JPH0691620A - Molding method and molding tool for ceramic - Google Patents
Molding method and molding tool for ceramicInfo
- Publication number
- JPH0691620A JPH0691620A JP24187492A JP24187492A JPH0691620A JP H0691620 A JPH0691620 A JP H0691620A JP 24187492 A JP24187492 A JP 24187492A JP 24187492 A JP24187492 A JP 24187492A JP H0691620 A JPH0691620 A JP H0691620A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- molding
- porous body
- ceramics
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Producing Shaped Articles From Materials (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種セラミックス製品
の成形法、特にセラミックススラリーの加圧鋳込み成形
法およびそれに用いる成形型に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding various ceramic products, in particular, a method for pressure casting of ceramics slurry and a molding die used therefor.
【0002】[0002]
【従来の技術】加圧鋳込み成形法では、粉末と液体の混
合物(以下、スラリーと称す)中の液体を排除するため
に加圧する。この圧力は大きいほど粉末は密に充填さ
れ、保形性の高い成形体となると同時にスラリー中の液
体の排除を短時間に行なうことができる。しかしなが
ら、従来の加圧鋳込み成形では液体を排除するための多
孔質体として石膏もしくは樹脂を用いている(例えば、
特公平2−42321号公報、特開昭60−70101
号公報、特開昭63−3906号、特開昭61−297
103)。2. Description of the Related Art In a pressure casting method, pressure is applied to remove liquid in a mixture of powder and liquid (hereinafter referred to as slurry). The higher this pressure is, the more densely the powder is packed, and a compact having a high shape retention property is obtained, and at the same time, the liquid in the slurry can be removed in a short time. However, in the conventional pressure casting, gypsum or resin is used as a porous body for removing liquid (for example,
Japanese Examined Patent Publication No. 2-42321 and Japanese Patent Laid-Open No. 60-70101.
JP-A-63-3906, JP-A-61-297.
103).
【0003】これらの材料は多孔質体としての強度が弱
く、成形圧力は石膏型の場合、10kg/cm2まで、
樹脂を用いた場合でも約50kg/cm2までしか、増
加させることが不可能であり、この限界値を超えると、
多孔質体の破損を引き起こす。これによりセラミックス
の成形体の密度の向上の限界値は小さく、かつ、成形時
間においても、形状や大きさによっては短時間の成形が
不可能となる。フェライト等の湿式による成形では図3
に示すように脱水のために内径1〜3mmの孔を有する
金属性の型3の前面に布製のフィルター9および紙製の
フィルター10を設置し、フィルターを通してスラリー
中の液体(水)のみを金型の孔に送り出し成形する方法
がある。These materials have a weak strength as a porous body, and the molding pressure is up to 10 kg / cm 2 in the case of a gypsum mold.
Even if a resin is used, it can only be increased up to about 50 kg / cm 2 , and if this limit value is exceeded,
Causes damage to the porous body. As a result, the limit value for improving the density of the ceramic compact is small, and even in the compacting time, compacting in a short time becomes impossible depending on the shape and size. Fig. 3 shows the wet molding of ferrite.
As shown in Fig. 5, a cloth filter 9 and a paper filter 10 are installed on the front surface of a metallic mold 3 having an inner diameter of 1 to 3 mm for dehydration, and only the liquid (water) in the slurry is passed through the filter to remove gold. There is a method in which it is sent to the hole of the mold and molded.
【0004】この図3に示した方法では、液体の排除部
は、布製フィルター9、紙製フィルター10および脱水
孔4を有する金型3からなるため高い成形圧力を付加す
ることが可能である。しかし、この場合圧力を付加した
時に、スラリー中の粉末が紙および布製のフィルター越
しに、脱水用の孔に入りこむため、成形体の表面に孔の
位置に対応して図4に示すように突起11を生成するこ
とになる。そのため、後工程で除去する必要となり、コ
スト上昇の原因となっている。In the method shown in FIG. 3, since the liquid excluding portion is composed of the cloth filter 9, the paper filter 10 and the mold 3 having the dehydration hole 4, it is possible to apply a high molding pressure. However, in this case, when pressure is applied, the powder in the slurry enters the holes for dehydration through the filter made of paper and cloth, so that the protrusions are formed on the surface of the molded product as shown in FIG. 4 corresponding to the positions of the holes. 11 will be generated. Therefore, it is necessary to remove it in a later process, which causes a cost increase.
【0005】[0005]
【発明が解決しようとする課題】本発明は、従来の方法
より加圧力を大きくし、しかも表面が平滑な成形体を提
供できるセラミックスの成形法および成形型を提供しよ
うとするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramics molding method and a molding die which can provide a molded body having a larger pressing force than the conventional method and having a smooth surface.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
の本発明の構成は特許請求の範囲に記載されたとおりの
セラミックスの成形法および成形型である。その基本的
な考えは、セラミックスのスラリーを加圧鋳込み成形す
るに当り、強度の大きい金属製の多孔質体からなる成形
型を用いて大きな加圧力を用いることを可能にしたこと
である。The structure of the present invention for solving the above-mentioned problems is a ceramics molding method and a molding die as set forth in the claims. The basic idea is that it is possible to use a large pressing force by using a molding die made of a porous body made of a metal having high strength when pressure-casting a ceramic slurry.
【0007】例えばステンレスのようなFeを主成分と
した材料では100kgf/cm2以上、型の設計条件
によっては1000kgf/cm2までの加圧が可能で
ある。金属材料としてはFe系以外にCu系、Al系
等、特に規定されない。[0007] For example, in the material mainly composed of Fe such as stainless 100 kgf / cm 2 or more, depending on the type design requirements it is possible pressurization up to 1000 kgf / cm 2. The metallic material is not particularly limited to Cu-based, Al-based, etc. other than Fe-based.
【0008】また、金属製の多孔質体であれば、加工研
磨することにより、表面の面粗度を小さくし、場合によ
っては鏡面にすることも可能である。このように面粗度
を小さくした面を型のスラリーとの接触面に利用すれ
ば、成形体を型からとりはずすときの離型性に優れ、成
形体の破損を防ぐことができる。また成形体の表面状態
も優れたものとなる。Further, in the case of a metallic porous body, it is possible to reduce the surface roughness of the surface by processing and polishing, and to make it a mirror surface in some cases. By using the surface having the reduced surface roughness as the contact surface with the slurry of the mold, the mold release property is excellent when the molded product is removed from the mold, and the damage to the molded product can be prevented. In addition, the surface condition of the molded product becomes excellent.
【0009】一方、多孔質体の孔径は大きければ大きい
ほどスラリー中の液体の除去は容易になるが、大きすぎ
るとスラリー中のセラミックス粉末の流出が発生する。
そのため孔径の大きさはスラリー中のセラミックス粉末
の粒径により上限が決定される。On the other hand, the larger the pore size of the porous body, the easier the removal of the liquid in the slurry, but if it is too large, the ceramic powder in the slurry will flow out.
Therefore, the upper limit of the pore size is determined by the particle size of the ceramic powder in the slurry.
【0010】前記載のスラリーから液体を除去する成形
法で、工業的に実用的な時間で脱液・成形するために
は、型の全体もしくは一部を構成する多孔質体の孔径は
0.1μm以上であることが必要である。0.1μmよ
り小さいと、一般にスラリーの液体として用いられる水
の場合、表面張力が高くなり、多孔質体の孔に液体
(水)が流入しようとするのを妨げるため多孔質体の孔
を通してスラリー中の液体を除去するのが困難となる。In the molding method for removing a liquid from the above-mentioned slurry, in order to remove and mold the liquid in an industrially practical time, the pore size of the porous body constituting the whole or a part of the mold is 0. It must be 1 μm or more. If the particle size is smaller than 0.1 μm, the surface tension of water, which is generally used as a liquid for the slurry, becomes high and the liquid (water) is prevented from flowing into the pores of the porous body, so that the slurry passes through the pores of the porous body. It becomes difficult to remove the liquid inside.
【0011】また孔径の上限はスラリー中のセラミック
ス粉末の二次粒子の粒径の20倍までであれば粉末の流
出を防ぐことができる。If the upper limit of the pore size is up to 20 times the particle size of the secondary particles of the ceramic powder in the slurry, the outflow of the powder can be prevented.
【0012】すなわち、多孔質体表面の孔より圧力によ
り、スラリー中の液体を除去する時に、スラリー中の粉
末が、多孔質体の孔の中に粉末が入りこむと、アンカー
効果により、成形体と多孔質体の密着性が高まり、成形
体の離型を行ないにくくなり、成形体の破損、カケを起
すことになる。しかしながら、多孔質体表面の孔径がス
ラリー内に存在する粉末の二次粒子の平均粒子径の20
倍までであれば、孔の入口で粉末がブリッジングを起こ
し、孔の内部に粉末が入りこまないことを確認してお
り、短時間成形および良好な離型性を得ることができ
る。That is, when the liquid in the slurry is removed by pressure from the pores on the surface of the porous body and the powder in the slurry gets into the pores of the porous body, the anchor effect causes the formation of a compact. The adhesiveness of the porous body is enhanced, it becomes difficult to release the molded body, and the molded body is damaged and chipped. However, the pore size on the surface of the porous body is 20 times the average particle size of the secondary particles of the powder present in the slurry.
It has been confirmed that if the amount is up to twice, the powder will cause bridging at the entrance of the hole and the powder will not enter the inside of the hole, so that molding in a short time and good mold releasability can be obtained.
【0013】また、スラリーと接触する表面の孔のない
部分の面粗度が0.4Zを超えると、アンカー効果によ
り成形体と密着を起こす。特に高い圧力をかけた場合、
その部分で成形体からの圧力を受けるため、強固な密着
を起こす。その結果、成形体の離型が困難となる。Further, when the surface roughness of the portion having no pores on the surface which comes into contact with the slurry exceeds 0.4Z, the anchor effect causes close contact with the compact. When especially high pressure is applied,
Since the pressure from the molded body is received at that portion, a strong adhesion occurs. As a result, it becomes difficult to release the molded product.
【0014】0.4Z以下であるとその部分での密着強
度が低下しスムーズに成形体の離型を行なうことができ
る。When it is 0.4 Z or less, the adhesion strength at that portion is lowered and the molded product can be smoothly released from the mold.
【0015】また、金属製多孔質体の前面に紙製もしく
は布製のフィルターを設置することも可能である。フィ
ルターを設置することにより金属製多孔質体の表面部に
存在する孔径が大きくスラリー中の粉末が入りこむ大き
さのものであっても、この粉末の流入は防止され離型性
は改善される。また面粗度の粗い表面の多孔質性金属で
あってもフィルターの存在により、金属製多孔質体への
アンカー効果も発生せず、スムーズな離型が可能であ
る。フィルターと成形体の離型性についてはフィルター
は紙もしくは布で構成され、可撓性に富むため、離型は
少しづつ行なうことが可能であることで成形体に欠陥等
を起こすことなく離型できる。また図3に示す従来の方
法では成形体の表面に発生する突起物も、金属製の多孔
質体であればフィルター越しに入りこむこともなく表面
状態の良好な成形体となる。この方法に用いる紙もしく
は布製のフィルターの平均細孔径はスラリー中の粉末が
フィルターを通り抜けることを防ぎ、かつ適度な液体の
除去の速度を得るために0.1μm以上でスラリー内に
存在する粉末の二次粒子の平均粒径の20倍以下である
ことが望ましい。工業的に必要な速度で液体を除去する
には平均細孔径0.1μm以上が必要である。また平均
粒径がスラリー中粉末の二次粒子の平均粒径の20倍を
超えると前述と同じ理由で粉末の流出すなわちスラリー
のフィルター透過が起こることとなる。フィルターの種
類として一般に濾紙に使用される材質、また布について
はポリエステル、ナイロン、アクリル等の合成繊維や綿
等の天然素材など織物になるものであれば材質は問わな
い。It is also possible to install a paper or cloth filter on the front surface of the metal porous body. By installing the filter, even if the size of the pores present on the surface of the metal porous body is large and the powder in the slurry can enter, the inflow of the powder is prevented and the releasability is improved. Further, even with a porous metal having a rough surface, the presence of the filter does not cause an anchoring effect on the metal porous body, and enables smooth release. Regarding mold releasability between the filter and the molded product, the filter is made of paper or cloth and is highly flexible, so it is possible to perform mold release little by little. it can. Further, according to the conventional method shown in FIG. 3, the protrusions generated on the surface of the molded product will not penetrate into the filter and will be a molded product having a good surface condition. The average pore size of the paper or cloth filter used in this method is such that the powder present in the slurry is 0.1 μm or more in order to prevent the powder in the slurry from passing through the filter and to obtain an appropriate liquid removal rate. It is desirable that the average particle diameter of the secondary particles is 20 times or less. In order to remove the liquid at an industrially necessary rate, an average pore diameter of 0.1 μm or more is required. If the average particle size exceeds 20 times the average particle size of the secondary particles of the powder in the slurry, the powder will flow out, that is, the slurry will pass through the filter for the same reason as above. As a type of filter, a material generally used for filter paper, and a cloth may be any material as long as it becomes a woven fabric such as synthetic fibers such as polyester, nylon and acrylic, and natural materials such as cotton.
【0016】[0016]
【実施例】以下、実施例によって、本発明を具体的に説
明する。EXAMPLES The present invention will be specifically described below with reference to examples.
【0017】実施例1 平均粒径0.7μmのSi3N4粉末に、助剤としてY2
O3、Al2O3を添加し、エチルアルコールで混合し完
粉を作製した。この完粉に水およびバインダーを添加
し、ナイロン製ボールミルを用いて混合しスラリーとし
た。スラリーの粉末含有率は40vol%とした。Example 1 Si 3 N 4 powder having an average particle size of 0.7 μm was mixed with Y 2 as an auxiliary agent.
O 3 and Al 2 O 3 were added and mixed with ethyl alcohol to prepare a complete powder. Water and a binder were added to the finished powder and mixed using a nylon ball mill to form a slurry. The powder content of the slurry was 40 vol%.
【0018】このスラリーを用いて直径20mm、高さ
20mmの円柱を成形した。成形の手法は図1に示す。
多孔質体7をとりつけた水除去のための孔5を有する金
型3に金型2をセットし、その中にスラリーを注入す
る。そのスラリー8を先に多孔質体のパンチ6をとりつ
けた金属製のキネ1で加圧する。加圧によりスラリー8
内の水は多孔質体6,7を通して排除される。その結
果、成形体となってとり出される。Using this slurry, a cylinder having a diameter of 20 mm and a height of 20 mm was formed. The molding method is shown in FIG.
The mold 2 is set in the mold 3 having the holes 5 for removing water, to which the porous body 7 is attached, and the slurry is injected therein. The slurry 8 is pressed by the metal kine 1 to which the porous punch 6 is attached. Slurry 8 by pressurization
The water inside is removed through the porous bodies 6 and 7. As a result, a molded body is taken out.
【0019】この成形法において多孔質体の材質および
成形圧力を変えて成形体を作製した。そのときの成形体
の密度および成形時間を表1に示した。In this molding method, a molded body was prepared by changing the material of the porous body and the molding pressure. Table 1 shows the density and molding time of the molded body at that time.
【0020】[0020]
【表1】 [Table 1]
【0021】実施例2 平均粒径1μmのAl2O3粉末をボールミルを用いて、
蒸留水と混合し、バインダーを添加しスラリーとした。
スラリー中の粉末含有率は53vol%とした。このス
ラリーを用いて図1に示す成形法によって直径20m
m、高さ20mmの成形体を作製した。Example 2 An Al 2 O 3 powder having an average particle size of 1 μm was used in a ball mill,
It was mixed with distilled water and a binder was added to form a slurry.
The powder content rate in the slurry was 53 vol%. A diameter of 20 m is obtained by the molding method shown in FIG. 1 using this slurry.
A molded body having m and a height of 20 mm was produced.
【0022】多孔質体には種々の表面部の孔径および表
面粒度のステンレス製の物を用い、成形圧力は200お
よび800kg/cm2とした。As the porous body, those made of stainless steel having various pore sizes and surface grain sizes were used, and the molding pressure was 200 and 800 kg / cm 2 .
【0023】尚、表面部の孔径は顕微鏡による観察によ
り測定し平均値により決定した。各条件による成形体密
度、成形時間および多孔質体部との離型性は表2に示す
結果となった。The pore diameter of the surface portion was measured by observation with a microscope and determined by the average value. Table 2 shows the density of the molded body, the molding time, and the releasability from the porous body portion under each condition.
【0024】[0024]
【表2】 [Table 2]
【0025】実施例3 平均粒径0.5μmのSi3N4粉末に助剤としてY
2O3、Al2O3を添加し、ボールミルを用い蒸留水中で
混合した。この混合物にバインダーを加え、さらに混合
し、スラリーを作製した。スラリーの粉末含有率は42
vol%とした。粒度分布測定によると平均粒径は0.
53μmであった。Example 3 Si 3 N 4 powder having an average particle size of 0.5 μm was added with Y as an auxiliary agent.
2 O 3 and Al 2 O 3 were added and mixed in distilled water using a ball mill. A binder was added to this mixture and further mixed to prepare a slurry. The powder content of the slurry is 42
It was set to vol%. According to the particle size distribution measurement, the average particle size is 0.
It was 53 μm.
【0026】このスラリーを用いて図2に示す成形法に
よって直径40mm、厚さ5mmの円板状の成形体を作
製した。Using this slurry, a disk-shaped molded body having a diameter of 40 mm and a thickness of 5 mm was prepared by the molding method shown in FIG.
【0027】成形の方法としては図2に示した方法で行
ないステンレス製多孔質体の孔径、表面粗度、またフィ
ルター孔径等の条件は種々に変化させた。また比較のた
め、フィルター除いての成形および図3の方式での成形
も行なった。尚、成形圧力は300kgf/cm2で行
なった。As a molding method, the method shown in FIG. 2 was used, and the conditions such as the pore diameter, surface roughness, and filter pore diameter of the stainless porous body were variously changed. Further, for comparison, the molding without the filter and the molding according to the method of FIG. 3 were performed. The molding pressure was 300 kgf / cm 2 .
【0028】種々の条件と成形体および離型性状況の関
係は表3および表4のようになった。これから本発明に
より、良好な成形体が得られることが明らかとなった。Tables 3 and 4 show the relationship between various conditions and the state of molded products and releasability. From this, it has been clarified that a good molded product can be obtained by the present invention.
【0029】[0029]
【表3】 [Table 3]
【0030】[0030]
【表4】 [Table 4]
【0031】[0031]
【発明の効果】以上説明したように、本発明によれば、
比較的短時間で、密度が高く、表面が平滑な成形体を確
実に製造することができる。As described above, according to the present invention,
It is possible to reliably produce a molded product having a high density and a smooth surface in a relatively short time.
【図1】本発明の成形型を用いる一具体例の断面の説明
図、FIG. 1 is an explanatory view of a cross section of a specific example using the molding die of the present invention,
【図2】本発明の他の具体例の説明図、FIG. 2 is an explanatory view of another embodiment of the present invention,
【図3】従来の成形型を用いる具体例の説明図、FIG. 3 is an explanatory view of a specific example using a conventional molding die,
【図4】従来の成形型によって成形した成形物の断面の
説明図。FIG. 4 is an explanatory view of a cross section of a molded product molded by a conventional molding die.
【符号の説明】 1 金属製きね 2 金型 3 金型 4 脱水孔 5 脱水孔 6 多孔質パンチ 7 多孔質体 8 スラリー 9 布製フィルター 10 紙製フィルター 11 脱水孔の位置に生じた凸起[Explanation of Codes] 1 Metal ridge 2 Mold 3 Mold 4 Dehydration hole 5 Dehydration hole 6 Porous punch 7 Porous body 8 Slurry 9 Cloth filter 10 Paper filter 11 Protrusion at the position of dehydration hole
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年2月26日[Submission date] February 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項5[Name of item to be corrected] Claim 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0022[Name of item to be corrected] 0022
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0022】多孔質体には種々の表面部の孔径および表
面粗度のステンレス製の物を用い、成形圧力は200お
よび800kg/cm2とした。As the porous body, those made of stainless steel having various surface pore sizes and surface roughnesses were used, and the molding pressure was 200 and 800 kg / cm 2 .
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0030[Name of item to be corrected] 0030
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0030】[0030]
【表4】 [Table 4]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図2[Name of item to be corrected] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図2】 [Fig. 2]
Claims (10)
おいて、成形型として、その全体または一部が金属製の
多孔質体からなるものを用いることを特徴とするセラミ
ックスの成形法。1. A method of molding ceramics, characterized in that, in the method of casting a ceramics slurry, a molding die is used which is wholly or partially made of a porous body made of metal.
部またはすべてに存在する細孔の平均孔径が0.1μm
以上で、スラリー内に存在する粉末の二次粒子の平均粒
径の20倍以下であることを特徴とする請求項1記載の
セラミックスの成形法。2. The average pore diameter of the pores present in a part or all of the metallic porous body which comes into contact with the slurry is 0.1 μm.
The method for molding ceramics according to claim 1, wherein the average particle size of secondary particles of the powder present in the slurry is 20 times or less.
する表面の一部または全体の面粗度が0.4Z以下であ
ることを特徴とする請求項1または請求項2の何れかに
記載のセラミックスの成形法。3. The surface roughness of a part or the whole of the surface of the metallic porous body that is in contact with the slurry is 0.4 Z or less, and the surface roughness is 0.4 Z or less. Ceramics molding method.
の上に紙または/および布製のフィルターを有すること
を特徴とする請求項1乃至請求項3の何れかに記載のセ
ラミックスの成形法。4. The method for molding ceramics according to claim 1, wherein a filter made of paper and / or cloth is provided on the surface of the metallic porous body facing the slurry. .
リー内に存在する粉末の二次粒子の平均粒径の20倍以
下であることを特徴とする紙または/および布製のフィ
ルターを用いることを特徴とする請求項4記載のセラミ
ックスの成形法。5. A filter made of paper and / or cloth, characterized in that the average particle size of the pores is 0.1 μm or more and 20 times or less the average particle size of the secondary particles of the powder present in the slurry. The method for forming ceramics according to claim 4, which is used.
用いる成形型であって、その全体または一部が金属製の
多孔質体からなることを特徴とするセラミックスの成形
型。6. A molding die for use in a ceramics slurry casting method, characterized in that the molding die is wholly or partly made of a metal porous body.
部またはすべてに存在する細孔の平均孔径が0.1μm
以上で、スラリー内に存在する粉末の二次粒子の平均粒
径の20倍以下であることを特徴とする請求項6記載の
セラミックスの成形型。7. The average pore size of the pores present in a part or all of the metallic porous body that comes into contact with the slurry is 0.1 μm.
7. The ceramic mold according to claim 6, wherein the average particle size of secondary particles of the powder present in the slurry is 20 times or less.
触する表面の一部または全体の面粗度が0.4Z以下で
あることを特徴とする請求項6乃至請求項7の何れかに
記載のセラミックスの成形型。8. The surface roughness of a part or the whole of the surface of the metallic porous body that is in contact with the slurry is 0.4 Z or less, wherein the surface roughness is 0.4 Z or less. Mold of ceramics.
の上に紙または布製のフィルターを有することを特徴と
する請求項6乃至請求項8の何れかに記載のセラミック
スの成形型。9. The ceramic molding die according to claim 6, further comprising a paper or cloth filter on a surface of the metallic porous body facing the slurry.
構を有することを特徴とするセラミックスの成形型。10. A ceramic molding die comprising a mechanism for performing the molding according to claim 5.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24187492A JPH0691620A (en) | 1992-09-10 | 1992-09-10 | Molding method and molding tool for ceramic |
EP93114497A EP0587160A1 (en) | 1992-09-10 | 1993-09-09 | Process and mold for molding ceramics |
US08/505,069 US6458298B1 (en) | 1992-09-10 | 1995-07-21 | Process for molding ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24187492A JPH0691620A (en) | 1992-09-10 | 1992-09-10 | Molding method and molding tool for ceramic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0691620A true JPH0691620A (en) | 1994-04-05 |
Family
ID=17080819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24187492A Pending JPH0691620A (en) | 1992-09-10 | 1992-09-10 | Molding method and molding tool for ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691620A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5733499A (en) * | 1994-11-09 | 1998-03-31 | Ngk Insulators, Ltd. | Method for producing ceramic substrate |
JP2006248876A (en) * | 2005-03-14 | 2006-09-21 | National Institute Of Advanced Industrial & Technology | High density powder compact, its sintered compact and its manufacturing method |
JPWO2010030032A1 (en) * | 2008-09-12 | 2012-02-02 | 日本碍子株式会社 | Solid forming part manufacturing method |
-
1992
- 1992-09-10 JP JP24187492A patent/JPH0691620A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5733499A (en) * | 1994-11-09 | 1998-03-31 | Ngk Insulators, Ltd. | Method for producing ceramic substrate |
US5955392A (en) * | 1994-11-09 | 1999-09-21 | Ngk Insulators, Ltd. | Zirconia ceramic green sheet |
JP2006248876A (en) * | 2005-03-14 | 2006-09-21 | National Institute Of Advanced Industrial & Technology | High density powder compact, its sintered compact and its manufacturing method |
JPWO2010030032A1 (en) * | 2008-09-12 | 2012-02-02 | 日本碍子株式会社 | Solid forming part manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05261515A (en) | Method for impregnating metal product with hard wear-resistant surface and product produced thereby | |
JP2744864B2 (en) | Method for producing salt core for casting | |
JPH0691620A (en) | Molding method and molding tool for ceramic | |
WO1991012216A1 (en) | High density fused silica process and product | |
EP0756922B1 (en) | Process for molding ceramics | |
JPH06262612A (en) | Molding method for ceramic and mold | |
US5445788A (en) | Method of producing elements from powders | |
JP3158974B2 (en) | Ceramic molding method | |
US6458298B1 (en) | Process for molding ceramics | |
EP0587160A1 (en) | Process and mold for molding ceramics | |
Crawford et al. | Microhardness and density distributions in polymeric powder compacts | |
BR0314079B1 (en) | process for preparing high density non-sintered compacts. | |
JP3712796B2 (en) | Wet press molding method and apparatus | |
JPH05228913A (en) | Method and device for forming ceramic | |
JPS5662763A (en) | Grinder chip for cutting grinder and manufacture thereof | |
JP2518574B2 (en) | Pressure casting mold | |
JPH04285141A (en) | Manufacture of ferrous sintered body | |
JP3224645B2 (en) | Ceramics molding method | |
GB1576778A (en) | Sliding gate valves | |
JP2547298B2 (en) | Mold for high pressure casting and method of manufacturing ceramics using the same | |
JPH01287203A (en) | Method for compacting powder and mold for compacting powder | |
JPH0625708A (en) | Production of powder compact | |
Lidman et al. | An Investigation of the Slip-casting Mechanism as Applied to Stainless Steel Powder | |
JPH01290705A (en) | Roll forming method of powder and rolling roll for powder roll forming | |
JPH0671625A (en) | Cast molding method for ceramics |