JPH069141B2 - Method for manufacturing sealed solid electrolyte battery - Google Patents

Method for manufacturing sealed solid electrolyte battery

Info

Publication number
JPH069141B2
JPH069141B2 JP17949382A JP17949382A JPH069141B2 JP H069141 B2 JPH069141 B2 JP H069141B2 JP 17949382 A JP17949382 A JP 17949382A JP 17949382 A JP17949382 A JP 17949382A JP H069141 B2 JPH069141 B2 JP H069141B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
positive electrode
active material
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17949382A
Other languages
Japanese (ja)
Other versions
JPS5968177A (en
Inventor
修弘 古川
俊彦 斎藤
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17949382A priority Critical patent/JPH069141B2/en
Publication of JPS5968177A publication Critical patent/JPS5968177A/en
Publication of JPH069141B2 publication Critical patent/JPH069141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、リチウムを活物質とする負極と、固体電解質
とを有する密閉型固体電解質電池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a sealed solid electrolyte battery having a negative electrode using lithium as an active material and a solid electrolyte.

(ロ)従来の技術 従来、この種電池の固体電解質としては、Lilを主成分
としこれにCal2、Al2O3、Li2Sなどを添加したものが一
般的に用いられていた。この固体電解質は比較的高い導
電率(1〜2×10-5Ω-1・cm-1)を示すが、分解電圧が
約2.8Vと低いため、例えば正極活物質として二酸化
マンガン、三酸化モリブデン、五酸化バナジウムの如
き、リチウム負極と組み合わせると電池電圧が3.0V
以上に達する物質を用いた場合、固体電解質が分解して
腐食性の強いヨウ素が発生し、電池缶やパッキングを腐
食させるという問題がある。また、この固体電解質は微
量の水分で容易に分解するという欠点もあり、保存中の
劣化が比較的大きいものであった。
(B) Conventional Technology Conventionally, as a solid electrolyte of this type of battery, a material containing Lil as a main component and Cal 2 , Al 2 O 3 , Li 2 S or the like added thereto has been generally used. This solid electrolyte has a relatively high electric conductivity (1 to 2 × 10 -5 Ω -1 cm -1 ), but its decomposition voltage is low at about 2.8 V, so that, for example, manganese dioxide or trioxide is used as the positive electrode active material. When combined with a lithium negative electrode such as molybdenum or vanadium pentoxide, the battery voltage is 3.0V.
When a substance reaching the above is used, there is a problem that the solid electrolyte is decomposed to generate highly corrosive iodine, which corrodes the battery can and the packing. Further, this solid electrolyte also has a drawback that it is easily decomposed with a small amount of water, and thus the deterioration during storage was relatively large.

そこで、種々の固体電解質が鋭意検討されており、近年
に至ってγ”−リン酸リチウム型結晶構造を有する電解
質材が提案されている。これはLi3PO4、Li3VO4、Li2MoO
4などのグループにLi SiO4、Li4GeO4などを固溶したもの
と考えられ、室温で1×10-5Ω-1・cm-1の導電率を示
し、また分解電圧も3.0V以上と高いものである。
Therefore, various solid electrolytes have been earnestly studied, and in recent years,
To γ ″ -lithium phosphate type crystal structure
A quality material is proposed. This is Li3POFour, Li3VOFour, Li2MoO
FourTo groups such as Li SiOFour, LiFourGeOFourA solid solution of
Thought to be 1 × 10 at room temperature-FiveΩ-1·cm-1Shows the conductivity of
In addition, the decomposition voltage is as high as 3.0 V or higher.

而して、このγ”−リン酸リチウム型結晶構造を有する
電解質材を用いて固体電解質を作成するに際して、前記
電解質材を粉末成型法で成型したところ、十分な強度を
有した固体電解質が得られ難く、接触抵抗が加味され導
電率も10-7〜10-6Ω-1・cm-1程度までしか上昇しなかっ
た。
Thus, when a solid electrolyte is prepared by using the electrolyte material having this γ ″ -lithium phosphate type crystal structure, the electrolyte material is molded by a powder molding method, and a solid electrolyte having sufficient strength is obtained. It was difficult to obtain, and the contact resistance was added, and the conductivity increased only to about 10 -7 to 10 -6 Ω -1 cm -1 .

また、この種固体電解質電池の製造方法は、正極として
の各種酸化物と、負極としてのリチウムと、固体電解質
とを単に配置して電池を構成していた〔例えば第21回
電池討論会講演要旨集(昭55−11)P144〜P1
46参照〕。ここで、本発明者が種々検討した結果、こ
の種電池の従来の製造方法において、酸化物である正極
と、固体電解質材とを単に粉末成形し、負極と組み合わ
せた場合、正極と電解質材との粒界での接触抵抗が増大
し、電池特性を低下させるといった問題が生じることを
見い出した。
In addition, in the method for manufacturing this kind of solid electrolyte battery, various oxides as a positive electrode, lithium as a negative electrode, and a solid electrolyte are simply arranged to form a battery [for example, 21st battery discussion meeting abstract. Shu (Showa 55-11) P144-P1
46]. Here, as a result of various studies by the present inventor, in the conventional manufacturing method of this type of battery, when the positive electrode which is an oxide and the solid electrolyte material are simply powder-molded and combined with the negative electrode, the positive electrode and the electrolyte material are It has been found that the contact resistance at the grain boundaries of the battery increases and the battery characteristics deteriorate.

(ハ)発明が解決しようとする課題 本発明はかかる問題点に鑑みて成されたものであって、
この種固体電解質を用いた電池の接触抵抗を減少させ、
放電特性に優れた密閉型固体電解質電池の製造方法を提
案するものである。
(C) Problems to be Solved by the Invention The present invention has been made in view of such problems,
Decrease the contact resistance of batteries using this type of solid electrolyte,
A method for manufacturing a sealed solid electrolyte battery having excellent discharge characteristics is proposed.

(ニ)課題を解決するための手段 本発明の密閉型固体電解質電池の製造方法は、γ”−リ
ン酸リチウム型結晶構造を有する電解質材の成形体に、
正極活物質の成形体を密接させた状態で焼結させて固体
電解質を得た後、リチウムを活物質とする負極と組み合
わせて密閉することを特徴とする。
(D) Means for Solving the Problems The method for producing a sealed solid electrolyte battery of the present invention comprises a molded body of an electrolyte material having a γ ″ -lithium phosphate type crystal structure,
It is characterized in that a molded body of the positive electrode active material is sintered in a closely contacted state to obtain a solid electrolyte, which is then sealed in combination with a negative electrode having lithium as an active material.

(ホ)作用 本発明の製造方法によれば、γ”−リン酸リチウム型結
晶構造を有する電解質材の成形体に、正極活物質の成形
体を密接させた状態で焼結させて固体電解質を得た後、
負極と組み合わせて密閉しているので、焼結時に電解質
材粒子の表面が溶解し粒子間の密着性が向上して、粒界
での接触抵抗が低減する。その結果、導電率が高めら
れ、正極活物質と固体電解質との界面における接触抵抗
を低下させ、電池の放電電圧を高くできる。
(E) Action According to the production method of the present invention, a solid electrolyte is obtained by sintering a molded body of the positive electrode active material in close contact with a molded body of an electrolyte material having a γ ″ -lithium phosphate type crystal structure. After getting
Since it is sealed in combination with the negative electrode, the surface of the electrolyte material particles is dissolved during sintering, the adhesion between particles is improved, and the contact resistance at the grain boundary is reduced. As a result, the conductivity is increased, the contact resistance at the interface between the positive electrode active material and the solid electrolyte is reduced, and the discharge voltage of the battery can be increased.

(ヘ)実施例 以下、本発明の実施例について詳述する。(F) Example Hereinafter, an example of the present invention will be described in detail.

[実施例1] 固体電解質の一例として、Li4SiO4−Li3VO4系を、次の
ように調整した。
An example of Example 1 solid electrolyte, the Li 4 SiO 4 -Li 3 VO 4 system, was prepared as follows.

即ち、炭酸リチウムLi2CO3、シリカSiO2、五酸化バナジ
ウムV2O5をモル比で、1.7:0.4:0.3の比率で秤取し、
n−ヘキサンで混練後、100℃で乾燥した。その後、空
気中において、700℃で、50時間反応させ、冷却後この
粉末を3トン/cm2で加圧成型して電解質ペレットを作
成し、ついで850℃で1時間焼結処理した。
That is, lithium carbonate Li 2 CO 3 , silica SiO 2 , vanadium pentoxide V 2 O 5 are weighed in a molar ratio of 1.7: 0.4: 0.3,
After kneading with n-hexane, it was dried at 100 ° C. Then, in air, it was made to react at 700 ° C. for 50 hours, and after cooling, this powder was pressure-molded at 3 ton / cm 2 to prepare an electrolyte pellet, and then sintered at 850 ° C. for 1 hour.

このように、焼結処理した固体電解式(I)と、焼結処
理しない固体電解質(II)との温度特性を比較した。こ
の結果を、第1図に示す。これより、固体電解質とし
て、γ”−リン酸リチウム型結晶構造を有する電解質材
の成形体を焼結したものを用いているので、単なる粉末
成形体の場合に比して、焼結時に電解質材粒子の表面が
溶解し粒子間の密着性が向上して、粒界での接触抵抗が
低減し、導電率が高められたことが理解できる。
In this way, the temperature characteristics of the solid electrolytic formula (I) subjected to the sintering treatment and the solid electrolyte (II) not subjected to the sintering treatment were compared. The results are shown in FIG. Therefore, as the solid electrolyte, a sintered body of an electrolyte material having a γ ″ -lithium phosphate type crystal structure is used. It can be understood that the surface of the particles was dissolved, the adhesion between the particles was improved, the contact resistance at the grain boundary was reduced, and the conductivity was increased.

そして、前記700℃で50時間反応させて冷却したもの
を、金型中に所定量入れた後、正極活物質である五酸化
バナジウムをその上に入れ、3トン/cm2で加圧成型し
た後、この成形体を850℃で1時間焼結処理した。
Then, after reacting at 700 ° C. for 50 hours and cooling, it was put in a predetermined amount in a mold, vanadium pentoxide as a positive electrode active material was put thereon, and pressure molding was performed at 3 ton / cm 2 . Then, this molded body was sintered at 850 ° C. for 1 hour.

このようにして、正極活物質と固体電解質とを同時焼結
して一体となったものと、負極活物質としてリチウムを
用いた負極を組み合わせ密閉して、直径11.5mm、高さ2.
0mmのボタン型固体電解質電池を作成し、本発明電池A
とした。
In this manner, the positive electrode active material and the solid electrolyte are simultaneously sintered into one body, and the negative electrode using lithium as the negative electrode active material is combined and hermetically sealed to have a diameter of 11.5 mm and a height of 2.
A 0 mm button type solid electrolyte battery was prepared and used as the battery A of the present invention.
And

[実施例2] 前記実施例1において、正極活物質として三酸化モリブ
デンを用いることを除いて他は前記電池Aと同様にし
て、本発明電池Bを作成した。
Example 2 A battery B of the present invention was made in the same manner as the battery A except that molybdenum trioxide was used as the positive electrode active material in the above-mentioned Example 1.

[比較例1] 前記実施例1において使用した固体電解質(I)を用
い、正極に五酸化バナジウム、負極にリチウムを使用し
た以外は同様にして、比較電池Cを作成した。尚、この
比較電池Cでは、固体電解質として焼結したものを用い
ているが、正極とは同時焼結されていない。
Comparative Example 1 A comparative battery C was prepared in the same manner except that the solid electrolyte (I) used in Example 1 was used and vanadium pentoxide was used for the positive electrode and lithium was used for the negative electrode. In this comparative battery C, a sintered solid electrolyte is used, but it is not simultaneously sintered with the positive electrode.

[比較例2] 前記実施例1において使用した固体電解質(I)を用
い、正極に三酸化モリブデン、負極にリチウムを使用し
た以外は同様にして、比較電池Dを作成した。尚、この
比較電池Dでは、固体電解質として焼結したものを用い
ているが、正極とは、同時焼結されていない。
Comparative Example 2 A comparative battery D was prepared in the same manner except that the solid electrolyte (I) used in Example 1 was used and molybdenum trioxide was used for the positive electrode and lithium was used for the negative electrode. In this comparative battery D, a sintered solid electrolyte is used, but it is not simultaneously sintered with the positive electrode.

[比較例3] 前記実施例1において使用した固体電解質(II)のよう
に、γ”−リン酸リチウム型結晶構造を有する電解質材
を加圧成型し焼結処理しない成型体を電解質として用
い、正極に五酸化バナジウムを使用した以外は同様にし
て、比較電池Eを作成した。
Comparative Example 3 Like the solid electrolyte (II) used in Example 1, an electrolyte material having a γ ″ -lithium phosphate type crystal structure is pressure-molded and a molded body that is not sintered is used as an electrolyte. Comparative battery E was prepared in the same manner except that vanadium pentoxide was used for the positive electrode.

[比較例4] 前記実施例1において使用した固体電解質(II)のよう
に、γ”−リン酸リチウム型結晶構造を有する電解質材
を加圧成型し焼結処理しない成型体を電解質として用
い、正極に三酸化モリブデンを使用した以外は同様にし
て、比較電池Fを作成した。
[Comparative Example 4] Like the solid electrolyte (II) used in Example 1, an electrolyte material having a γ "-lithium phosphate type crystal structure was pressure-molded and a sintered body which was not sintered was used as an electrolyte. Comparative battery F was prepared in the same manner except that molybdenum trioxide was used for the positive electrode.

これら電池A〜Fを用い、電池の放電特性を比較した。
この結果を、第2図に示す。
Using these batteries A to F, the discharge characteristics of the batteries were compared.
The results are shown in FIG.

これより、本発明電池Aは比較電池C及び比較電池Eと
比較して、また、本発明電池Bは比較電池D及び比較電
池Fと比較して、それぞれ電池性能の向上が計られてい
ることが理解できる。
From this, the battery A of the present invention has improved battery performance as compared with the comparative battery C and the comparative battery E, and the battery B of the present invention has improved battery performance as compared with the comparative battery D and the comparative battery F, respectively. Can understand.

この理由は、正極活物質と固体電解質とを同時に焼結し
ているので、固体電解質をそのまま使用したもの(比較
電池E及び比較電池F)や、更に、固体電解質を単に焼
結したもの(比較電池C及び比較電池D)と比較して、
正極活物質と固体電解質との界面における接触抵抗を一
層低下させることができたことに起因している。
The reason for this is that the positive electrode active material and the solid electrolyte are simultaneously sintered, so that the solid electrolyte is used as it is (Comparative Battery E and Comparative Battery F), or the solid electrolyte is simply sintered (Comparative Compared to Battery C and Comparative Battery D),
This is because the contact resistance at the interface between the positive electrode active material and the solid electrolyte could be further reduced.

そして、特に本発明電池A及びBは、正極活物質と固体
電解質とを同時に焼結して接触抵抗が低減しているの
で、第2図において、本発明電池Aと比較電池Cとの比
較、本発明電池Bと比較電池Dとの比較より理解できる
ように、電池の放電電圧が高くなっているという特有の
効果が得られる。
In particular, since the batteries A and B of the present invention have the contact resistance reduced by simultaneously sintering the positive electrode active material and the solid electrolyte, the battery A of the present invention and the comparative battery C are compared in FIG. As can be understood from a comparison between the present invention battery B and the comparative battery D, the unique effect that the discharge voltage of the battery is high is obtained.

尚、本実施例では、γ”−リン酸リチウム型結晶構造を
有する電解質材の一例として、Li4SiO4−Li3VO4系の場
合のみについて述べたが、これに限定されるものではな
い。
In addition, in the present embodiment, as an example of the electrolyte material having the γ ″ -lithium phosphate type crystal structure, only the case of Li 4 SiO 4 —Li 3 VO 4 system was described, but it is not limited to this. .

また、同様に正極活物質についても実施例で挙げた五酸
化バナジウム、三酸化モリブデンに限定されるものでは
ない。
Similarly, the positive electrode active material is not limited to the vanadium pentoxide and molybdenum trioxide mentioned in the examples.

(ト)発明の効果 以上、詳述した如く、本発明の密閉型固体電解質電池の
製造方法によれば、リチウムを活物質とする負極と、
γ”−リン酸リチウム型結晶構造を有する電解質材の成
形体に、正極活物質の成形体を密接させた状態で焼結さ
せて固体電解質を得た後、リチウムを活物質とする負極
と組み合わせて密閉するものであるので、正極活物質と
固体電解質との界面における接触抵抗を低下させ電池の
放電電圧を高くすることができ、電池の放電特性を向上
させるものであり、その工業的価値は極めて大きい。
(G) Effect of the Invention As described above in detail, according to the method for producing a sealed solid electrolyte battery of the present invention, a negative electrode using lithium as an active material,
A solid electrolyte is obtained by sintering a compact of an electrolyte material having a γ ″ -lithium phosphate type crystal structure in close contact with a compact of a positive electrode active material, and then combining the negative electrode with lithium as an active material. Since it is hermetically sealed, the contact resistance at the interface between the positive electrode active material and the solid electrolyte can be lowered to increase the discharge voltage of the battery, which improves the discharge characteristics of the battery, and its industrial value is Extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は固体電解質の温度特性図、第2図は密閉型固体
電解質電池の放電特性図である。 A、B・・・本発明電池、 C、D、E、F・・・比較電池。
FIG. 1 is a temperature characteristic diagram of a solid electrolyte, and FIG. 2 is a discharge characteristic diagram of a sealed solid electrolyte battery. A, B ... Inventive battery, C, D, E, F ... Comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 特公 昭52−30699(JP,B2) 第21回電池討論会講演要旨集(昭55− 11)、p.144〜146 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-18, Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-B-52-30699 (JP, B2) 21st Battery Proceedings of the discussion meeting (Sho 55-11), p. 144 ~ 146

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】γ”−リン酸リチウム型結晶構造を有する
電解質材の成形体に、正極活物質の成形体を密接させた
状態で焼結させて固体電解質を得た後、リチウムを活物
質とする負極と組み合わせて密閉することを特徴とする
密閉型固体電解質電池の製造方法。
1. A solid electrolyte is obtained by sintering a molded body of an electrolyte material having a γ ″ -lithium phosphate type crystal structure in a state where the molded body of a positive electrode active material is closely contacted with the molded body of the positive electrode active material. And a method of manufacturing a sealed solid electrolyte battery, which comprises sealing in combination with a negative electrode.
JP17949382A 1982-10-12 1982-10-12 Method for manufacturing sealed solid electrolyte battery Expired - Lifetime JPH069141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17949382A JPH069141B2 (en) 1982-10-12 1982-10-12 Method for manufacturing sealed solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17949382A JPH069141B2 (en) 1982-10-12 1982-10-12 Method for manufacturing sealed solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5968177A JPS5968177A (en) 1984-04-18
JPH069141B2 true JPH069141B2 (en) 1994-02-02

Family

ID=16066785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17949382A Expired - Lifetime JPH069141B2 (en) 1982-10-12 1982-10-12 Method for manufacturing sealed solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH069141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
CN108110324A (en) * 2017-11-17 2018-06-01 中国科学院深圳先进技术研究院 A kind of preparation method of solid lithium ion battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第21回電池討論会講演要旨集(昭55−11)、p.144〜146

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
CN108110324A (en) * 2017-11-17 2018-06-01 中国科学院深圳先进技术研究院 A kind of preparation method of solid lithium ion battery

Also Published As

Publication number Publication date
JPS5968177A (en) 1984-04-18

Similar Documents

Publication Publication Date Title
JPS61288374A (en) Organic electrolyte cell
JPH069141B2 (en) Method for manufacturing sealed solid electrolyte battery
JPH0351063B2 (en)
JPH0458148B2 (en)
JP2807481B2 (en) Cathode of non-aqueous electrolyte battery
JPS6153828B2 (en)
JPH0251218B2 (en)
JP2552442B2 (en) Method for manufacturing non-aqueous electrolyte battery
JPH0430148B2 (en)
JPS5853025Y2 (en) silver oxide battery
JPH02220357A (en) Nonaqueous secondary battery
JPS5857262A (en) Positive electrode of organic solvent battery
JPS63308869A (en) Nonaqueous electrolytic solution battery
JPS6142858A (en) Nonaqueous electrolyte battery
JPH0558221B2 (en)
JPH0430151B2 (en)
JPS62133671A (en) Manufacture of button type alkaline cell
JPH0560234B2 (en)
JPS5952515B2 (en) Manufacturing method for positive electrode active material for solid electrolyte batteries
JPS62272459A (en) Organic electrolyte battery
JPH073785B2 (en) Non-aqueous electrolyte battery
JPH04184867A (en) Silver oxide battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS63124369A (en) Manufacture of organic electrolyte battery
JPS62200659A (en) Manufacture of positive electrode for nonaqueous electrolyte cell