JP4280860B2 - Method for producing porous material formed on substrate - Google Patents

Method for producing porous material formed on substrate Download PDF

Info

Publication number
JP4280860B2
JP4280860B2 JP08778299A JP8778299A JP4280860B2 JP 4280860 B2 JP4280860 B2 JP 4280860B2 JP 08778299 A JP08778299 A JP 08778299A JP 8778299 A JP8778299 A JP 8778299A JP 4280860 B2 JP4280860 B2 JP 4280860B2
Authority
JP
Japan
Prior art keywords
phase
gel
minutes
solvent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08778299A
Other languages
Japanese (ja)
Other versions
JP2000281329A (en
Inventor
直弘 曽我
和樹 中西
創一 公文
Original Assignee
直弘 曽我
和樹 中西
有限会社エム・アール・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直弘 曽我, 和樹 中西, 有限会社エム・アール・シー filed Critical 直弘 曽我
Priority to JP08778299A priority Critical patent/JP4280860B2/en
Publication of JP2000281329A publication Critical patent/JP2000281329A/en
Application granted granted Critical
Publication of JP4280860B2 publication Critical patent/JP4280860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は基板あるいは支持体上への多孔質材料の製造方法に関する。この発明の製造方法は、薄層クロマトグラフィー用多孔質プレートや電気泳動分析用ゲルの製造に好適に利用される。
【0002】
【従来の技術】
薄層クロマトグラフィー担体としては、シリカゲル等の無機系微粒子をガラス板上に密着させて塗布したものが知られている。無機系微粒子のサイズが小さく、形状が均一になるほど分析感度は向上するが、粒子径の減少と共に試料を含む溶液の展開速度は低下する。また、薄く均一な塗布層を形成することが重要であるが、従来の作製方法では約0.1mm以下の厚さでは、再現性の良い塗布層を形成することが困難であった。
【0003】
一般にシリカゲル等の無機質多孔体は、液相反応であるゾル−ゲル法によって作製される。ゾル−ゲル法とは、重合可能な低分子化合物を生成し、最終的に凝集体や重合体を得る方法一般のことを指す。例えば、金属アルコキシドの加水分解のほか、金属塩化物の加水分解、カルボキシル基、β−ジケトンのような加水分解性の官能基を持つ金属塩あるいは配位化合物の加水分解、金属アミン類の加水分解が挙げられる。また、薄層クロマトグラフィー用の担体には、安価な水ガラスに強酸を加えてゲル化させた後破砕した、不均一な形状のゲル微粒子や、水ガラスを主原料とする球状粒子も一般的に用いられてきた。
薄層クロマトグラフィー担体は、主にシリカゲル微粒子を高濃度に分散させたスラリーを塗布し、ガラス板上に物理的に凝集した微粒子を層状に付着させることによって製造されてきた。
【0004】
【発明が解決しようとする課題】
しかし、塗布法による薄相クロマトグラフィー担体は、一般に30〜40%以下の気孔率しか持たず、試料溶液の展開速度を高めるためには粒子径を大きくする以外に方法がなく、これは分離性能の低下につながっていた。また、0.1mm程度の厚みを持った担体では、複数成分の分離を行うために10cm程度の展開距離が必要であった。薄層クロマトグラフィー担体の気孔率を広い範囲で制御し、さらにその厚さを構造の均一性を保ちつつ薄くする方法は、得られる担体の分離性能の大幅な向上につながるにもかかわらず、十分に開発されていなかった。
【0005】
そこで本発明者等が研究したところ、まず基板上に約100nm以上の、巨大空孔となる溶媒リッチ相あるいは担体部となる骨格相を持つゲル膜をゾル−ゲル法によって作製し、続いて加熱処理を行うことにより、溶媒リッチ相領域および骨格相領域の形状が、ゲル相の厚さを貫く円柱形、あるいは溶媒リッチ相および骨格相がともにゲル相の厚さを貫き基板に平行な次元に共連続である形態、あるいはゲル相の厚さより小さい円盤形および液滴形に分散した溶媒リッチ相領域からなる、膜厚5〜10μm程度の均質な多孔構造を持ったゲルが生成することを見出した。
この発明はこのような知見に基づいてなされたものである。その目的は、従来の塗布法によって作製し得なかった、所望する中心細孔径と狭い分布を持つ細孔構造を再現性良く与え、しかも膜面積全域にわたって再現性の高い均質な構造を持ち、その結果高い分離性能や表面反応特性を与える、基板上に形成された無機系多孔質体の製造方法を確立することにある。
【0006】
【課題を解決するための手段】
その手段は、まず基板上に約100nm以上の巨大空孔となる溶媒リッチ相あるいは約100nm以上の担体部となる骨格相を持つゲル膜をゾル−ゲル法によって作製し、続いて加熱処理を行うことにより、溶媒リッチ相領域あるいは骨格相領域の形状が、ゲル相の厚さを貫く円柱形、あるいは溶媒リッチ相および骨格相がともにゲル相の厚さを貫き基板に平行な次元に共連続である形態、あるいはゲル相の厚さより小さい円盤形および液滴形に分散した溶媒リッチ相領域からなる、均質な多孔構造を持ったゲルを作製することを特徴とする。
【0007】
ここで、溶媒リッチ相あるいは骨格相領域の平均サイズは、好ましくは約100nm以上で、更に好ましくは100nm以上30μm以下である。
【0008】
本発明において最も有効に細孔構造を制御することができる無機多孔質の作製法としては、金属アルコキシドを出発原料とし、必要に応じて適当な共存物質を原料に添加して、巨大空孔となる溶媒リッチ相を持つ構造を生じせしめる、ゾル−ゲル法を挙げることができる。適当な共存物質とは、ゾル−ゲル転移と相分離過程とを同時に誘起する働きをもつ物質であり、これによって溶媒リッチ相と骨格相とに分離すると同時にゲル化する。共存物質としてはポリエチレンオキシドのように溶媒に溶ける高分子が望ましい。
【0009】
ゾル−ゲル法に用いられる加水分解性の官能基を有する金属化合物としては、金属アルコキシド又はそのオリゴマーを用いることができ、これらのものは例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数の少ないものが好ましい。また、その金属としては、最終的に形成される酸化物の金属、例えばSi、Ti、Zr、Alが使用される。この金属としては1種又は2種以上であっても良い。一方オリゴマーとしてはアルコールに均一に溶解分散できるものであればよく、具体的には10量体程度まで使用できる。また、これらのケイ素アルコキシドのアルコキシ基のいくつかがアルキル基に置換された、アルキルアルコキシシラン類、およびそれらの10量体程度までのオリゴマーが好適に用いられる。またケイ素に変えて中心金属元素を、チタン、ジルコニウム、アルミニウム等に置換したアルキル置換金属アルコキシドも同様に用いることができる。
【0010】
また、酸性水溶液としては、通常塩酸、硝酸等の鉱酸0.001規定以上のもの、あるいはギ酸、酢酸等の有機酸0.1規定以上のものが好ましい。
【0011】
出発物質がアルキル置換していないケイ素アルコキシドの場合、共存物質としてポリエチレンオキシドなどの水溶性高分子、あるいは界面活性剤など相分離を誘起する成分を添加することが有効である。
ここで、水溶性高分子は、理論的には適当な濃度の水溶液と成し得る水溶性有機高分子であって、加水分解性の官能基を有する金属化合物によって生成するアルコールを含む反応系中に均一に溶解し得るものであれば良いが、具体的には高分子金属塩であるポリスチレンスルホン酸のナトリウム塩またはカリウム塩、高分子酸であって解離してポリアニオンとなるポリアクリル酸、高分子塩基であって水溶液中でポリカチオンを生ずるポリアリルアミンおよびポリエチレンイミン、あるいは中性高分子であって主鎖にエーテル結合を持つポリエチレンオキシド、あるいはポリビニルピロリドン等が好適である。
【0012】
また上記の出発物質に溶媒を添加することにより、反応速度や形態を制御することができる。添加溶媒は、シリケート重合体と水・アルコール混合溶媒の親和性を向上させるものであれば特に制限はないが、溶解度パラメーター値が8〜15程度の、有機シリケート重合体と水・アルコール混合溶媒の中間的な極性を持ち蒸気圧が比較的低い、メタノール、エタノール、プロパノール、N,N−ジメチルホルムアミド、N−メチルホルムアミド等が適する。
【0013】
製膜をおこなう基板としては、金属、ガラス、および高分子を用いることができるが、極めて撥水性の高い高分子基板においては膜の基板への付着性が弱くなることを除いて特に制限はない。製膜後の熱処理を高温で行う必要がある場合には、ガラス基板が好適に用いられる。また、平坦な基板のほかに、貫通孔をもつ多孔性基板や、数十マイクロメートル程度の凹凸をもつ基板にも、膜を形成することができる。
この手段において特に望ましいのは、骨格相をシリカあるいは有機シリケートとし、基板をソーダライムシリカガラスあるいはポリエステル樹脂とし、添加溶媒をN,N−ジメチルホルムアミドとする場合である。さらにコーティング溶液の組成としては、メチルトリメトキシシラン9.55gに対して硝酸水溶液が2.0〜4.0g、N,N−ジメチルホルムアミドが0〜5.0gが好適である。より望ましくは、メチルトリメトキシシラン9.55gに対して硝酸水溶液が2.5〜3.5g、N,N−ジメチルホルムアミドが0〜3.0gが好適である。
【0014】
基板をコーティング液に垂直に浸して、一定速度で引き上げるディップ法では、液面付近で基板上に形成される液膜からの、低沸点成分の速やかな気化・蒸発によって、コーティング液中の溶媒相組成が変化し、このことが溶解している酸化物重合体と溶媒相との化学的親和性を低下させる要因になる場合、膜中に相分離が誘起される。相分離が起こった膜では、ゲルを形成しやすい酸化物重合体に富んだ相と、流動相を形成して乾燥・熱処理後には気孔部となる溶媒相との、微視的相領域の形成が起こる。各々の相領域のサイズは、相分離過程が長く続くほど粗大化によって大きくなるので、コーティング液を調製してからディップ操作を行うまでの時間が短く重合体が十分に成長していないときには大きい相領域が、ディップ操作を行うまでの時間が長く重合体が成長した後には細かい相領域が、膜の構造として凍結される。
なお、ディップ法の引き上げ速度は、0.1〜10mm/secが好ましい。
【0015】
基板を一定速度で回転させて、コーティング溶液の平面方向への展開と余剰溶液の除去を行うスピン法においても、まったく同様に、コーティング溶液調製から製膜までの時間を調整することによって、得られる膜の微細構造を制御することができる。なお、スピン法における回転速度は、100〜5000rpmが好ましい。
【0016】
このように、膜中の相分離構造は、コーティング液中における金属酸化物重合体の成長挙動に依存するので、重合部位を不活性化するなどの何らかの手段によって、コーティング液の製膜特性を害することなく重合体の成長を途中で停止させれば、その後はコーティング時間に関係なく一定の膜構造を得ることができる。
【0017】
溶液を調製してからコーティングを行うまでの反応時間が増加すると、重合体の成長に起因して骨格相の体積分率が増加するため、膜の構造は微多孔性膜あるいは分散骨格相から、溶媒リッチ相と骨格相の共連続構造を経て、連続した骨格相と分散した溶媒リッチ相、の順に変化する。また反応時間の増加に伴い、分散した溶媒リッチ相の形態は、膜の厚さを貫く円筒形から、膜の厚さよりも薄い円盤型に、膜面方向の直径を減じながら変化する。
【0018】
コーティング溶液を調製してからコーティングを行うまでの反応時間が短い領域での膜の構造は、ガラス板のような有機シリケート重合体と親和性の高い基板を用いた場合には微多孔性となり、ポリエステル等の溶媒リッチ相とも有機シリケート相とも同程度の親和性を持つ基板を用いた場合には分散骨格相となる。フッ化炭素樹脂系などの極めて撥水性の強い基板を用いた場合には、膜が形成する前に反応溶液が液滴状に分散して滑り落ちてしまい極めて付着性の低い膜となるため、多孔性膜の作製には適しない。
【0019】
コーティングをディップ法によって行う場合の引き上げ速度を増し、あるいはスピン法によって行う場合の回転速度を減じると、同条件の反応溶液を用いた場合に得られるゲルの膜厚は増加し、分散した骨格相から分散した溶媒リッチ相への形態の変化が起こる反応時間は短時間側へ移動する。本方法の形態制御は、反応溶液調製後製膜に至るまでの時間によってなされ、その他に製膜時の基板表面の極性、溶液の塗布・展開速度、製膜チャンバー中の雰囲気等によって影響を受けるが、反応容器や製膜装置を同一にし、反応溶液の温度履歴を同一に保つことにより、溶液調製から製膜までの反応時間に依存した形態の多孔膜を、再現性良く得ることができる。
【0020】
製膜後の試料は溶媒の蒸発によって基板に密着した乾燥ゲル膜となる。この乾燥ゲル膜中には、出発溶液中の共存物質が残存する可能性があるので、適当な温度で熱処理を行い、必要に応じて有機物等を熱分解することによって、目的の無機系多孔質体を得ることができる。なお、乾燥は、40〜100℃で数時間〜数十時間放置して行い、熱処理は、120〜700℃程度で加熱する。
【0021】
【実施例】
−実施例1−
まず1モル濃度硝酸水溶液3.09gにジメチルホルムアミド0.95gを加え均一溶液とした後、メチルトリメトキシシラン9.55gを氷冷下で撹拌しながら加えて加水分解を行った。5分間撹拌した後、反応溶液を20℃に保ち、所定の反応時間重合体を成長させた後、ディップ法によってスライドガラス基板上にゲル膜を形成した。ディップ操作における基板の引き上げ速度は2cm/minとし、製膜雰囲気は飽和水蒸気とした。
【0022】
その結果、反応時間210分までは基板に密着した微多孔性膜が、その後ゲル化時間である245分に至るまでは、円筒状あるいは円盤状の分散したマクロ孔と連続した骨格相からなる、厚さ約5μmの多孔性膜が得られた。SEM観察によって見られたマクロ孔のサイズは、215分において直径約3〜5μm程度から、240分において直径約1〜2μm程度に徐々に減少した。図1は前者の、図2は後者の膜の、レーザー共焦点顕微鏡による、3次元構造の観察結果を示す図(顕微鏡写真図)である。
【0023】
−実施例2−
実施例1の反応組成において、ジメチルホルムアミドの添加量のみを変えて、他の条件は同一にしてゲル膜を得た。ジメチルホルムアミドを添加しない場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、95分となり、ゲル化時間は150分に短縮された。ジメチルホルムアミドが0.48gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、160分となり、ゲル化時間は195分になった。ジメチルホルムアミドが1.43gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、262分となり、ゲル化時間は300分になった。ジメチルホルムアミドが1.9gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、340分となり、ゲル化時間は370分になった。このように、ジメチルホルムアミドの添加量の増加と共にゲル化時間は増加し、微多孔性膜からマクロ孔膜へ変化する反応時間は、相対的にゲル化時間に近づく。
【0024】
−実施例3−
実施例1の反応組成において、硝酸水溶液の量のみを変えて、他の条件は同一にしてゲル膜を得た。硝酸水溶液が2.42gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、170分となり、ゲル化時間は370分になった。硝酸水溶液が2.69gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、190分となり、ゲル化時間は305分になった。硝酸水溶液が2.82gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、205分となり、ゲル化時間は275分になった。硝酸水溶液が2.96gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、210分となり、ゲル化時間は270分になった。硝酸水溶液が3.23gの場合には、微多孔性膜からマクロ孔膜に変化する反応時間が、215分となり、ゲル化時間は230分になった。このように、硝酸水溶液量の増加と共にゲル化時間は減少し、微多孔性膜からマクロ孔膜へ変化する反応時間は、相対的にゲル化時間に近づく。
【0025】
−実施例4−
実施例1の反応組成において、引き上げ速度のみを変えて、他の条件は同一にしてゲル膜を得た。引き上げ速度が1cm/minの場合には、微多孔性膜からマクロ孔膜に変化する時間が220分となり、引き上げ速度が4cm/minの場合には、同時間は205分となった。このように引き上げ速度が速くなって製膜時の膜厚が大きくなると、連続した骨格相の得られる時間が短時間側へ移動する。
【0026】
−実施例5−
まず1モル濃度硝酸水溶液3.09gにジメチルホルムアミド0.95gを加え均一溶液とした後、メチルトリメトキシシラン9.55gを氷冷下で撹拌しながら加えて加水分解を行った。5分間撹拌した後、反応溶液を20℃に保ち、所定の反応時間重合体を成長させた後、ディップ法によってポリエステル基板上にゲル膜を形成した。ディップ操作における基板の引き上げ速度は2cm/minとし、製膜雰囲気は飽和水蒸気とした。
その結果、反応時間205分まではマイクロメートル領域の骨格相が分散した膜が、そののちゲル化時間である250分に至るまでは、円筒状あるいは円盤状の分散したマクロ孔と連続した骨格相からなる、厚さ約5μmの多孔性膜が得られた。SEM観察によって見られたマクロ孔のサイズは、205分において直径約3〜5μm程度から、240分において直径約1〜2μm程度に徐々に減少した。
【0027】
−実施例6−
実施例5の反応組成において、ジメチルホルムアミドの添加量のみを変えて、他の条件は同一にしてゲル膜を得た。ジメチルホルムアミドが0.48gの場合には、ゲル化時間の195分に至るまでのすべての反応時間において骨格相が分散した膜のみが得られた。ジメチルホルムアミドが0.76gの場合には、骨格相が分散した膜から骨格相とマクロ孔が共に連続した構造に変化する反応時間が170分となり、170分から185分の間は、共連続構造が得られた。さらに長い反応時間においてはマクロ孔が分散した膜が得られ、ゲル化時間は235分になった。ジメチルホルムアミドが1.14gの場合には、骨格相が分散した膜からマクロ孔膜に変化する反応時間が、255分となり、ゲル化時間は310分になった。このように、ジメチルホルムアミドの添加量の増加と共にゲル化時間は増加し、骨格相が分散した膜からマクロ孔膜へ変化する反応時間は、相対的にゲル化時間に近づく。
【0028】
−実施例7−
実施例5の反応組成において、硝酸水溶液の量のみを変えて、他の条件は同一にしてゲル膜を得た。硝酸水溶液が2.96gの場合には、ゲル化時間の270分に至るまでのすべての反応時間において骨格相が分散した膜のみが得られた。硝酸水溶液が3.03gの場合には、骨格相が分散した膜から骨格相とマクロ孔が共に連続した構造に変化する反応時間が190分となり、190分から205分の間は、共連続構造が得られた。さらに長い反応時間においてはマクロ孔が分散した膜が得られ、ゲル化時間は250分になった。硝酸水溶液が3.23gの場合には、骨格相が分散した膜からマクロ孔膜に変化する反応時間が、220分となり、ゲル化時間は235分になった。硝酸水溶液が3.30gの場合には、骨格相が分散した膜からマクロ孔膜に変化する反応時間が、210分となり、ゲル化時間は220分になった。このように、硝酸水溶液量の増加と共にゲル化時間は減少し、骨格相が分散した膜からマクロ孔膜へ変化する反応時間は、相対的にゲル化時間に近づく。
【0029】
【発明の効果】
以上のように本発明によれば、従来の塗布法によって作製し得なかった、所望する中心細孔径と狭い分布を持つ細孔構造を再現性良く与え、しかも膜面積全域にわたって均質な構造を持ち、その結果薄層クロマトグラフィーにおいて高い分離性能や表面反応特性を与える、基板上に形成された無機系多孔質体を得ることができる。
【図面の簡単な説明】
【図1】実施例1で作製されたゲルの3次元観察像、マクロ孔径3〜5μm
【図2】実施例1で作製されたゲルの3次元観察像、マクロ孔径1〜2μm
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous material on a substrate or a support. The production method of the present invention is suitably used for producing a porous plate for thin layer chromatography and a gel for electrophoretic analysis.
[0002]
[Prior art]
As a thin-layer chromatography carrier, one in which inorganic fine particles such as silica gel are applied in close contact on a glass plate is known. As the size of the inorganic fine particles is smaller and the shape is uniform, the analysis sensitivity is improved. However, the developing speed of the solution containing the sample is reduced as the particle diameter is reduced. In addition, although it is important to form a thin and uniform coating layer, it is difficult to form a coating layer with good reproducibility with a thickness of about 0.1 mm or less in the conventional manufacturing method.
[0003]
In general, an inorganic porous material such as silica gel is produced by a sol-gel method which is a liquid phase reaction. The sol-gel method refers to a general method for producing a low molecular compound capable of polymerization and finally obtaining an aggregate or a polymer. For example, hydrolysis of metal alkoxides, hydrolysis of metal chlorides, hydrolysis of metal salts or coordination compounds having hydrolyzable functional groups such as carboxyl groups and β-diketones, hydrolysis of metal amines Is mentioned. In addition, the carrier for thin-layer chromatography is generally non-uniformly shaped gel particles that have been gelled by adding strong acid to inexpensive water glass, and spherical particles mainly made of water glass. Has been used.
A thin layer chromatography carrier has been produced by applying a slurry in which silica gel fine particles are dispersed in a high concentration, and depositing physically aggregated fine particles in a layer form on a glass plate.
[0004]
[Problems to be solved by the invention]
However, the thin-phase chromatography support by the coating method generally has a porosity of 30 to 40% or less, and there is no method other than enlarging the particle diameter in order to increase the developing speed of the sample solution. Led to a decline. Further, a carrier having a thickness of about 0.1 mm requires a development distance of about 10 cm in order to separate a plurality of components. Although the method of controlling the porosity of a thin-layer chromatography carrier over a wide range and further reducing the thickness while maintaining the uniformity of the structure is sufficient, the separation performance of the resulting carrier is greatly improved. Was not developed.
[0005]
Therefore, the present inventors have studied that a gel film having a solvent-rich phase or a skeleton phase serving as a support portion having a pore size of about 100 nm or more on a substrate is first prepared by a sol-gel method, followed by heating. By performing the treatment, the shape of the solvent-rich phase region and the skeletal phase region becomes a cylindrical shape that penetrates the thickness of the gel phase, or the solvent-rich phase and the skeleton phase both penetrate the thickness of the gel phase and are parallel to the substrate. It has been found that a gel having a homogeneous porous structure with a film thickness of about 5 to 10 μm is formed which is composed of a co-continuous form or a solvent-rich phase region dispersed in a disk shape and a droplet shape smaller than the gel phase thickness. It was.
The present invention has been made based on such knowledge. The purpose is to provide a pore structure having a desired central pore diameter and a narrow distribution that could not be produced by a conventional coating method with good reproducibility, and has a homogeneous structure with high reproducibility over the entire membrane area. The result is to establish a method for producing an inorganic porous body formed on a substrate, which gives high separation performance and surface reaction characteristics.
[0006]
[Means for Solving the Problems]
The means is that a gel film having a solvent-rich phase that becomes giant vacancies of about 100 nm or more or a skeleton phase that becomes a carrier part of about 100 nm or more is formed on a substrate by a sol-gel method, followed by heat treatment. Therefore, the shape of the solvent-rich phase region or the skeletal phase region is a cylindrical shape that penetrates the thickness of the gel phase, or both the solvent-rich phase and the skeleton phase penetrate the thickness of the gel phase and are co-continuous in the dimension parallel to the substrate. The method is characterized in that a gel having a homogeneous porous structure composed of a solvent-rich phase region dispersed in a certain form or a disk shape and a droplet shape smaller than the thickness of the gel phase is produced.
[0007]
Here, the average size of the solvent-rich phase or the skeleton phase region is preferably about 100 nm or more, and more preferably 100 nm or more and 30 μm or less.
[0008]
In the present invention, the most effective method for producing an inorganic porous material that can control the pore structure is to use a metal alkoxide as a starting material, and if necessary, add an appropriate coexisting material to the raw material, And a sol-gel method that produces a structure having a solvent-rich phase. A suitable coexisting substance is a substance having a function of simultaneously inducing a sol-gel transition and a phase separation process, whereby it is separated into a solvent-rich phase and a skeleton phase and simultaneously gelled. As the coexisting substance, a polymer soluble in a solvent such as polyethylene oxide is desirable.
[0009]
As the metal compound having a hydrolyzable functional group used in the sol-gel method, a metal alkoxide or an oligomer thereof can be used. These compounds have, for example, a methoxy group, an ethoxy group, a propoxy group and the like having a carbon number. Less is preferred. Further, as the metal, an oxide metal finally formed, for example, Si, Ti, Zr, or Al is used. The metal may be one type or two or more types. On the other hand, any oligomer can be used as long as it can be uniformly dissolved and dispersed in alcohol. In addition, alkylalkoxysilanes in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, and oligomers of up to about 10-mers thereof are preferably used. An alkyl-substituted metal alkoxide in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
[0010]
Moreover, as acidic aqueous solution, the thing of 0.001 N or more of mineral acids, such as hydrochloric acid and nitric acid, or 0.1 N or more of organic acids, such as formic acid and acetic acid, is preferable normally.
[0011]
When the starting material is a silicon alkoxide that is not alkyl-substituted, it is effective to add a component that induces phase separation such as a water-soluble polymer such as polyethylene oxide or a surfactant as a coexisting material.
Here, the water-soluble polymer is theoretically a water-soluble organic polymer that can be formed into an aqueous solution having an appropriate concentration, and in a reaction system including an alcohol generated by a metal compound having a hydrolyzable functional group. The polymer metal salt is a sodium salt or potassium salt of polystyrene sulfonic acid, which is a polymer metal salt, polyacrylic acid which is a polymer acid and dissociates to form a polyanion, Polyallylamine and polyethyleneimine which are molecular bases and generate polycations in aqueous solution, or neutral polymers such as polyethylene oxide having an ether bond in the main chain, polyvinylpyrrolidone, and the like are preferable.
[0012]
In addition, the reaction rate and form can be controlled by adding a solvent to the above starting materials. The added solvent is not particularly limited as long as it improves the affinity between the silicate polymer and the water / alcohol mixed solvent, but the solubility parameter value of the organic silicate polymer and the water / alcohol mixed solvent is about 8 to 15. Methanol, ethanol, propanol, N, N-dimethylformamide, N-methylformamide, and the like having an intermediate polarity and relatively low vapor pressure are suitable.
[0013]
Metal, glass, and polymer can be used as the substrate for film formation, but there is no particular limitation on polymer substrates with extremely high water repellency, except that the adhesion of the film to the substrate is weakened. . When it is necessary to perform the heat treatment after film formation at a high temperature, a glass substrate is preferably used. In addition to a flat substrate, a film can be formed on a porous substrate having a through hole or a substrate having unevenness of about several tens of micrometers.
Particularly desirable in this means is the case where the skeleton phase is silica or organic silicate, the substrate is soda lime silica glass or polyester resin, and the additive solvent is N, N-dimethylformamide. Further, the composition of the coating solution is preferably 2.0 to 4.0 g of nitric acid aqueous solution and 0 to 5.0 g of N, N-dimethylformamide with respect to 9.55 g of methyltrimethoxysilane. More desirably, the aqueous nitric acid solution is 2.5 to 3.5 g and the N, N-dimethylformamide is 0 to 3.0 g with respect to 9.55 g of methyltrimethoxysilane.
[0014]
In the dip method in which the substrate is immersed vertically in the coating liquid and pulled up at a constant speed, the solvent phase in the coating liquid is obtained by rapid vaporization and evaporation of low-boiling components from the liquid film formed on the substrate near the liquid surface. If the composition changes and this causes a reduction in the chemical affinity between the dissolved oxide polymer and the solvent phase, phase separation is induced in the membrane. In a membrane that has undergone phase separation, a microscopic phase region is formed between a phase rich in an oxide polymer that easily forms a gel and a solvent phase that forms a fluid phase and becomes a pore after drying and heat treatment. Happens. Since the size of each phase region increases as the phase separation process lasts longer due to coarsening, the time from the preparation of the coating solution to the dipping operation is short, and the larger phase is obtained when the polymer is not sufficiently grown. After the region has a long time to dipping and the polymer has grown, the fine phase region is frozen as a film structure.
The pulling speed of the dip method is preferably 0.1 to 10 mm / sec.
[0015]
In the spin method in which the substrate is rotated at a constant speed to spread the coating solution in the planar direction and the excess solution is removed, it can be obtained by adjusting the time from preparation of the coating solution to film formation in exactly the same manner. The fine structure of the film can be controlled. In addition, as for the rotational speed in a spin method, 100-5000 rpm is preferable.
[0016]
Thus, since the phase separation structure in the film depends on the growth behavior of the metal oxide polymer in the coating liquid, the film forming characteristics of the coating liquid are impaired by some means such as inactivation of the polymerization site. If the growth of the polymer is stopped halfway, a certain film structure can be obtained thereafter regardless of the coating time.
[0017]
When the reaction time from the preparation of the solution to the coating increases, the volume fraction of the skeletal phase increases due to the growth of the polymer, so that the membrane structure is from a microporous membrane or a dispersed skeletal phase, It changes in the order of the continuous skeleton phase and the dispersed solvent-rich phase through a co-continuous structure of the solvent-rich phase and the skeleton phase. As the reaction time increases, the form of the dispersed solvent-rich phase changes from a cylindrical shape penetrating the thickness of the membrane to a disc shape thinner than the thickness of the membrane while reducing the diameter in the membrane surface direction.
[0018]
The structure of the film in the region where the reaction time from preparation of the coating solution to coating is short becomes microporous when a substrate having a high affinity with an organic silicate polymer such as a glass plate is used, When a substrate having the same degree of affinity as that of a solvent-rich phase such as polyester or an organic silicate phase is used, a dispersed skeleton phase is obtained. When using a substrate with extremely strong water repellency, such as a fluorocarbon resin, the reaction solution is dispersed in droplets before the film is formed and slips down, resulting in a film with very low adhesion. It is not suitable for the production of a porous membrane.
[0019]
Increasing the pulling speed when the coating is performed by the dip method or decreasing the rotation speed when the coating method is performed by the spin method increases the film thickness of the gel obtained by using the reaction solution under the same conditions, and the dispersed skeletal phase. The reaction time during which a change in morphology from a dispersed to a solvent-rich phase occurs moves to the short time side. The form control of this method is performed by the time from preparation of the reaction solution to film formation, and is also affected by the polarity of the substrate surface during film formation, the application / development speed of the solution, the atmosphere in the film formation chamber, etc. However, by maintaining the same reaction container and film forming apparatus and keeping the temperature history of the reaction solution the same, a porous film having a form depending on the reaction time from solution preparation to film formation can be obtained with good reproducibility.
[0020]
The sample after film formation becomes a dry gel film adhered to the substrate by evaporation of the solvent. In this dry gel film, coexisting substances in the starting solution may remain. Therefore, heat treatment is performed at an appropriate temperature, and organic matter is thermally decomposed as necessary. You can get a body. In addition, drying is performed by leaving at 40-100 degreeC for several hours-several dozen hours, and heat processing is heated at about 120-700 degreeC.
[0021]
【Example】
Example 1
First, 0.95 g of dimethylformamide was added to 3.09 g of 1 molar nitric acid aqueous solution to obtain a homogeneous solution, and then 9.55 g of methyltrimethoxysilane was added with stirring under ice-cooling for hydrolysis. After stirring for 5 minutes, the reaction solution was kept at 20 ° C., and a polymer was grown for a predetermined reaction time, and then a gel film was formed on the slide glass substrate by the dipping method. The substrate pulling rate in the dipping operation was 2 cm / min, and the film forming atmosphere was saturated water vapor.
[0022]
As a result, the microporous film adhered to the substrate until the reaction time of 210 minutes consists of a skeleton phase continuous with the dispersed macropores in the form of a cylinder or disk until the gelation time reaches 245 minutes. A porous membrane having a thickness of about 5 μm was obtained. The size of the macropores observed by SEM observation gradually decreased from about 3 to 5 μm in diameter at 215 minutes to about 1 to 2 μm in diameter at 240 minutes. FIG. 1 is a diagram (micrograph) showing the results of observing a three-dimensional structure of the former film and FIG. 2 using a laser confocal microscope.
[0023]
-Example 2-
In the reaction composition of Example 1, only the addition amount of dimethylformamide was changed, and the other conditions were the same to obtain a gel film. When dimethylformamide was not added, the reaction time for changing from the microporous membrane to the macroporous membrane was 95 minutes, and the gelation time was shortened to 150 minutes. When dimethylformamide was 0.48 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 160 minutes, and the gelation time was 195 minutes. In the case of 1.43 g of dimethylformamide, the reaction time for changing from the microporous membrane to the macroporous membrane was 262 minutes, and the gelation time was 300 minutes. When dimethylformamide was 1.9 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 340 minutes, and the gelation time was 370 minutes. Thus, the gelation time increases as the amount of dimethylformamide added increases, and the reaction time for changing from the microporous membrane to the macroporous membrane relatively approaches the gelation time.
[0024]
Example 3
In the reaction composition of Example 1, only the amount of the nitric acid aqueous solution was changed, and the other conditions were the same to obtain a gel film. When the nitric acid aqueous solution was 2.42 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 170 minutes, and the gelation time was 370 minutes. When the nitric acid aqueous solution was 2.69 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 190 minutes, and the gelation time was 305 minutes. When the nitric acid aqueous solution was 2.82 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 205 minutes, and the gelation time was 275 minutes. When the nitric acid aqueous solution was 2.96 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 210 minutes, and the gelation time was 270 minutes. When the nitric acid aqueous solution was 3.23 g, the reaction time for changing from the microporous membrane to the macroporous membrane was 215 minutes, and the gelation time was 230 minutes. Thus, the gelation time decreases as the amount of nitric acid aqueous solution increases, and the reaction time for changing from the microporous membrane to the macroporous membrane relatively approaches the gelation time.
[0025]
Example 4
In the reaction composition of Example 1, only a pulling rate was changed, and other conditions were the same to obtain a gel film. When the pulling rate was 1 cm / min, the time for changing from the microporous membrane to the macroporous membrane was 220 minutes, and when the pulling rate was 4 cm / min, the same time was 205 minutes. Thus, when the pulling speed is increased and the film thickness at the time of film formation is increased, the time for obtaining a continuous skeletal phase moves to the short time side.
[0026]
-Example 5
First, 0.95 g of dimethylformamide was added to 3.09 g of 1 molar nitric acid aqueous solution to obtain a homogeneous solution, and then 9.55 g of methyltrimethoxysilane was added with stirring under ice-cooling for hydrolysis. After stirring for 5 minutes, the reaction solution was kept at 20 ° C., and a polymer was grown for a predetermined reaction time, and then a gel film was formed on the polyester substrate by the dipping method. The substrate pulling rate in the dipping operation was 2 cm / min, and the film forming atmosphere was saturated water vapor.
As a result, a membrane in which a skeletal phase in the micrometer region is dispersed until a reaction time of 205 minutes, and then a skeleton phase continuous with dispersed macropores in a cylindrical or disk shape until a gelation time of 250 minutes is reached. A porous membrane having a thickness of about 5 μm was obtained. The size of the macropores observed by SEM observation gradually decreased from about 3 to 5 μm in diameter at 205 minutes to about 1 to 2 μm in diameter at 240 minutes.
[0027]
-Example 6
In the reaction composition of Example 5, only the addition amount of dimethylformamide was changed, and other conditions were the same to obtain a gel film. In the case of 0.48 g of dimethylformamide, only a film in which the skeleton phase was dispersed was obtained in all the reaction times up to 195 minutes of gelation time. In the case of 0.76 g of dimethylformamide, the reaction time for changing the structure in which the skeleton phase and the macropores are both continuous from the film in which the skeleton phase is dispersed is 170 minutes, and between 170 minutes and 185 minutes, Obtained. In a longer reaction time, a film in which macropores were dispersed was obtained, and the gelation time was 235 minutes. In the case of 1.14 g of dimethylformamide, the reaction time for changing from the membrane in which the skeleton phase was dispersed to the macroporous membrane was 255 minutes, and the gelation time was 310 minutes. Thus, the gelation time increases as the amount of dimethylformamide added increases, and the reaction time for changing from the membrane in which the skeleton phase is dispersed to the macroporous membrane is relatively close to the gelation time.
[0028]
-Example 7-
In the reaction composition of Example 5, only the amount of the nitric acid aqueous solution was changed, and the other conditions were the same to obtain a gel film. When the nitric acid aqueous solution was 2.96 g, only a film in which the skeleton phase was dispersed was obtained in all the reaction times up to the gelation time of 270 minutes. When the nitric acid aqueous solution is 3.03 g, the reaction time for changing the structure in which the skeleton phase and the macropores are both continuous from the film in which the skeleton phase is dispersed is 190 minutes, and the co-continuous structure is between 190 minutes and 205 minutes. Obtained. In a longer reaction time, a film in which macropores were dispersed was obtained, and the gelation time was 250 minutes. When the nitric acid aqueous solution was 3.23 g, the reaction time for changing from the membrane in which the skeleton phase was dispersed to the macroporous membrane was 220 minutes, and the gelation time was 235 minutes. When the nitric acid aqueous solution was 3.30 g, the reaction time for changing from the membrane in which the skeleton phase was dispersed to the macroporous membrane was 210 minutes, and the gelation time was 220 minutes. Thus, the gelation time decreases as the amount of nitric acid aqueous solution increases, and the reaction time for changing from a membrane in which the skeletal phase is dispersed to a macroporous membrane relatively approaches the gelation time.
[0029]
【The invention's effect】
As described above, according to the present invention, a pore structure having a desired central pore diameter and a narrow distribution, which could not be produced by a conventional coating method, is provided with good reproducibility and has a homogeneous structure over the entire membrane area. As a result, it is possible to obtain an inorganic porous body formed on a substrate that gives high separation performance and surface reaction characteristics in thin-layer chromatography.
[Brief description of the drawings]
FIG. 1 is a three-dimensional observation image of a gel produced in Example 1, with a macropore diameter of 3 to 5 μm.
2 is a three-dimensional observation image of the gel prepared in Example 1, with a macropore diameter of 1 to 2 μm. FIG.

Claims (1)

ゾル−ゲル転移と相分離を誘起させて、基板上に約100nm以上の巨大空孔となる溶媒リッチ相と約100nm以上の担体部となる骨格相を持つゲル膜を作製し、続いて加熱処理することにより、溶媒リッチ相領域あるいは骨格相領域の形状が、ゲル相の厚さを貫く円柱形、あるいはゲル相の厚さを貫き溶媒リッチ相および骨格相が基板に平行な次元に共連続である形態、あるいはゲル相の厚さより小さい円盤形および液滴形に分散した溶媒リッチ相領域からなる、均質な多孔構造を持ったゲルを作製することを特徴とする薄層クロマトグラフィー用多孔質体の製造方法。Inducing a sol-gel transition and phase separation to produce a gel film having a solvent-rich phase that is a giant pore of about 100 nm or more and a skeleton phase that is a carrier part of about 100 nm or more on a substrate , followed by heat treatment By doing so, the shape of the solvent-rich phase region or the skeletal phase region is a cylindrical shape that penetrates the thickness of the gel phase, or the solvent-rich phase and the skeletal phase penetrate through the gel phase thickness and are co-continuous in the dimension parallel to the substrate. Porous material for thin layer chromatography characterized by producing a gel with a homogeneous porous structure consisting of a solvent-rich phase region dispersed in a certain form or in a disk shape and droplet shape smaller than the gel phase thickness Manufacturing method.
JP08778299A 1999-03-30 1999-03-30 Method for producing porous material formed on substrate Expired - Fee Related JP4280860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08778299A JP4280860B2 (en) 1999-03-30 1999-03-30 Method for producing porous material formed on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08778299A JP4280860B2 (en) 1999-03-30 1999-03-30 Method for producing porous material formed on substrate

Publications (2)

Publication Number Publication Date
JP2000281329A JP2000281329A (en) 2000-10-10
JP4280860B2 true JP4280860B2 (en) 2009-06-17

Family

ID=13924558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08778299A Expired - Fee Related JP4280860B2 (en) 1999-03-30 1999-03-30 Method for producing porous material formed on substrate

Country Status (1)

Country Link
JP (1) JP4280860B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089514A (en) * 2001-09-12 2003-03-28 Mitsui Chemicals Inc Method for producing porous silica film with smooth surface
TW200503167A (en) * 2003-06-20 2005-01-16 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP5051632B2 (en) * 2005-09-30 2012-10-17 株式会社神戸製鋼所 Porous substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193708A (en) * 1990-11-26 1992-07-13 Nippon Steel Chem Co Ltd Porous silica gel and its production
JP3076613B2 (en) * 1991-03-07 2000-08-14 科学技術振興事業団 Method for producing metal oxide thin film
JP3400262B2 (en) * 1996-08-28 2003-04-28 株式会社豊田中央研究所 Silica-based porous material and separation method using the same
JP4093596B2 (en) * 1997-07-15 2008-06-04 旭化成株式会社 Alkoxysilane-organic polymer composition for production of insulating thin film and use thereof
JP4025389B2 (en) * 1997-07-15 2007-12-19 旭化成株式会社 Organic-inorganic composite and inorganic porous body

Also Published As

Publication number Publication date
JP2000281329A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP0952965B1 (en) Method for producing porous inorganic materials
US3922392A (en) Process for coating nonporous material with a porous silicon dioxide layer
EP1603663B1 (en) Ceramic nanofiltration membrane for use in organic solvents and method for the production thereof
EP0040282B1 (en) Process for the production of a dry inorganic ultrafiltration membrane and membrane produced by such a method
JP3397255B2 (en) Method for producing inorganic porous body
CN108610786A (en) A kind of super-hydrophobic coat and preparation method thereof based on three-dimensional grapheme
US4412921A (en) Dry, particulate, inorganic ultrafiltration membranes and the production thereof
CN108854571A (en) A method of utilizing ultrasonic atomizatio sedimentation preparative separation film
CN103154094B (en) Silicon-containing materials with controllable microstructure
JP4280860B2 (en) Method for producing porous material formed on substrate
KR960007372B1 (en) Preparation of titanium ceramic membranes
Chu et al. Microporous silica membranes deposited on porous supports by filtration
JP2005503261A (en) Novel inorganic nanofiltration membrane
US7781369B2 (en) Mesoporous silica thick-film, process for producing the same, adsorption apparatus and adsorbing film
CN107973615B (en) Mesoporous gamma-Al2O3Ceramic membrane and preparation method thereof
US7781020B2 (en) Structured material and producing method thereof
JP2007503995A (en) Titania composite membrane for water / alcohol separation and method for producing the same
JP4362752B2 (en) Manufacturing method of integrated porous material
JPS62186921A (en) Porous zirconia composite filter and its production
JPH0691931B2 (en) Gas separation membrane and manufacturing method
Postnova et al. The Formation of Macropores in a Bimodal Silica Synthesized on P123 Block Copolymer as a Template
CN114965639B (en) Preparation method of mesoporous nano-channel with super-assembled multilayer sandwich structure
KR100324645B1 (en) Thickness Control of Thin Films Using Viscosity Changes in Solution
JP4461298B2 (en) Process for producing inorganic and organic-inorganic hybrid coatings
JPH1192175A (en) Water-repellent glass coating film and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees