JPS63124369A - Manufacture of organic electrolyte battery - Google Patents

Manufacture of organic electrolyte battery

Info

Publication number
JPS63124369A
JPS63124369A JP61270766A JP27076686A JPS63124369A JP S63124369 A JPS63124369 A JP S63124369A JP 61270766 A JP61270766 A JP 61270766A JP 27076686 A JP27076686 A JP 27076686A JP S63124369 A JPS63124369 A JP S63124369A
Authority
JP
Japan
Prior art keywords
bismuth trioxide
positive electrode
battery
active material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61270766A
Other languages
Japanese (ja)
Other versions
JPH0520861B2 (en
Inventor
Kensuke Tawara
謙介 田原
Hideo Sakamoto
秀夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP61270766A priority Critical patent/JPS63124369A/en
Priority to EP87309971A priority patent/EP0270264B1/en
Priority to DE8787309971T priority patent/DE3785834T2/en
Priority to US07/120,619 priority patent/US4804597A/en
Publication of JPS63124369A publication Critical patent/JPS63124369A/en
Publication of JPH0520861B2 publication Critical patent/JPH0520861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells

Abstract

PURPOSE:To heighten the working voltage of a battery in the 40% or more deep discharge and to increase the effective discharge capacity by using bismuth trioxide heated at 650 deg.C or more as a positive active material. CONSTITUTION:A positive active material is prepared by heating bismuth trioxide having a purity of 99.99% in the atmosphere at 300-1000 deg.C for 5 hours, and crushing it in particles having a particle size of 100mum or less. As the comparison, bismuth trioxide powder is used without heat treatment. The bismuth trioxide, carbon conductor, and a fluorine resin binder are mixed in a ratio of 94.5:5:0.5. The mixture is molded in a pellet together with a positive ring made of stainless steel having L-shaped cross section and dried under a reduced pressure at 100 deg.C for 10 hours to form a positive electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極主活物質とし、三酸化ビスマ
スBi2O3を正極主・活物質とする有機電解質電池の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the improvement of an organic electrolyte battery that uses lithium as the main active material for the negative electrode and bismuth trioxide Bi2O3 as the main active material for the positive electrode.

リチウムを負極活物質とする有機電解質電池においては
、正極に用いる活物質の種類によって、種々の作動電圧
の電池が可能であるが、実用的には、約3■の作動電圧
を有する3■タイプと約1.5■の作動電圧を存する1
、5Vタイプに大別される。
In organic electrolyte batteries that use lithium as the negative electrode active material, batteries with various operating voltages are possible depending on the type of active material used for the positive electrode, but in practical terms, the 3-inch type, which has an operating voltage of approximately 3. 1, which has an operating voltage of approximately 1.5
, 5V type.

1.5Vタイプに属する正極活物質としては、酸化第二
銅、硫化鉄、二硫化鉄、酸化鉛、三酸化ビスマス等が知
られている。この中で三酸化ビスマスを用いた電池は作
動電圧が1.5v〜1.8■と高いため、大電流放電を
必要とする用途に対しては特に有利な電池系である。本
発明は、この様な三酸化ビスマスを正極とするリチウム
−有機電解質電池の正極の改良に関するものである。
Known positive electrode active materials belonging to the 1.5V type include cupric oxide, iron sulfide, iron disulfide, lead oxide, bismuth trioxide, and the like. Among these, batteries using bismuth trioxide have a high operating voltage of 1.5V to 1.8V, so they are a particularly advantageous battery system for applications requiring large current discharge. The present invention relates to an improvement in the positive electrode of a lithium-organic electrolyte battery using such bismuth trioxide as the positive electrode.

〔従来の技術〕[Conventional technology]

従来、この種の電池において、例えばボタン型電池を製
造する場合、正極は次の様に作られていた。即ち、活物
質である三酸化ビスマスとグラファイト又はカーボンブ
ラック等の炭素粉末又は金属粉末等々の電電剤、及びフ
ン素樹脂やポリスチレン等の樹脂結着剤を所定組成比で
混合し、次にこの正極合剤の所定量を成形機の金型中に
充填し、加圧成形することによってペレット状の正極成
形体とする。こうして得られた正極ペレットは、樹脂結
着剤の熱分解や導電剤の酸化が起こらない範囲の温度(
高々300℃以下)で減圧加熱乾燥されて十分脱水され
た後、電池に組込まれる。正極活物質に、三酸化ビスマ
スを用いた有機電解質は、例えば、特開昭52−124
25号公報、特公昭59−49673号公報に開示され
ている。
Conventionally, in this type of battery, for example, when manufacturing a button-type battery, a positive electrode has been made as follows. That is, the active material bismuth trioxide, an electric agent such as carbon powder or metal powder such as graphite or carbon black, and a resin binder such as fluorine resin or polystyrene are mixed in a predetermined composition ratio, and then this positive electrode is mixed. A predetermined amount of the mixture is filled into a mold of a molding machine and pressure-molded to form a pellet-like positive electrode molded body. The positive electrode pellets thus obtained are heated at a temperature within a range where thermal decomposition of the resin binder and oxidation of the conductive agent do not occur.
After being sufficiently dehydrated by heating and drying under reduced pressure at a temperature of 300° C. or less, it is assembled into a battery. An organic electrolyte using bismuth trioxide as a positive electrode active material is disclosed in, for example, JP-A-52-124.
It is disclosed in Japanese Patent Publication No. 25 and Japanese Patent Publication No. 59-49673.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、三酸化ビスマスを正極活物質とし、前述の様な
従来の方法で作られた電池を放電させた時の放電特性は
、第2図のaに示す様に、2段の放電電圧を示し、放電
深度約40%以上では低い作動電圧となる。このため、
この電池を大電流放電を必要とする機器へ用いた場合、
電池電圧の低下により、電池容量がまだ十分残っている
にもかかわらず、機器を正常に作動させるに必要な電圧
が得られないため、有効な電池容量(寿命)が著しく低
下するという問題があった。
However, when a battery made using bismuth trioxide as the positive electrode active material is discharged using the conventional method described above, the discharge characteristics show two stages of discharge voltage, as shown in a in Figure 2. , the operating voltage becomes low when the depth of discharge is about 40% or more. For this reason,
When this battery is used in equipment that requires large current discharge,
Due to a drop in battery voltage, even if there is still sufficient battery capacity remaining, the voltage required to operate the device normally cannot be obtained, resulting in a significant decrease in effective battery capacity (life). Ta.

本発明は、この様な三酸化ビスマス正極の改良により、
この種電池の作動電圧、特に放電深度約40%以上の作
動電圧を高くし、有効な放電容量を向上させることを目
的とする。
The present invention achieves this by improving the bismuth trioxide positive electrode.
The purpose of this invention is to increase the operating voltage of this type of battery, particularly at a depth of discharge of about 40% or more, and to improve the effective discharge capacity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記の様な問題点を解決するために種々
検討した結果、正極活物質として、650℃以上の温度
で熱処理した三酸化ビスマスを用いることにより、この
種電池の作動電圧、特に放電深度約40%以上における
作動電圧が改善され、有効な放電容量が著しく向上する
ことを見出した。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that by using bismuth trioxide heat-treated at a temperature of 650°C or higher as the positive electrode active material, the operating voltage of this type of battery can be increased. It has been found that the operating voltage is particularly improved at a depth of discharge of about 40% or more, and the effective discharge capacity is significantly improved.

即ち、正極を製造するに際し、三酸化ビスマスを導電剤
や結着剤等と混合する前に、予め三酸化ビスマスを65
0℃以上の温度で熱処理し、しかる後に、必要に応じて
導電剤や結着剤と混合し、所定形状に成形する様にした
。熱処理する雰囲気は、三酸化ビスマスを還元しない雰
囲気であればよく、大気中、不活性ガス中又は真空中等
が良い。
That is, when manufacturing a positive electrode, before mixing bismuth trioxide with a conductive agent, a binder, etc., 65% of bismuth trioxide is added.
The material was heat-treated at a temperature of 0° C. or higher, and then mixed with a conductive agent and a binder if necessary, and molded into a predetermined shape. The atmosphere for the heat treatment may be any atmosphere that does not reduce bismuth trioxide, such as air, inert gas, or vacuum.

また、粉末の三酸化ビスマスを650℃以上の温度で熱
処理すると、焼結、溶融等により冷却時には固まって結
合体となるため、次に導電剤や結着剤と均一に混合する
ためには、混合前に十分粉砕し、100μm以下の微粒
子にすることが好ましい。
In addition, when powdered bismuth trioxide is heat-treated at a temperature of 650°C or higher, it hardens into a bond when cooled due to sintering, melting, etc., so in order to uniformly mix it with the conductive agent and binder, It is preferable to thoroughly grind the materials into fine particles of 100 μm or less before mixing.

特に、三酸化ビスマスの融点820℃の近傍以上の温度
で熱処理する場合には溶融し、冷却後には強固な結合体
となるため、十分粉砕し微粒子化することが重要である
In particular, when heat-treated at a temperature higher than the melting point of bismuth trioxide of 820° C., it melts and becomes a strong bond after cooling, so it is important to sufficiently crush it into fine particles.

〔作用〕[Effect]

上記の様に、650℃以上の温度で熱処理した三酸化ビ
スマスを用いて作製した電池を放電させた場合、作動電
圧、特に放電深度約40%以上の作動電圧が高くなり、
改善されるため、一定のカットオフ電圧迄の有効な放電
容量が著しく向上する。
As mentioned above, when a battery made using bismuth trioxide heat-treated at a temperature of 650°C or more is discharged, the operating voltage, especially at a depth of discharge of about 40% or more, becomes high.
As a result, the effective discharge capacity up to a certain cut-off voltage is significantly improved.

作動電圧が改善される理由は必ずしも明らかではないが
、次の様に推定される。即ち、三酸化ビスマスを650
°C以上で熱処理すると、三酸化ビスマスの各粒子を構
成する原子が著しく移動し、各粒子結晶表面及び内部の
構造に微妙な変化があり、電気化学的活性度が高まる。
The reason why the operating voltage is improved is not necessarily clear, but it is presumed as follows. That is, 650 bismuth trioxide
When heat treated at temperatures above 0.degree. C., the atoms constituting each particle of bismuth trioxide move significantly, causing subtle changes in the crystal surface and internal structure of each particle, and increasing electrochemical activity.

逆に、650℃以下ではこの様な原子移動が少ないため
、作動電圧は改善されない。
On the other hand, at temperatures below 650° C., such atomic movement is small, so the operating voltage is not improved.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 正極活物質は純度99.99χの三酸化ビスマス粉末を
大気中で、300〜1000℃の温度でそれぞれ5時間
熱処理し、冷却した後、粒径100μ二以下に粉砕した
もの、及び比較例として熱処理をしないそのままの粉末
を用いた。この熱処理済み、又は未処理の三酸化ビスマ
スと炭素導電剤(グラファイト又はカーボンブラック等
)及びフッ素樹脂からなる結着剤とを重量比94:5 
: 5 : 0.5の割合で混合し、断面り字状のSU
S製正極保持リングと共にペレット状に加圧成形した後
、100℃で10時間減圧加熱乾燥したものを正極とし
た。この様にして作った正極の直径は9.0m、厚さは
1.1鰭、理論容量は90mAHであった。
Example 1 The positive electrode active material was a bismuth trioxide powder with a purity of 99.99χ that was heat-treated in the air at a temperature of 300 to 1000°C for 5 hours, cooled, and then ground to a particle size of 100μ2 or less, and a comparison. As an example, a raw powder without heat treatment was used. This heat-treated or untreated bismuth trioxide, a carbon conductive agent (graphite or carbon black, etc.), and a binder made of a fluororesin are mixed in a weight ratio of 94:5.
: 5 : Mixed at a ratio of 0.5, SU with a cross-sectional shape
The positive electrode was formed by pressure molding into a pellet together with a positive electrode holding ring made of S, and then dried under reduced pressure at 100° C. for 10 hours. The positive electrode thus produced had a diameter of 9.0 m, a thickness of 1.1 fins, and a theoretical capacity of 90 mAH.

第3図は、本発明の一例を示す電池断面図である。図に
おいて、■は負極端子を兼ねる負極缶であり、厚さ0.
22mmのN i / S U Sクラツド板を絞り加
工したものである。負極2は、厚さ1.3龍のリチウム
シートを直径6.4flに打ち抜いて上記負極缶内面に
圧着したものである。6は厚さ0.22++nのNi/
SUSクラッド板からなる正極缶であり、正極端子を兼
ねている。この正極缶内に、前記の正極5が充填され、
その上にマイクロポーラスなポリプロピレンシートから
なるセパレータ4が載置されている。3は正極と負極間
に電解液を保持する含浸材であり、ポリプロピレンを主
要素とする不織布からなる。7はポリプロピレンを主体
とするガスケットであり、負極缶1と正極缶6の間に介
在し、正極と負極の電気的絶縁性を保つと同時に、正極
缶開口縁が内側に折り曲げられ、カシメられることによ
って、電池内容物を密封、封止している。電解液は、プ
ロピレンカーボネイトと1.2−ジメトキシエタンの1
;1混合溶媒に、過塩素リチウムを1モル/7!熔解し
たものを用いた。
FIG. 3 is a sectional view of a battery showing an example of the present invention. In the figure, ■ is a negative electrode can that also serves as a negative electrode terminal, and has a thickness of 0.
It is made by drawing a 22mm Ni/SUS clad plate. The negative electrode 2 was made by punching out a lithium sheet with a thickness of 1.3 mm to a diameter of 6.4 fl and press-bonding it to the inner surface of the negative electrode can. 6 is Ni/with a thickness of 0.22++n
This is a positive electrode can made of a SUS clad plate, and also serves as a positive electrode terminal. The positive electrode 5 is filled in this positive electrode can,
A separator 4 made of a microporous polypropylene sheet is placed thereon. 3 is an impregnating material that holds the electrolyte between the positive electrode and the negative electrode, and is made of a nonwoven fabric whose main element is polypropylene. 7 is a gasket mainly made of polypropylene, which is interposed between the negative electrode can 1 and the positive electrode can 6 to maintain electrical insulation between the positive electrode and the negative electrode, and at the same time, the opening edge of the positive electrode can can be bent inward and caulked. The battery contents are sealed and sealed. The electrolyte is a mixture of propylene carbonate and 1,2-dimethoxyethane.
; 1 mol/7 of lithium perchloride in 1 mixed solvent! The molten one was used.

電池の大きさは、外形9.5mm、総厚3.0酊である
The size of the battery is 9.5 mm in outer diameter and 3.0 mm in total thickness.

第2図は、前述の三酸化ビスマスの熱処理温度が、(a
)、熱処理なし、(bl、500℃、 fcl 、 6
50℃、 (d+ 、 800°c、 fel、 10
00℃の場合における上記電池の、24℃での3にΩ定
抵抗放電特性を示す。この結果から、三酸化ビスマスの
熱処理温度が650℃以上では、それ以下に比べ放電電
圧が高くなり、特に放電深度約40%以上のマ夏半の電
圧平坦部での放電電圧が高くなっており、しかも、カッ
ト・オフ電圧1.2■迄の放電時間も長くなっており、
放電特性、有効な放電容量が著しく改善されることが分
かる。
FIG. 2 shows that the heat treatment temperature of bismuth trioxide mentioned above is (a
), no heat treatment, (bl, 500°C, fcl, 6
50℃, (d+, 800℃, fel, 10
3 shows the Ω constant resistance discharge characteristics of the above battery at 24°C in the case of 00°C. From this result, when the heat treatment temperature of bismuth trioxide is 650°C or higher, the discharge voltage is higher than when it is lower than that, and the discharge voltage is especially high in the voltage flat part in mid-summer when the depth of discharge is about 40% or more. , Moreover, the discharge time until the cut-off voltage of 1.2■ is longer,
It can be seen that the discharge characteristics and effective discharge capacity are significantly improved.

第1図は、三酸化ビスマスの熱処理温度と放電容量の関
係を示したものである。図から明らかな様に、三酸化ビ
スマスの熱処理温度が650℃以上では約800℃迄、
急激に放電容量が増加し、850℃以上では容量増加は
飽和し、それ以上熱処理温度を上げても、容量はほとん
ど増加せず、はぼ一定になる。この原因として、三酸化
ビスマスの融点が820℃であり、三酸化ビスマスはこ
れ以上の温度では安定な溶融状態となるため、これ以上
の温度で熱処理しても冷却後の状態は、はぼ同じになる
ためと推定される。いずれにせよ、図より、三酸化ビス
ヌスを650°C以上の温度で熱処理した場合は、それ
以下の温度で熱処理した場合及び熱処理なしの場合に比
べて、放電容量が向上することは明らかである。又、特
に熱処理の効果が大きくなるのは700℃以上であるが
、850℃以上では、それ以上の容量増加は少ないこと
と、三酸化ビスマスを熱処理する電気炉等の設備や運転
費用及び取り扱いにくさ等を考慮すると、熱処理温度と
しては700℃〜1000′Cが好ましい。
FIG. 1 shows the relationship between heat treatment temperature and discharge capacity of bismuth trioxide. As is clear from the figure, when the heat treatment temperature of bismuth trioxide is 650°C or higher, the temperature reaches about 800°C.
The discharge capacity increases rapidly, and the increase in capacity is saturated at 850° C. or higher, and even if the heat treatment temperature is increased further, the capacity hardly increases and becomes almost constant. The reason for this is that the melting point of bismuth trioxide is 820°C, and bismuth trioxide is in a stable molten state at temperatures higher than this, so even if it is heat-treated at a temperature higher than this, the state after cooling is almost the same. It is presumed that this is because the In any case, it is clear from the figure that when bisnus trioxide is heat-treated at a temperature of 650°C or higher, the discharge capacity is improved compared to when it is heat-treated at a temperature lower than that or when it is not heat-treated. . In addition, the effect of heat treatment becomes particularly large at temperatures above 700°C, but at temperatures above 850°C, there is little further increase in capacity, and equipment such as electric furnaces for heat-treating bismuth trioxide, operating costs, and handling. Taking into consideration the shading, etc., the heat treatment temperature is preferably 700°C to 1000'C.

実施例2 本実施例は、三酸化ビスマスの熱処理を窒素ガス中で行
った他は、全て実施例1と同様な方法で、同様な電池を
作った。この様な電池を、実施例1と同様に、24°C
で3にΩ定抵抗放電した結果は、実施例1とほぼ同一で
あった。
Example 2 In this example, a similar battery was made in the same manner as in Example 1, except that bismuth trioxide was heat-treated in nitrogen gas. Such a battery was heated at 24°C as in Example 1.
The results of Ω constant resistance discharge in step 3 were almost the same as in Example 1.

実施例3 本実施例は、三酸化ビスマスの熱処理を10−2〜10
−’T o r rの減圧中で行った他は、全て実施例
1と同様な方法で、同様な電池を作製した。
Example 3 In this example, heat treatment of bismuth trioxide was performed at 10-2 to 10
A similar battery was produced in the same manner as in Example 1, except that the test was carried out under a reduced pressure of -'T or r.

この様な電池を、実施例1と同様に、24℃で3にΩ定
抵抗放電したところ、やはり実施例1とほぼ同様な結果
が得られた。
When such a battery was discharged at a constant resistance of 3Ω at 24° C. in the same manner as in Example 1, almost the same results as in Example 1 were obtained.

なお、有機電解質は、γ−ブチロラクトン、プロピレン
カーボネート ブチレンカーボネート。
Note that the organic electrolyte is γ-butyrolactone, propylene carbonate, and butylene carbonate.

1.2−ジメトキシエタン、ラトラヒドロフラン。1.2-dimethoxyethane, latrahydrofuran.

ジオキソラン、ジメチルホルムアミドなどの非プロトン
性の有機溶媒の単独又は混合溶媒中に、支持塩としてL
i C7!O,、Li BFa、Li PF4゜LiD
FaS03等のイオン解離性塩を溶解した有機電解質が
選択し得る。
L as a supporting salt in an aprotic organic solvent such as dioxolane or dimethylformamide alone or in a mixed solvent.
iC7! O,, Li BFa, Li PF4゜LiD
An organic electrolyte in which an ionically dissociable salt such as FaS03 is dissolved may be selected.

〔発明の効果〕〔Effect of the invention〕

以上詳述した様に、本発明は、650°C以上の温度で
熱処理した三酸化ビスマスを正極活物質として用いるこ
とによって、L i/ B iz Oy系電池の作動電
圧、特に放電深度約40%以上での作動電圧を高め、有
効な放電容量を著しく向上させ、放電特性を著しく改善
する等々、優れた効果を有する。
As detailed above, the present invention uses bismuth trioxide heat-treated at a temperature of 650°C or higher as a positive electrode active material, thereby increasing the operating voltage of Li/Biz Oy-based batteries, particularly the depth of discharge of about 40%. It has excellent effects such as increasing the operating voltage, significantly increasing the effective discharge capacity, and significantly improving the discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三酸化ビスマスの熱処理温度と放電容量との関
係を示す図、第2図は各種温度で熱処理した三酸化ビス
マスを用いた電池の放電特性の比較図、第3図は本発明
において実施した電池の一例を示す断面図である。 ■・・・負極缶   2・・・負極リチウム3・・・含
浸材   4・・・セパレータ5・・・正極    6
・・・正極缶 7・・・ガスケット 8・・・正極保持リング以上
Figure 1 is a diagram showing the relationship between heat treatment temperature and discharge capacity of bismuth trioxide, Figure 2 is a comparison diagram of discharge characteristics of batteries using bismuth trioxide heat treated at various temperatures, and Figure 3 is a diagram showing the relationship between heat treatment temperature and discharge capacity of bismuth trioxide. FIG. 2 is a cross-sectional view showing an example of a battery that was used. ■...Negative electrode can 2...Negative electrode lithium 3...Impregnating material 4...Separator 5...Positive electrode 6
...Positive electrode can 7...Gasket 8...Positive electrode holding ring or higher

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムを主活物質とする負極と、有機電解質と
、正極とから少なくとも成り、正極活物質として650
℃以上の温度で熱処理した三酸化ビスマスBi_2O_
3を用いたことを特徴とする有機電解質電池の製造方法
(1) Consisting of at least a negative electrode containing lithium as the main active material, an organic electrolyte, and a positive electrode, and 650% as the positive electrode active material.
Bismuth trioxide Bi_2O_ heat treated at temperatures above ℃
3. A method for manufacturing an organic electrolyte battery, characterized by using the method.
(2)大気中又は不活性ガス中、又は真空中において7
00〜1000℃の温度で熱処理した三酸化ビスマスB
i_2O_3を正極活物質として用いたことを特徴とす
る特許請求の範囲第1項記載の有機電解質電池の製造方
法。
(2) In the atmosphere, inert gas, or vacuum 7
Bismuth trioxide B heat treated at a temperature of 00~1000℃
The method for manufacturing an organic electrolyte battery according to claim 1, characterized in that i_2O_3 is used as a positive electrode active material.
JP61270766A 1986-11-13 1986-11-13 Manufacture of organic electrolyte battery Granted JPS63124369A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61270766A JPS63124369A (en) 1986-11-13 1986-11-13 Manufacture of organic electrolyte battery
EP87309971A EP0270264B1 (en) 1986-11-13 1987-11-11 An organic electrolyte cell
DE8787309971T DE3785834T2 (en) 1986-11-13 1987-11-11 CELL WITH ORGANIC ELECTROLYTE.
US07/120,619 US4804597A (en) 1986-11-13 1987-11-13 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270766A JPS63124369A (en) 1986-11-13 1986-11-13 Manufacture of organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63124369A true JPS63124369A (en) 1988-05-27
JPH0520861B2 JPH0520861B2 (en) 1993-03-22

Family

ID=17490695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270766A Granted JPS63124369A (en) 1986-11-13 1986-11-13 Manufacture of organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63124369A (en)

Also Published As

Publication number Publication date
JPH0520861B2 (en) 1993-03-22

Similar Documents

Publication Publication Date Title
KR20010053086A (en) Lithium-containing silicon/phosphates, method of preparation, and uses thereof
JPH07122275A (en) Cathode for electrochemical battery, its manufacture and electrochemical battery
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
EP0270264B1 (en) An organic electrolyte cell
KR20180032988A (en) cathode active material, method of preparing the cathode active material, and all solid state battery comprising the same
JP3082388B2 (en) Lithium secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
CN115336069A (en) All-solid-state battery for low-temperature sintering process comprising oxide-type solid electrolyte and method for manufacturing same
JP2001155763A (en) Solid electroltic cell
KR100366058B1 (en) A method for manufacturing the cathode material of the secondary lithium electric cell
JPS63124369A (en) Manufacture of organic electrolyte battery
JPS6335069B2 (en)
JPH01197964A (en) Secondary battery
JPH0351063B2 (en)
JP3331669B2 (en) Electrodes for non-aqueous electrolyte batteries
JP3319005B2 (en) Method for producing lithium battery positive electrode active material
JP2714078B2 (en) Non-aqueous electrolyte battery
JP2752690B2 (en) Lithium secondary battery and its manufacturing method
JPS5820106B2 (en) Yuuki Denkai Shitsudenchi
JPH0638334B2 (en) Method for manufacturing organic electrolyte battery
JPH0750604B2 (en) Manufacturing method of positive electrode for non-aqueous battery
JPS5986159A (en) Gas diffusion air electrode
JPS5853156A (en) Organic electrolyte battery
JPS5968177A (en) Solid electrolyte battery
JPS5952515B2 (en) Manufacturing method for positive electrode active material for solid electrolyte batteries