To) Example S 1 (OCvH5) 41011L water 5ra (! and 1.ON -HClo, 1m) were mixed and stirred to hydrolyze to make a homogeneous sol solution.To this, 0.IN -N
After adjusting PL to 5°0 with H and OH, the sol solution was transferred to a porous alumina support (pore diameter approximately 1.5 to 4.0 μm).
It was applied by pouring it onto the top and left to stand at room temperature for about 30 minutes to gel, forming a wet gel film with a thickness of about 2.0 μm.

その後この支持体をウェットゲル膜全体が流動パラフィ
ン中に浸漬するように入れ80℃で24時間加熱・乾燥
処理による脱水をおこなった。この間ゲルは見掛は上収
縮せず割れなかった。これを流動パラフィン中より取り
出してアセトンで洗浄後、空気中で120℃で1時間乾
燥し、多孔質のドライゲル膜を得た。この得られたゲル
の細孔径は160〜30人、気孔率は約76.4%であ
った。 これを500℃で1時間加熱処理することによ
り多孔質ガラス膜とした。この得られた多孔質ガラス膜
の細孔径は150〜70人、気孔率は約72.2%であ
った。またこのガラスには割れは見られなかった。
Thereafter, this support was placed so that the entire wet gel membrane was immersed in liquid paraffin, and dehydrated by heating and drying at 80° C. for 24 hours. During this time, the gel did not appear to shrink upward and did not crack. This was taken out from the liquid paraffin, washed with acetone, and then dried in air at 120°C for 1 hour to obtain a porous dry gel membrane. The resulting gel had a pore size of 160 to 30 pores and a porosity of about 76.4%. This was heat-treated at 500° C. for 1 hour to form a porous glass membrane. The obtained porous glass membrane had a pore diameter of 150 to 70 pores and a porosity of about 72.2%. Moreover, no cracks were observed in this glass.

以上のごとくして得られた多孔質ドライゲル膜(膜厚0
.9μm〕、または多孔質ガラス膜(膜厚0.8μm)
をそれぞれ密着形成した気体分離膜(a)(b)を第1
図に示すごとく用い、H2、He、Ny、0゜それぞれ
の純ガスを一方の流路(1)から流入し、気体分離膜(
2)を隔てて他方の流路(3)へ透過する気体量を該流
路(3)に接続されたセッケン膜流量計(図示しない)
により測定した。なおこの測定に用いた気体分離膜(a
)(b)はいずれも直径3011I11(=7.1cm
”)のものである。
The porous dry gel membrane obtained as described above (film thickness 0
.. 9μm] or porous glass membrane (film thickness 0.8μm)
The gas separation membranes (a) and (b) formed in close contact with each other are
As shown in the figure, pure gases of H2, He, Ny, and 0° are introduced through one channel (1), and the gas separation membrane (
A soap membrane flow meter (not shown) connected to the flow path (3) measures the amount of gas permeating into the other flow path (3) across the flow path (2).
It was measured by The gas separation membrane (a
) and (b) both have a diameter of 3011I11 (=7.1cm
")belongs to.

この実施例における多孔質膜を流れる上記各気体はクヌ
ーセン流として扱うことかできるので、上記結果から透
過速度(n+’/m’・5−Pa)と気体分子fiMの
平方根の逆数CM−1/″)との関係を求め、第2図に
示す結果を得た。
Since each of the above-mentioned gases flowing through the porous membrane in this example can be treated as a Knudsen flow, it is clear from the above results that the permeation rate (n+'/m'・5-Pa) and the reciprocal of the square root of the gas molecule fiM, CM-1/ '') and obtained the results shown in Figure 2.

このときの分離係数は気体分離膜(a)を使用したもの
でHz/ N 2 = 3.18、気体分離膜(b)を
使用しにもので82/N ?= 3.01であった。理
論値はH2/ N t= 3.74である。
The separation coefficient at this time is Hz/N 2 = 3.18 when using the gas separation membrane (a), and 82/N when using the gas separation membrane (b). = 3.01. The theoretical value is H2/Nt=3.74.

この結果から、従来の多孔質ガラスからなる膜を形成し
た気体分離膜に比べてこの発明の気体分離膜はいずれら
透過度が10000倍程度増加している。
From these results, the permeability of the gas separation membrane of the present invention is approximately 10,000 times higher than that of the conventional gas separation membrane formed with a membrane made of porous glass.

(ト)発明の効果 この発明によれば、金属アルコキシドの加水分解により
得られるウェットゲルを、非水溶媒中で加熱・乾燥処理
して脱水することにより細孔径からなる均一な多孔質度
を有するドライゲルが得られ、このドライゲルまたはこ
れをさらに熱処理した多孔質ガラスは、多孔質支持体表
面に薄層状に密着形成することが可能であるので、透過
量の増大した気体分離膜が得られ、と(に水素分離膜と
して好適なものである。
(G) Effects of the Invention According to the present invention, a wet gel obtained by hydrolysis of a metal alkoxide is dehydrated by heating and drying in a non-aqueous solvent, so that the wet gel has a uniform porosity with a pore size. A dry gel is obtained, and this dry gel or porous glass obtained by further heat treatment can be formed in a thin layer on the surface of a porous support, so a gas separation membrane with an increased permeation rate can be obtained. (It is suitable as a hydrogen separation membrane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の気体分離膜の気体透過量を測定する
装置を例示する構成説明図、第2図は第1図の装置によ
る各気体の透過速度と対応する気体の分子虫の平方根の
逆数との関係を示すグラフ図である。
FIG. 1 is a configuration explanatory diagram illustrating an apparatus for measuring the amount of gas permeation through a gas separation membrane of the present invention, and FIG. 2 shows the permeation rate of each gas by the apparatus of FIG. 1 and the square root of the molecular weight of the corresponding gas. FIG. 3 is a graph diagram showing a relationship with a reciprocal number.

Claims (1)

【特許請求の範囲】 1、気体を自由に透過しうる多孔質支持体の表面に、所
定の気体の選択透過性を有する均一な膜を密着形成して
なり、該膜が金属アルコキシドの加水分解物からなる多
孔質ゲルまたは多孔質ガラスである気体分離膜。 2、選択透過性を有する膜厚が1〜10μmである特許
請求の範囲第1項記載の気体分離膜。 3、所定の気体が水素である特許請求の範囲第1項記載
の気体分離膜。 4、金属アルコキシドを加水分解してゾルとし、このゾ
ルを多孔質支持体上に塗布して所定温度で放置してウェ
ットゲル膜とし、該ウェットゲル膜を200℃までの加
熱温度下で、該加熱温度以上の沸点を有する非水溶媒中
に浸漬した状態で加熱乾燥してドライゲル膜とし、さら
に必要に応じて該トライゲル膜を加熱処理することによ
り、支持体表面上に均一な多孔質ゲルまたは多孔質ガラ
スからなる選択透過性膜を密着形成することを特徴とす
る気体分離膜の製造法。 4、非水溶媒が流動パラフィンまたはシリコンオイルで
ある特許請求の範囲第3項記載の製造法。
[Claims] 1. A uniform membrane having selective permeability for a predetermined gas is closely formed on the surface of a porous support through which gases can freely permeate, and the membrane is capable of hydrolyzing metal alkoxides. A gas separation membrane that is a porous gel or porous glass made of 2. The gas separation membrane according to claim 1, which has permselectivity and has a thickness of 1 to 10 μm. 3. The gas separation membrane according to claim 1, wherein the predetermined gas is hydrogen. 4. Hydrolyze metal alkoxide to form a sol, apply this sol on a porous support and leave it at a predetermined temperature to form a wet gel film, and heat the wet gel film to 200°C to form a sol. By heating and drying the film while immersed in a non-aqueous solvent having a boiling point higher than the heating temperature, and further heat-treating the trigel film as necessary, a uniform porous gel or gel film can be formed on the surface of the support. A method for producing a gas separation membrane, characterized by closely forming a permselective membrane made of porous glass. 4. The manufacturing method according to claim 3, wherein the non-aqueous solvent is liquid paraffin or silicone oil.
JP61074873A 1986-03-31 1986-03-31 Gas separation membrane and manufacturing method Expired - Lifetime JPH0691931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074873A JPH0691931B2 (en) 1986-03-31 1986-03-31 Gas separation membrane and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074873A JPH0691931B2 (en) 1986-03-31 1986-03-31 Gas separation membrane and manufacturing method

Publications (2)

Publication Number Publication Date
JPS62227421A true JPS62227421A (en) 1987-10-06
JPH0691931B2 JPH0691931B2 (en) 1994-11-16

Family

ID=13559889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074873A Expired - Lifetime JPH0691931B2 (en) 1986-03-31 1986-03-31 Gas separation membrane and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0691931B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932986A (en) * 1989-05-09 1990-06-12 Allied-Signal Inc. Cross-linked gas selective membranes
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
JP2009520594A (en) * 2005-12-22 2009-05-28 アレバ エヌペ Gas separation membrane containing a silica-based microporous silica layer doped with trivalent elements
JP2016055272A (en) * 2014-09-11 2016-04-21 株式会社ノリタケカンパニーリミテド One-end sealed type cylindrical ceramic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212309A (en) * 1985-03-15 1986-09-20 Tdk Corp Gas separation process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212309A (en) * 1985-03-15 1986-09-20 Tdk Corp Gas separation process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932986A (en) * 1989-05-09 1990-06-12 Allied-Signal Inc. Cross-linked gas selective membranes
US5160352A (en) * 1991-09-06 1992-11-03 Texaco Inc. Method of forming membranes useful for separation of gases
JP2009520594A (en) * 2005-12-22 2009-05-28 アレバ エヌペ Gas separation membrane containing a silica-based microporous silica layer doped with trivalent elements
JP2016055272A (en) * 2014-09-11 2016-04-21 株式会社ノリタケカンパニーリミテド One-end sealed type cylindrical ceramic

Also Published As

Publication number Publication date
JPH0691931B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
KR930701352A (en) Process for preparing sol-gel monolith
JPH05192545A (en) Supported porous ceramic membrane
US5096745A (en) Preparation of titanium oxide ceramic membranes
Klein et al. Pore structures of sol-gel silica membranes
US4814202A (en) Processes for manufacturing thin membranes composed of an organic lattice of titanium and silicon oxides and powder composed of submicronic grains of mixed titanium and silicon oxides
JP2006519095A (en) Ceramic nanofiltration membrane used for organic solvent and method for producing the same
CN112426895A (en) Method for preparing hybrid silicon film by adopting POSS (polyhedral oligomeric silsesquioxane) doped structure and application of hybrid silicon film
CA1313886C (en) Preparation of titanium ceramic membranes
Chu et al. Microporous silica membranes deposited on porous supports by filtration
Yazawa et al. Preparation of water and alkali durable porous glass membrane coated on porous alumina tubing by sol-gel method
JPS62227421A (en) Gas separating membrane and manufacture of same
JP2955062B2 (en) Hydrogen gas separation membrane
EP0515491B1 (en) Inorganic membranes and a process for making inorganic membranes
JPH038729A (en) Production of porous glass
JPH06170188A (en) Gas separation membrane and production thereof
Gallagher et al. Silica membranes by the sol—Gel process
JP2003047831A (en) Fluid separation filter and method for manufacturing the same
JPH07213877A (en) Inorganic xerogel film, its production and gas separating membrane made of the same
JP2002119822A (en) Hydrogen permeable material and method of manufacturing for the same
RU2088319C1 (en) Ceramic ultra- and nanofiltration membrane with selective layer based on transition metal oxides and method of manufacturing thereof
JP2923752B2 (en) Humidity responsive membrane with inorganic xerogel membrane
JP3501951B2 (en) Carbon dioxide separation membrane
JPS62186921A (en) Porous zirconia composite filter and its production
JPS62223030A (en) Production of glass
JPH10218690A (en) Production of silicious porous film