JP3082388B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3082388B2
JP3082388B2 JP04010670A JP1067092A JP3082388B2 JP 3082388 B2 JP3082388 B2 JP 3082388B2 JP 04010670 A JP04010670 A JP 04010670A JP 1067092 A JP1067092 A JP 1067092A JP 3082388 B2 JP3082388 B2 JP 3082388B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04010670A
Other languages
Japanese (ja)
Other versions
JPH05205741A (en
Inventor
繁雄 近藤
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04010670A priority Critical patent/JP3082388B2/en
Publication of JPH05205741A publication Critical patent/JPH05205741A/en
Application granted granted Critical
Publication of JP3082388B2 publication Critical patent/JP3082388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム電解質に正極
と負極が接してなるリチウム二次電池に関するもので、
特に正極活物質としてLix CoO2 、Lix NiO2
あるいはLi x Ni1-y Fey 2 からなる材料を用い
たリチウム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
And a lithium secondary battery in which the negative electrode is in contact,
In particular, Li as a positive electrode active materialxCoOTwo, LixNiOTwo
Or Li xNi1-yFeyOTwoUsing a material consisting of
And a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池の開発には優れた正極
あるいは負極活物質材料の開発が必要であり、今日該材
料探索が盛んに行われている。負極材料に関してはリチ
ウム金属からリチウム合金を用い、電池充放電時には電
解質中のリチウムイオンが金属リチウムへ可逆的に変化
する電気化学反応を利用し、さらには特殊カーボンを利
用してカーボン層間へリチウムを可逆的に出し入れさせ
る反応を利用する方向に進んでいる。
2. Description of the Related Art The development of a lithium secondary battery requires the development of an excellent positive electrode or negative electrode active material, and the search for such a material is being actively conducted today. For the negative electrode material, a lithium alloy is used from lithium metal. At the time of battery charging and discharging, an electrochemical reaction in which lithium ions in the electrolyte are reversibly changed to metallic lithium is used. Further, special carbon is used to transfer lithium between carbon layers. It is moving toward the use of reversible reactions.

【0003】一方、正極材料に関しても同様に、活物質
の電気化学的酸化還元によって化学変化を伴うものから
電解質中のリチウムイオンが活物質中へ出入りする材料
が用いられるようになって来ている。後者における正極
材料としては、二硫化チタン、硫化ニオブ、硫化モリブ
デン等の硫化物あるいは酸化タングステン、酸化モリブ
デン、二酸化マンガン、酸化ニッケル、酸化コバルト等
からなる層間化合物が検討されている。電池の充放電の
際には電解質中のリチウムイオンが酸化還元を受けると
同時にこれら層状化合物の結晶層間へリチウムを出入り
させるトポケミカル反応が起こる。
[0003] On the other hand, as for the cathode material, similarly, a material in which lithium ions in an electrolyte enter and exit the active material has been used from those accompanied by a chemical change by electrochemical oxidation-reduction of the active material. . As the positive electrode material for the latter, sulfides such as titanium disulfide, niobium sulfide, and molybdenum sulfide, or interlayer compounds composed of tungsten oxide, molybdenum oxide, manganese dioxide, nickel oxide, cobalt oxide, and the like have been studied. When the battery is charged and discharged, a lithium ion in the electrolyte undergoes oxidation-reduction, and at the same time, a topochemical reaction occurs in which lithium moves in and out of the crystal layers of these layered compounds.

【0004】こうした電池技術の動きは、電池の充放電
において、物質の化学変化が負極、正極において伴わな
いため、電池の充放電サイクル寿命の改善が期待される
為である。
[0004] This trend in battery technology is due to the expectation that the charge / discharge cycle life of the battery will be improved because no chemical change of the substance is involved in the charge and discharge of the battery in the negative electrode and the positive electrode.

【0005】従って、このトポケミカルな電気化学反応
を円滑に行わせるため、前記各種材料を主体とした結晶
構造的な検討が加えられている。例えば酸化ニッケル、
酸化コバルトなどでは予めリチウムを含んだLix Ni
2 、LiCoO2 を合成し、この材料からリチウムを
電気化学的に引き抜く事によりスピネル構造あるいはN
aCl構造に代えたものが検討されている。
[0005] Therefore, in order to smoothly carry out this topochemical electrochemical reaction, a study on a crystal structure mainly using the above-mentioned various materials has been made. For example, nickel oxide,
Li x Ni containing lithium in advance for cobalt oxide etc.
O 2 and LiCoO 2 are synthesized, and lithium is electrochemically extracted from this material to form a spinel structure or N 2.
An alternative to the aCl structure is being studied.

【0006】これら材料の合成に際しては、従来次のよ
うな方法が取られていた。 1)800°Cで加熱溶融させたLiOH中に金属ニッ
ケルを浸漬させ、酸素雰囲気下で、これらを酸化しLi
NiO2 を合成させる方法。 2)酸化ニッケル(NiO)と酸化リチウム(Li
2 O)を所定量混合し、該混合材料を乾燥酸素雰囲気下
で750°Cの温度で所定時間反応させた後、室温に取
り出しLiNiO2 を合成する方法。 3)酸化ニッケル(NiO)と水酸化リチウム(LiO
H H2 O)を所定量ボールミルで混合し、該混合材料
を空気雰囲気下で700°Cの温度で1時間反応させた
後、室温に取り出し該材料を1時間粉砕し、再度該材料
を700°Cで4時間加熱した後、炉より室温下に取り
出す事によりLiNiO2 を合成する方法。
In synthesizing these materials, the following methods have conventionally been employed. 1) Metal nickel is immersed in LiOH heated and melted at 800 ° C., and oxidized in an oxygen atmosphere to produce Li.
A method of synthesizing NiO 2 . 2) Nickel oxide (NiO) and lithium oxide (Li
2 O) was mixed predetermined amounts, after a predetermined time at a temperature of 750 ° C the mixed material under a dry oxygen atmosphere, a method for synthesizing LiNiO 2 was taken out to room temperature. 3) Nickel oxide (NiO) and lithium hydroxide (LiO)
H H 2 O) was mixed in a ball mill at a predetermined amount, and the mixed material was reacted at a temperature of 700 ° C. for 1 hour in an air atmosphere, taken out to room temperature and ground for 1 hour. A method of synthesizing LiNiO 2 by heating at 4 ° C. for 4 hours and taking it out of the furnace at room temperature.

【0007】この様な方法で合成した材料では単一層を
得る事は困難で、その構造として六方晶のみならず立方
晶が合成される。さらにこの立方晶の中にも秩序性のあ
るものと無いものとが混在して合成される。
It is difficult to obtain a single layer with the material synthesized by such a method, and not only hexagonal crystal but also cubic crystal is synthesized as the structure. Further, some of the cubic crystals are mixed with those having an order and those without the order.

【0008】電池の正極活物質としては六方晶の層状化
合物が好ましく、この層状構造がいわゆるホストとな
り、その111方向に酸化物イオンの立方最密充填層が
並び、その間の六配位位置にリチウムイオンあるいはニ
ッケルイオンの層が交互に存在する六方晶菱面体構造と
なり、多くのリチウムを取り込む事が出来るものとな
る。これに反して立方晶ではリチウムイオンが結晶内に
入る事が困難な状態となっており、合成した材料に六方
晶以外の結晶構造が含まれていると、リチウムの挿入さ
れる量が少なくなり、その結果エネルギー密度の低いも
のとなる。従って、電池の正極活物質としては六方晶の
こうした材料を用いる事が考えられる。
As the positive electrode active material of the battery, a hexagonal layered compound is preferable. This layered structure serves as a so-called host, and a cubic close-packed layer of oxide ions is arranged in the 111 direction. It has a hexagonal rhombohedral structure in which layers of ions or nickel ions are present alternately, so that a large amount of lithium can be taken in. Contrary to this, in the cubic system, it is difficult for lithium ions to enter the crystal.If the synthesized material contains a crystal structure other than hexagonal, the amount of lithium inserted is reduced. , Resulting in a low energy density. Therefore, it is conceivable to use such a hexagonal material as the positive electrode active material of the battery.

【0009】[0009]

【発明が解決しようとする課題】酸化ニッケルリチウム
を正極活物質として用いる場合、該化合物の合成に際し
て、例えば酸化ニッケルと水酸化リチウムを所定量混合
し加熱反応させる事によりLix NiO2 あるいはLi
x Ni2 4 を合成する。これら合成した材料からLi
を電気化学的に引き抜く事によりNaCl型構造のLi
x NiO2 やLi x Ni2 4 のスピネル構造が得られ
る。
SUMMARY OF THE INVENTION Lithium nickel oxide
When using as a positive electrode active material,
For example, a predetermined amount of nickel oxide and lithium hydroxide are mixed
And react by heatingxNiOTwoOr Li
xNiTwoOFourAre synthesized. Li from these synthesized materials
Is electrochemically extracted to form a NaCl-type Li
xNiOTwoAnd Li xNiTwoOFourSpinel structure
You.

【0010】リチウム二次電池の正極活物質としては六
方晶構造のLix NiO2 がリチウムイオンを最も多く
出し入れさせる事が可能なため、即ちエネルギー密度を
向上させる為にも、合成に際しては六方晶構造のものだ
けを容易に合成する事が、優れたエネルギー密度電池を
開発する上において重要なものとなる。さらに、また電
解質として硫化物系リチウムイオン伝導性固体電解質を
用いた場合はその分解電圧が5V以上であり、有機溶媒
を用いた電解質が約4.1Vで、これに比べはるかに高
い為、リチウムイオンの出し入れを行わせる電位を出来
る限り高くする事が高電圧高エネルギー密度電池を開発
するためにも好ましい。こうした目的に合致した材料と
して、六方晶構造を保持させた状態でリチウムイオンを
容易に出し入れさせる事の出来る材料の開発と、このよ
うな材料で構成されるリチウム二次電池の提案が望まれ
る。
As a positive electrode active material of a lithium secondary battery, a hexagonal structure Li x NiO 2 is capable of allowing lithium ions to enter and leave the most, ie, in order to improve the energy density, a hexagonal structure is required. It is important to easily synthesize only those having a structure in developing an excellent energy density battery. Furthermore, when a sulfide-based lithium ion conductive solid electrolyte is used as the electrolyte, the decomposition voltage is 5 V or more, and the electrolyte using an organic solvent is about 4.1 V, which is much higher than that. It is preferable to make the potential at which ions are taken in and out as high as possible in order to develop a high-voltage and high-energy density battery. As a material meeting such a purpose, it is desired to develop a material capable of easily allowing lithium ions to enter and exit while maintaining a hexagonal structure, and to propose a lithium secondary battery composed of such a material.

【0011】本発明はかかる要望に応えたリチウム二次
電池を提供することをその目的とする。
An object of the present invention is to provide a lithium secondary battery that meets such a demand.

【0012】[0012]

【課題を解決するための手段】本発明のリチウム二次電
池は正極と負極がリチウムイオン伝導性電解質に接して
なるリチウム電池において、六方晶の結晶構造を有する
Lix CoO2 、Li x NiO2 あるいはLix Ni
1-y Fey 2 を正極活物質とした事を特徴とする。
The lithium secondary battery of the present invention
The pond has a positive electrode and a negative electrode in contact with a lithium ion conductive electrolyte.
Has a hexagonal crystal structure
LixCoOTwo, Li xNiOTwoOr LixNi
1-yFeyOTwoAs a positive electrode active material.

【0013】正極活物質がLix CoO2 の場合は、合
成出発物質として過酸化リチウム(Li2 2 )と酸化
コバルト(CoO)を用い、正極活物質がLix NiO
2 の場合は、合成出発物質として過酸化リチウム(Li
2 2 )と酸化ニッケル(NiO)を用い、正極活物質
がLix Ni1-y Fey 2 の場合は、合成出発物質と
して過酸化リチウム(Li2 2 )と酸化ニッケル(N
iO)と酸化鉄(Fe 2 3 )を用い、これら材料を不
活性雰囲気中で充分粉砕混合し、しかる後Li x CoO
2 の場合は800°C以下、Lix NiO2 、Lix
1-y Fey 2 の場合は750°C以下の温度で加熱
し反応させ、この固相反応を行わせた後、前記加熱温度
から室温以下の温度へ急激に冷却させる事により目的と
する六方晶の材料を得、こうして得た材料をリチウム電
池用正極活物質として利用する。
When the positive electrode active material is LixCoOTwoIf
Lithium peroxide (LiTwoOTwo) And oxidation
Using cobalt (CoO), the cathode active material is LixNiO
TwoIn the case of, lithium peroxide (Li
TwoOTwo) And nickel oxide (NiO)
Is LixNi1-yFeyOTwoIn the case of
Lithium peroxide (LiTwoOTwo) And nickel oxide (N
iO) and iron oxide (Fe TwoOThree) And use these materials
Pulverize and mix well in an active atmosphere and then Li xCoO
Two800 ° C or less for LixNiOTwo, LixN
i1-yFeyO TwoIn case of heating at 750 ° C or less
After the solid phase reaction, the heating temperature
From the room temperature to below room temperature
To obtain a hexagonal material,
Used as a positive electrode active material for ponds.

【0014】また、リチウムイオン伝導性電解質とし
て、Li2 S−SiS2 、Li2 S−GeS2 、Li2
S−P2 5 、Li2 S−B2 3 系の硫化物およびこ
れら硫化物を含む化合物、例えば、Li2 S−SiS2
−Li3 PO4 、Li2 S−SiS2 −Li2 SO4
のリチウムイオン伝導性固体電解質を用いるとにより充
放電効果を高めることができる。
Further, as a lithium ion conductive electrolyte, Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2
SP 2 S 5 , Li 2 SB 2 S 3 -based sulfides and compounds containing these sulfides, for example, Li 2 S-SiS 2
By using a lithium ion conductive solid electrolyte such as —Li 3 PO 4 or Li 2 S—SiS 2 —Li 2 SO 4, the charge / discharge effect can be enhanced.

【0015】[0015]

【作用】リチウム電池用正極活物質として用いるLix
CoO2、LixNiO2あるいはLixNi1-yFey2
の合成方法について検討した結果、合成出発材料とし
て、過酸化リチウムを用い合成することから、その組成
を化学量論的に容易に揃える事が可能となり、所望の組
成のLixCoO2、LixNiO2あるいはLixNi1-y
Fey2が得られる。そのため、リチウム電池を構成し
た時、そのエネルギー効率として最も大きいなものを選
択できる。さらに、LixCoO2の場合は800°C以
下、LixNiO2、LixNi1-yFey2の場合は75
0°C以下の合成反応温度から強急冷させる事により結
晶構造を六方晶に揃える事が可能となる。尚、Lix
1-yFey2の場合には、Feの含有量として0.3
以下、即ちy<0.3において六方晶が得られ、それ以
上の場合は立方晶となるため、電池用材料としては好ま
しいものとならない。
[Function] Li x used as a positive electrode active material for lithium batteries
CoO 2 , Li x NiO 2 or Li x Ni 1-y Fe y O 2
As a result of studying the method of synthesizing, it is possible to easily adjust the composition stoichiometrically by using lithium peroxide as a synthesis starting material, and to obtain Li x CoO 2 , Li x having a desired composition. NiO 2 or Li x Ni 1-y
Fe y O 2 is obtained. Therefore, when a lithium battery is configured, the one having the largest energy efficiency can be selected. Furthermore, in the case of Li x CoO 2, the temperature is 800 ° C. or less, and in the case of Li x NiO 2 and Li x Ni 1-y Fe y O 2 , the temperature is 75 ° C.
By rapidly quenching from a synthesis reaction temperature of 0 ° C. or less, the crystal structure can be made hexagonal. In addition, Li x N
In the case of i 1-y Fe y O 2 , the Fe content is 0.3
In the following, that is, when y < 0.3 , hexagonal crystal is obtained, and when y < 0.3 , cubic crystal is obtained, which is not preferable as a battery material.

【0016】[0016]

【実施例】まず、リチウム電池の正極活物質として、L
iNiO2 およびLiNi1-y Fey 2 (ここで、y
はFeの含有量であり、Niの一部分がFeで置換され
ている事を示す。)の各種正極活物質が、合成条件によ
ってどのような結晶構造が得られるかを検討した。
EXAMPLE First, as a positive electrode active material of a lithium battery, L was used.
iNiO 2 and LiNi 1-y Fe y O 2 (where y
Is the content of Fe, and indicates that a part of Ni is substituted by Fe. We examined what crystal structures can be obtained for the various positive electrode active materials according to the synthesis conditions.

【0017】図1に得られたLiNi1-y Fey 2
相図を示す。横軸にFeの含有量、縦軸に急冷開始させ
る温度を記載した。この相図を得るに際して、各材料は
過酸化リチウム(Li2 2 )、酸化ニッケル(Ni
O)さらに必要に応じ酸化鉄(Fe2 3 )を各試料の
組成となるよう化学量論的に不活性雰囲気下で混合した
後、乾燥酸素雰囲気下850°Cで40時間反応させた
後、図1に記載した各温度(縦軸)より液体窒素中へ該
材料を投入し強急冷し得たものである。さらに室温状態
のツインローラを用い750°Cより強急冷して得られ
た結晶構造を下部に並記した。図中○印は秩序性を有す
る立方晶を、△は秩序性に欠ける立方晶をさらに×印は
六方晶構造をそれぞれ示す。
FIG. 1 shows a phase diagram of the obtained LiNi 1-y Fe y O 2 . The horizontal axis indicates the Fe content, and the vertical axis indicates the temperature at which rapid cooling is started. In obtaining this phase diagram, each material is composed of lithium peroxide (Li 2 O 2 ), nickel oxide (Ni
O) Further, if necessary, iron oxide (Fe 2 O 3 ) is mixed under a stoichiometrically inert atmosphere so as to have a composition of each sample, and then reacted at 850 ° C. for 40 hours in a dry oxygen atmosphere. The material was charged into liquid nitrogen from each temperature (vertical axis) shown in FIG. 1 and rapidly cooled. Further, the crystal structure obtained by rapid cooling from 750 ° C. using a twin roller at room temperature is shown below. In the figure, ○ indicates a cubic crystal having an order, △ indicates a cubic crystal lacking the order, and X indicates a hexagonal structure.

【0018】図1より明白なようにFeを含まないも
の、即ちLiNiO2 では750°C以下の温度で反応
させた後、該温度から室温以下の温度へ強急冷させる事
により六方晶のものが得られ、それ以上の温度では立方
晶となる事が明白となっている。また、Niの一部をF
eで置換したLiNi1-y Fey 2 についてはFeの
含有量yが0.3未満で六方晶となり、0.3以上で立
方晶のものが生成する事が判明した。
As is evident from FIG. 1, one containing no Fe, that is, LiNiO 2 is reacted at a temperature of 750 ° C. or less, and then rapidly cooled from the temperature to a temperature of less than room temperature to form a hexagonal one. It is clear that at higher temperatures, it becomes cubic. Also, a part of Ni is changed to F
It was found that the LiNi 1-y Fe y O 2 substituted with e became hexagonal when the Fe content y was less than 0.3 and cubic when it was 0.3 or more.

【0019】一方、LiCoO2 の合成に関しても同様
にして合成した。即ち、過酸化リチウム(Li2 2
0.5モルと、酸化コバルト(CoO)1モルを不活性
雰囲気下で粉砕混合した後、850°Cで40時間反応
させた後、乾燥酸素雰囲気のもと300°C、400°
C、500°C、600°C、700°C、750°
C、800°C、850°Cの各温度から、各々の試料
を液体窒素中に投入し強急冷を行い、種々のLiCoO
2 を合成した。その結果、800°C以下の反応温度よ
り強急冷することにより六方晶が得られ、それ以上の温
度では立方晶となる事が判った。
On the other hand, LiCoO 2 was synthesized in the same manner. That is, lithium peroxide (Li 2 O 2 )
0.5 mol and 1 mol of cobalt oxide (CoO) are pulverized and mixed in an inert atmosphere, reacted at 850 ° C. for 40 hours, and then dried at 300 ° C. and 400 ° C. in a dry oxygen atmosphere.
C, 500 ° C, 600 ° C, 700 ° C, 750 °
C, 800 ° C., and 850 ° C., each sample was put into liquid nitrogen and rapidly quenched to obtain various LiCoO
2 was synthesized. As a result, it was found that a hexagonal crystal was obtained by rapidly quenching at a reaction temperature of 800 ° C. or lower, and a cubic crystal was obtained at a higher temperature.

【0020】次にこうして合成した各種材料を用い、リ
チウム電池を構成しその特性を調べた。
Next, a lithium battery was constructed using the various materials thus synthesized, and the characteristics thereof were examined.

【0021】以下、前記正極活物質を用いたリチウム電
池について実施例を用いて詳細に説明する。
Hereinafter, a lithium battery using the positive electrode active material will be described in detail with reference to examples.

【0022】(実施例1)強急冷法により作成したLi
CoO2 を正極活物質とし、該材料に導電材としてカー
ボン10%、バインダーとしてテフロン粉末3%を充分
混合した合材を予め作成し、これら合材をステンレス鋼
よりなる集電体網を中心と成るよう円板状(厚さ0.5
mm,直径1cm)に加圧成形し正極を作成した。負極
としてはグラフアイト粉末にテフロン粉末3%をバイン
ダーとして混合した合材を用い前記正極と同形状のグラ
フアイト負極を作成した。こうして作成した電極を用い
図2に示したようなコイン型電池を作成した。尚、図中
1は正極、2は負極、3はポリプロピレン製不織布より
なるセパレータ、4は電解質であり、該電解質4として
はプロピレンカーボネート、ジメトキシエタンよりなる
混合溶媒にLiPF6を溶質として溶かしたものを用い
た。また、図中5はステンレススティール製ケース、6
は上蓋、7は正極リングであり、8はパッキングを示
す。図3に、この電池についての充放電曲線を示した。
尚、比較のために前記従来法(1)の方法で作成したL
iCoO2 を正極活物質とした電池の充放電特性(充放
電電流:A=0.2mA/cm)を破線で示した。従来
の方法で作製した活物質を用いた電池では約0.5mA
hの放電容量を示しているに反し、本発明による電池で
は、約0.6mAhの充放電容量を示し、これはmol
当たり0.68Fに相当し、明らかに本発明の電池性能
が向上している様子が判る。これは従来の方法で作成し
た電池正極活物質であるLiCoO2 の結晶構造が六方
晶以外のもの、例えば立方晶のものなどを含むためと考
えられる。
Example 1 Li prepared by the rapid quenching method
A mixture was prepared in advance by sufficiently mixing CoO 2 as a positive electrode active material, 10% of carbon as a conductive material, and 3% of Teflon powder as a binder, and the mixture was formed mainly on a current collector network made of stainless steel. Disk shape (thickness 0.5
mm, diameter 1 cm) to form a positive electrode. As a negative electrode, a graphite negative electrode having the same shape as the positive electrode was prepared using a mixture in which 3% of Teflon powder was mixed with graphite powder as a binder. A coin-type battery as shown in FIG. 2 was produced using the electrodes thus produced. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator made of a nonwoven fabric made of polypropylene, 4 is an electrolyte, and the electrolyte 4 is a solution obtained by dissolving LiPF 6 as a solute in a mixed solvent of propylene carbonate and dimethoxyethane. Was used. 5 is a stainless steel case, 6
Denotes an upper cover, 7 denotes a positive electrode ring, and 8 denotes packing. FIG. 3 shows a charge / discharge curve of this battery.
For comparison, the L prepared by the method of the conventional method (1) was used.
The broken line shows the charge / discharge characteristics (charge / discharge current: A = 0.2 mA / cm) of the battery using iCoO 2 as the positive electrode active material. A battery using an active material manufactured by a conventional method has a capacity of about 0.5 mA.
h, whereas the battery according to the invention exhibits a charge / discharge capacity of about 0.6 mAh,
0.68F per unit cell, clearly indicating that the battery performance of the present invention is improved. This is considered to be because the crystal structure of LiCoO 2 , which is a battery positive electrode active material prepared by a conventional method, includes a material other than hexagonal, for example, a cubic crystal.

【0023】(実施例2)実施例1において電解質とし
て用いた正極活物質LiCoO2 をLiNiO2に置き
換え、負極としてリチウムを用いた以外、実施例1と全
く同様にしてコイン型電池を作成した。
(Example 2) A coin-type battery was fabricated in exactly the same manner as in Example 1 except that the cathode active material LiCoO 2 used as the electrolyte in Example 1 was replaced with LiNiO 2 and lithium was used as the negative electrode.

【0024】本電池の充放電挙動と前記従来法(1)で
合成したLiNiO2 を用い作成した電池の充放電挙動
について実施例1と同様にして調べ、その結果を図4に
示した(図中〇印:本発明による電池、□:従来法によ
る電池の充放電結果を各々示す)。
The charging / discharging behavior of the battery and the charging / discharging behavior of the battery prepared using LiNiO 2 synthesized by the conventional method (1) were examined in the same manner as in Example 1, and the results are shown in FIG. (〇): Battery according to the present invention, □: Battery charge / discharge results by the conventional method are shown).

【0025】充放電容量として約0.9mAhで1mo
l当たり0.78Fの容量が得られ、明らかに本発明に
よる電池が従来の電池に比べ約0.1mAhの容量が向
上している様子が判る。これは実施例1と同様、従来の
方法で作成した電池正極活物質であるLiNiO2 の結
晶構造が六方晶以外のもの、例えば立方晶のものなどを
含むためと考えられる。
The charge / discharge capacity is about 1 mA at about 0.9 mAh.
A capacity of 0.78 F per 1 was obtained, and it can be clearly seen that the battery of the present invention had an improved capacity of about 0.1 mAh as compared with the conventional battery. This is presumably because, as in Example 1, the crystal structure of LiNiO 2 , which is a battery positive electrode active material, prepared by a conventional method includes a material other than hexagonal, for example, cubic.

【0026】(実施例3)実施例2において用いた正極
活物質LiNiO2 をLiNi1-y Fey 2 に置き換
えた以外、実施例2と全く同様にしてコイン型電池を作
成した。
(Example 3) A coin-type battery was produced in exactly the same manner as in Example 2 except that the cathode active material LiNiO 2 used in Example 2 was replaced with LiNi 1-y Fe y O 2 .

【0027】本電池の充放電挙動を実線にて、また、実
施例2で使用したLiNiO2 を用い作成した電池の挙
動を破線にて図5に示した。尚、Feの含有量yの異な
る材料についての電池特性も併記した(図中、○印:L
iNiO2 、△印:LiNi -0.9Fe0.1 2 、×:L
iNi0.8 Fe0.2 2 を各々示す)。
The charging / discharging behavior of this battery is shown by a solid line.
LiNiO used in Example 2TwoOf batteries created using
The movement is shown by a broken line in FIG. In addition, when the content y of Fe differs,
The battery characteristics of each material are also shown (in the figure, ○: L
iNiOTwo, △ mark: LiNi -0.9Fe0.1OTwo, ×: L
iNi0.8Fe0.2OTwoAre shown).

【0028】明らかにFeの含有量の増大と共に放電容
量が少なくなっており、それと共に充放電電圧が高くな
っている。これは充電電圧が高くなる事により、充電の
際において電解質の分解が伴っている事を示唆している
ものと思われる。即ち、正極活物質LiNiO2 のNi
の一部分をFeで置換させる事により、暫時充放電電圧
が高くなる事が判明し、電池の高電圧化にFeの存在が
寄与しているものと言える。
Obviously, the discharge capacity decreases as the Fe content increases, and the charge / discharge voltage increases accordingly. This seems to indicate that the higher charging voltage is accompanied by decomposition of the electrolyte during charging. That is, Ni of the positive electrode active material LiNiO 2
It has been found that by partially replacing Fe with Fe, the charge / discharge voltage temporarily increases, and it can be said that the presence of Fe contributes to increasing the voltage of the battery.

【0029】(実施例4)電解質としてLi2 S−Si
2 −Li3 PO4 からなるリチウム固体電解質を用
い、正極活物質としてLiNi0.8 Fe0.2 2 を用
い、負極としてリチウムシートを用い全固体リチウム電
池を構成した。ここで用いたリチウム固体電解質は先
ず、組成としてモル比が0.61:0.39からなるよ
うLi2 S−SiS2 を乾燥雰囲気中で粉砕混合した
後、該混合物をカーボン坩堝に充填し、不活性雰囲気下
で950°Cの温度で溶解反応させた後、液体窒素内に
浸漬させ、強急冷させる事によりLi2 S−SiS2
らなるガラスを形成した。然るのち、該ガラスを粉砕
し、該ガラスにリン酸リチウムを3モル加えた後、乾燥
雰囲気下で充分混合した後、該混合物を同様に950°
Cで加熱反応させた。然るのち液体窒素中に浸漬させ強
急冷を行いガラス状のLi2 S−SiS2 −Li3 PO
4リチウム固体電解質を作製した。こうして得た固体電
解質のイオン伝導度は7×10-4S/cmであり、分解
電圧は5V以上を示した。
(Example 4) Li 2 S-Si as an electrolyte
An all-solid lithium battery was constructed using a lithium solid electrolyte made of S 2 —Li 3 PO 4 , using LiNi 0.8 Fe 0.2 O 2 as a positive electrode active material, and using a lithium sheet as a negative electrode. The lithium solid electrolyte used here was first pulverized and mixed with Li 2 S—SiS 2 in a dry atmosphere so that the molar ratio of the composition was 0.61: 0.39, and then the mixture was charged into a carbon crucible. After a melting reaction at a temperature of 950 ° C. in an inert atmosphere, the glass was immersed in liquid nitrogen and rapidly cooled to form a glass made of Li 2 S—SiS 2 . Thereafter, the glass was crushed, 3 mol of lithium phosphate was added to the glass, and the mixture was sufficiently mixed under a dry atmosphere.
The mixture was heated and reacted at C. After that, it is immersed in liquid nitrogen and rapidly cooled to obtain glassy Li 2 S—SiS 2 —Li 3 PO
Four lithium solid electrolytes were prepared. The ionic conductivity of the solid electrolyte thus obtained was 7 × 10 −4 S / cm, and the decomposition voltage was 5 V or more.

【0030】全固体リチウム電池素子の作製に当たり、
図6中、9で示される形状のペレット状正極を作製し
た。該正極9は活物質と固体電解質さらに導電材として
カーボンを1:0.8:0.2の割合で充分混合したも
のを予めプレス機械にて加圧成形し作製したものであ
る。作製したペレット状正極9に接して、更に固体電解
質を厚さ0.2mmのペレット状になるようプレス金型
に均一に入れ、加圧成形する事により図6中10で示し
たように正極9と一体化させた。この電解質10にさら
に金属リチウムからなる負極11を圧着させることによ
り、図6に示した全固体リチウム電池素子を作製した。
こうして作製した素子を図2中、5、6、7、8で示し
た電池ケース部品を用い、外観上図2に示されるような
電池形状の全固体リチウム電池を作製した。
In manufacturing an all-solid lithium battery element,
In FIG. 6, a pellet-shaped positive electrode having a shape indicated by 9 was produced. The positive electrode 9 is prepared by press-molding a material obtained by sufficiently mixing an active material, a solid electrolyte and carbon as a conductive material at a ratio of 1: 0.8: 0.2 with a press machine in advance. In contact with the prepared pellet-shaped positive electrode 9, the solid electrolyte was further uniformly placed in a press mold so as to form a pellet having a thickness of 0.2 mm, and was subjected to pressure molding to form the positive electrode 9 as shown in 10 in FIG. And integrated. An all-solid lithium battery element shown in FIG. 6 was produced by further pressing the negative electrode 11 made of lithium metal on the electrolyte 10.
Using the battery case components indicated by 5, 6, 7, and 8 in FIG. 2 for the element thus manufactured, an all solid lithium battery having a battery shape as shown in FIG. 2 in appearance was manufactured.

【0031】本電池の定電流(20μA/cm2 )によ
る充放電挙動を図7に示した。該図にはFeの含有量の
異なる正極活物質(図中、○印:LiNiO2 、△印:
LiNi0.9 Fe0.1 2 、×:LiNi0.8 Fe0.2
2 を各々示す)を用い同様にして作製した電池の特性
も併記した。
FIG. 7 shows the charging / discharging behavior of this battery at a constant current (20 μA / cm 2 ). In the figure, positive electrode active materials having different Fe contents (in the figure, ○: LiNiO 2 , Δ:
LiNi 0.9 Fe 0.1 O 2 , ×: LiNi 0.8 Fe 0.2
O 2 ) are also shown.

【0032】実施例3と異なり放電電圧が高く、しかも
Feの含有量の増加と共に高くなる傾向が示されてい
る。さらにその放電容量は、いずれの電池も殆ど代わら
ない結果が得られた。これは有機電解質では放電の際、
電解質の電気分解が起こることにより、充電効率が低下
していたものが、電解質として分解電圧の高い固体電解
質を採用したことににより、充電の際の充電効率が向上
したためと思われる。
Unlike Example 3, the discharge voltage is high, and tends to increase as the Fe content increases. Further, the discharge capacity was almost the same as that of any battery. This is when the organic electrolyte discharges,
It is considered that the charging efficiency was lowered due to the electrolysis of the electrolyte, but the charging efficiency at the time of charging was improved by employing a solid electrolyte having a high decomposition voltage as the electrolyte.

【0033】さらに、本電池を充電し、4.6Vで充電
停止した後、60°Cの高温層内で500時間保存し、
その後20μA/cm2 の定電流で放電させたところ、
充電直後の放電特性と殆ど同等の放電容量を示した。
Further, after charging the battery and stopping the charging at 4.6 V, the battery was stored in a high-temperature layer at 60 ° C. for 500 hours.
After that, when discharging at a constant current of 20 μA / cm 2 ,
The discharge capacity was almost the same as the discharge characteristics immediately after charging.

【0034】(実施例5)実施例4で用いたリチウムイ
オン伝導性固体電解質(Li2 S−SiS2 −Li3
4 )の代わりにLi2 S−SiS2 −Li2 SO4
用いた以外、実施例4と同様にして全体リチウム電池を
作製し、その充放電特性および保存特性を調べた。その
結果、実施例4と同様の結果が得られた。
Example 5 The lithium ion conductive solid electrolyte (Li 2 S—SiS 2 —Li 3 P) used in Example 4
A whole lithium battery was produced in the same manner as in Example 4 except that Li 2 S—SiS 2 —Li 2 SO 4 was used instead of O 4 ), and its charge / discharge characteristics and storage characteristics were examined. As a result, the same result as in Example 4 was obtained.

【0035】(実施例6)実施例4で用いたリチウムイ
オン伝導性固体電解質(Li2 S−SiS2 −Li3
4 )の代わりにLi2 S−SiS2 −LiIを用いた
以外、実施例4と同様にして全固体リチウム電池を作製
し、その充放電特性および保存特性を調べた。その結
果、充電直後の放電特性は実施例4と同様の結果が得ら
れたが、保存特性については放電電圧が約350mVの
低下が認められ、さらに放電容量に関しては約70%程
度に低下した。これはリチウム負極と本実施例で用いた
固体電解質とが保存中に化学的に反応し、その界面にお
いて高い抵抗体が形成され、電池全体の内部抵抗が増大
した事に起因しているものと考えられる。
Example 6 The lithium ion conductive solid electrolyte (Li 2 S—SiS 2 —Li 3 P) used in Example 4 was used.
An all-solid-state lithium battery was fabricated in the same manner as in Example 4 except that Li 2 S—SiS 2 —LiI was used instead of O 4 ), and its charge / discharge characteristics and storage characteristics were examined. As a result, the same discharge characteristics as in Example 4 were obtained for the discharge characteristics immediately after charging, but the storage characteristics showed a decrease in the discharge voltage of about 350 mV, and the discharge capacity also dropped to about 70%. This is because the lithium anode and the solid electrolyte used in this example chemically react during storage, a high resistor is formed at the interface, and the internal resistance of the entire battery is increased. Conceivable.

【0036】(実施例7)実施例4で用いたリチウムイ
オン伝導性固体電解質(Li2 S−SiS2 −Li3
4 )の代わりにLi2 S−SiS2 −B2 3 を用い
た以外、実施例4と同様にして全固体リチウム電池を作
製し、その充放電特性および保存特性を調べた。その結
果、充電直後の放電特性は実施例4と同様の結果が得ら
れたが、保存特性については放電電圧が約180mVの
低下が認められ、さらに放電容量に関しては約75%程
度に低下していた。これは実施例6と同様、リチウム負
極と本実施例で用いた固体電解質とが保存中に化学的に
反応し、その界面において高い抵抗体が形成され、電池
全体の内部抵抗が増大した事に起因しているものと考え
られる。
Example 7 The lithium ion conductive solid electrolyte (Li 2 S—SiS 2 —Li 3 P) used in Example 4
An all-solid lithium battery was prepared in the same manner as in Example 4 except that Li 2 S—SiS 2 —B 2 S 3 was used instead of O 4 ), and its charge / discharge characteristics and storage characteristics were examined. As a result, the discharge characteristics immediately after charging were the same as those in Example 4, but the storage characteristics showed a decrease in the discharge voltage of about 180 mV, and the discharge capacity was reduced to about 75%. Was. This is because, similarly to Example 6, the lithium anode and the solid electrolyte used in this example chemically react during storage to form a high resistor at the interface and increase the internal resistance of the entire battery. It is considered to be due to this.

【0037】(実施例8)実施例4で用いたリチウムイ
オン伝導性固体電解質(Li2 S−SiS2 −Li3
4 )の代わりにLi2 S−SiS2 −P2 5 を用い
た以外、実施例4と同様にして全固体リチウム電池を作
製し、その充放電特性および保存特性を調べた。その結
果、充電直後の放電特性は実施例4と同様の結果が得ら
れたが、保存特性については放電電圧が約320mVの
低下が認められ、さらに放電容量に関しては約65%程
度に低下していた。これは実施例6と同様、リチウム負
極と本実施例で用いた固体電解質とが保存中に化学的に
反応し、その界面において高い抵抗体が形成され、電池
全体の内部抵抗が増大した事に起因しているものと考え
られる。
Example 8 The lithium ion conductive solid electrolyte (Li 2 S—SiS 2 —Li 3 P) used in Example 4
An all-solid lithium battery was fabricated in the same manner as in Example 4 except that Li 2 S—SiS 2 —P 2 S 5 was used instead of O 4 ), and its charge / discharge characteristics and storage characteristics were examined. As a result, the same discharge characteristics as in Example 4 were obtained for the discharge characteristics immediately after charging. However, regarding the storage characteristics, the discharge voltage was reduced by about 320 mV, and the discharge capacity was further reduced to about 65%. Was. This is because, similarly to Example 6, the lithium anode and the solid electrolyte used in this example chemically react during storage to form a high resistor at the interface and increase the internal resistance of the entire battery. It is considered to be due to this.

【0038】[0038]

【発明の効果】六方晶のLix CoO2 、Lix NiO
2 あるいはLix Ni1-y Fey 2をリチウム二次電
池の正極活物質として用いる事により、放電容量の大き
い電池が可能となり、また特にFeの含有量が0以上、
0.3未満において充放電電圧の高い電池が可能とな
る。この際、充放電効率を向上させるには、リチウムイ
オン伝導性固体電解質を電解質として使用する事によ
り、より一層、本電池系の正極活物質を効果的に働かせ
る事が可能となる。
According to the present invention, hexagonal Li x CoO 2 and Li x NiO
By using 2 or Li x Ni 1-y Fe y O 2 as a positive electrode active material of a lithium secondary battery, a battery having a large discharge capacity becomes possible, and in particular, when the Fe content is 0 or more,
When it is less than 0.3, a battery having a high charge / discharge voltage can be obtained. At this time, in order to improve the charge / discharge efficiency, the use of the lithium ion conductive solid electrolyte as the electrolyte allows the positive electrode active material of the present battery system to work more effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】LiNi1-y Fey 2 の強急冷開始温度と合
成された結晶相の関係を示した図である。
FIG. 1 is a diagram showing a relationship between a rapid quenching start temperature of LiNi 1-y Fe y O 2 and a synthesized crystal phase.

【図2】本発明の一実施例におけるリチウム二次電池の
断面図である。
FIG. 2 is a sectional view of a lithium secondary battery according to one embodiment of the present invention.

【図3】本発明の一実施例におけるリチウム二次電池の
充放電特性図である。 (a)充電特性図(b)放電特性図
FIG. 3 is a charge / discharge characteristic diagram of a lithium secondary battery in one example of the present invention. (A) Charging characteristic diagram (b) Discharging characteristic diagram

【図4】本発明の一実施例におけるリチウム二次電池の
充放電特性図である。 (a)充電特性図(b)放電特性図
FIG. 4 is a charge / discharge characteristic diagram of a lithium secondary battery in one example of the present invention. (A) Charging characteristic diagram (b) Discharging characteristic diagram

【図5】本発明の一実施例におけるリチウム二次電池の
充放電特性図である。 (a)充電特性図(b)放電特性図
FIG. 5 is a charge / discharge characteristic diagram of a lithium secondary battery in one example of the present invention. (A) Charging characteristic diagram (b) Discharging characteristic diagram

【図6】本発明の一実施例における全固体リチウム電池
素子の構成概略図である。
FIG. 6 is a schematic structural diagram of an all-solid-state lithium battery element according to one embodiment of the present invention.

【図7】本発明の一実施例における全固体リチウム電池
の充放電特性図である。 (a)充電特性図(b)放電特性図
FIG. 7 is a charge / discharge characteristic diagram of the all-solid-state lithium battery in one embodiment of the present invention. (A) Charging characteristic diagram (b) Discharging characteristic diagram

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解質 5 ケース 6 上蓋 7 正極リング 8 パッキング 9 正極 10 固体電解質 11 負極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte 5 Case 6 Upper lid 7 Positive electrode ring 8 Packing 9 Positive electrode 10 Solid electrolyte 11 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−127454(JP,A) 特開 平1−134876(JP,A) 米国特許4302518(US,A) 米国特許4567031(US,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-127454 (JP, A) JP-A-1-134876 (JP, A) US Pat. No. 4,302,518 (US, A) US Pat. (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と負極がリチウムイオン伝導性電解
質に接してなるリチウム二次電池において、前記正極活
物質が過酸化リチウム(Li22)と酸化コバルト(C
oO)を混合し、800℃以下の温度で反応させ、然る
後、該温度から急冷させる事に依って得た六方晶の結晶
構造を有するLixCoO2である事を特徴とするリチウ
ム二次電池。
(1) a positive electrode and a negative electrode are formed by lithium ion conductive electrolysis;
In a lithium secondary battery in contact with a material , the positive electrode active materials are lithium peroxide (Li 2 O 2 ) and cobalt oxide (C
oO) is mixed and reacted at a temperature of 800 ° C. or less, and thereafter, a hexagonal crystal obtained by quenching from this temperature is obtained.
Features and to Brighter Chiu <br/> arm secondary battery that is Li x CoO 2, having the structure.
【請求項2】 正極と負極がリチウムイオン伝導性電解
質に接してなるリチウム二次電池において、前記正極活
物質が過酸化リチウム(Li22)と酸化ニッケル(N
iO)を混合し、750°C以下の温度で反応させ、然
る後、該温度から急冷させる事に依って得た六方晶の結
晶構造を有するLixNiO2である事を特徴とするリ
ウム二次電池。
2. The method according to claim 1, wherein the positive electrode and the negative electrode are lithium ion conductive electrolysis.
In a lithium secondary battery in contact with a material , the positive electrode active materials are lithium peroxide (Li 2 O 2 ) and nickel oxide (N
iO) is mixed and reacted at a temperature of 750 ° C. or lower, and thereafter, a hexagonal crystal obtained by quenching from that temperature is obtained.
Features and to Brighter Ji <br/> um secondary battery that is Li x NiO 2 having a crystal structure.
【請求項3】 正極と負極がリチウムイオン伝導性電解
質に接してなるリチウム二次電池において、前記正極活
物質が過酸化リチウム(Li22)と酸化ニッケル(N
iO)と酸化鉄(Fe23)を混合し、750°C以下
の温度で反応させ、然る後、該温度から急冷させる事に
依って得た六方晶の結晶構造を有するLixNi1-yFe
y2である事を特徴とするリチウム二次電池。
3. The method according to claim 1, wherein the positive electrode and the negative electrode are lithium ion conductive electrolysis.
In a lithium secondary battery in contact with a material , the positive electrode active materials are lithium peroxide (Li 2 O 2 ) and nickel oxide (N
Li x Ni having a hexagonal crystal structure obtained by mixing iO) and iron oxide (Fe 2 O 3 ) and reacting at a temperature of 750 ° C. or lower, and then rapidly cooling from the temperature. 1-y Fe
features and be lapis lazuli lithium secondary battery that is y O 2.
【請求項4】 前記LixNi1-yFey2のy値がy<
0.3であることを特徴とする請求項記載のリチウム
二次電池。
4. The y value of the Li x Ni 1-y Fe y O 2 is y <y
The lithium secondary battery according to claim 3 , wherein the value is 0.3 .
【請求項5】 前記リチウムイオン伝導性電解質として
リチウムイオン伝導性固体電解質を用い、全固体リチウ
ム電池に構成した事を特徴とする請求項1乃至の何れ
かに記載のリチウム二次電池。
5. a lithium ion conductive solid electrolyte as the lithium ion conductive electrolyte, a lithium secondary battery according to any one of claims 1 to 4, characterized in that constructed on solid lithium batteries.
【請求項6】 前記リチウムイオン伝導性固体電解質が
Li2S−SiS2、Li2S−GeS2、Li2S−P2
5、Li2S−B23系の硫化物およびこれら硫化物を含
む化合物から選ばれる硫化物系リチウムイオン伝導体で
あることを特徴とする請求項1乃至5の何れかに記載の
リチウム二次電池。
6. The lithium ion conductive solid electrolyte is composed of Li 2 S—SiS 2 , Li 2 S—GeS 2 , and Li 2 S—P 2 S.
5, lithium according to any one of claims 1 to 5, characterized in that Li 2 S-B 2 S 3 type of sulfide and a sulfide-based lithium ion conductor is selected from compounds containing these sulphides Rechargeable battery.
【請求項7】 正極と負極がリチウムイオン伝導性電解
質に接してなるリチウム二次電池において、六方晶の結
晶構造を有するLi x CoO 2 、Li x NiO 2 あるいはL
x Ni 1-y Fe y 2 を正極活物質とし、リチウムイオン
伝導性電解質としてLi 2 S−SiS 2 、Li 2 S−Ge
2 、Li 2 S−B 2 3 系の硫化物および これら硫化物を
含む化合物から選ばれる硫化物系リチウムイオン伝導性
固体電解質を用い、全固体リチウム電池に構成した事を
特徴とするリチウム二次電池。
7. A lithium ion conductive electrolysis for a positive electrode and a negative electrode.
In a lithium secondary battery in contact with
Li x CoO 2 , Li x NiO 2 or L having a crystalline structure
The i x Ni 1-y Fe y O 2 as the positive electrode active material, a lithium-ion
Li 2 S-SiS 2 , Li 2 S-Ge as conductive electrolyte
S 2 , Li 2 SB 2 S 3 -based sulfides and these sulfides
Lithium Ion Conductivity Selected from Containing Compounds
The fact that an all-solid lithium battery was constructed using a solid electrolyte
Characteristic lithium secondary battery.
【請求項8】 前記リチウムイオン伝導性固体電解質が
Li2S−SiS2−Li3PO4、Li2S−SiS2−L
2SO4であることを特徴とする請求項6あるいは7に
記載のリチウム二次電池。
8. The lithium ion conductive solid electrolyte is Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 —L
The lithium secondary battery <br/> claim 6 or 7, characterized in that a i 2 SO 4.
JP04010670A 1992-01-24 1992-01-24 Lithium secondary battery Expired - Fee Related JP3082388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04010670A JP3082388B2 (en) 1992-01-24 1992-01-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04010670A JP3082388B2 (en) 1992-01-24 1992-01-24 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05205741A JPH05205741A (en) 1993-08-13
JP3082388B2 true JP3082388B2 (en) 2000-08-28

Family

ID=11756686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04010670A Expired - Fee Related JP3082388B2 (en) 1992-01-24 1992-01-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3082388B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361755B1 (en) * 1998-03-24 2002-03-26 Board Of Regents, The University Of Texas System Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
JP3482424B2 (en) 1998-10-02 2003-12-22 シャープ株式会社 Method for producing positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP3640545B2 (en) 1998-10-27 2005-04-20 シャープ株式会社 Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
JP4560168B2 (en) * 2000-03-15 2010-10-13 Agcセイミケミカル株式会社 Method for producing composite oxide for non-aqueous lithium secondary battery
JP5078120B2 (en) 2006-02-24 2012-11-21 日本碍子株式会社 All solid battery
EP1826860B1 (en) 2006-02-24 2018-07-18 NGK Insulators, Ltd. All-solid-state battery
WO2008059987A1 (en) 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
JP6067511B2 (en) * 2013-08-16 2017-01-25 トヨタ自動車株式会社 Sulfide solid electrolyte material, positive electrode body and lithium solid state battery
JP6460316B2 (en) 2013-12-09 2019-01-30 日本電気硝子株式会社 Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
JP6861942B2 (en) 2015-08-10 2021-04-21 日本電気硝子株式会社 Solid electrolyte sheet and its manufacturing method, and sodium ion all-solid-state secondary battery
WO2017073457A1 (en) 2015-10-28 2017-05-04 日本電気硝子株式会社 Positive electrode active material for sodium-ion secondary cell
CN116404237A (en) 2017-06-09 2023-07-07 日本电气硝子株式会社 All-solid sodium ion secondary battery
US11552329B2 (en) 2017-09-20 2023-01-10 Nippon Electric Glass Co., Ltd. Solid electrolyte sheet, method for producing same and all-solid-state secondary battery
JP2021097034A (en) 2019-12-18 2021-06-24 日本電気硝子株式会社 Member for power storage device, all-solid battery, and method of manufacturing member for power storage device

Also Published As

Publication number Publication date
JPH05205741A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
EP0829913B1 (en) Solid state rechargeable lithium battery, battery assembly, and charging method of the same
US4464447A (en) Rechargeable lithium batteries with non-metal electrodes
CN103718350B (en) Rechargeable nonaqueous electrolytic battery
KR100602856B1 (en) Lithium-containing silicon/phosphates, method of preparation, and uses thereof
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP3162437B2 (en) Non-aqueous electrolyte secondary battery
US5506075A (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP2673009B2 (en) Method for producing cathode material of secondary battery having lithium anode and use of the material
JP3082388B2 (en) Lithium secondary battery
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
US6083475A (en) Method for making lithiated metal oxide
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
GB2351075A (en) Producing lithiated transition metal sulphides
JP2000251887A (en) Nonaqueous electrolyte battery
JPH01294364A (en) Lithium secondary battery
JPH04253162A (en) Lithium secondary battery
JP3413998B2 (en) All-solid lithium battery
JP2724350B2 (en) Lithium battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP3605220B2 (en) Lithium iron oxide, method for synthesizing the same, and lithium battery
EP0728702B1 (en) Lithium iron oxide, synthesis of the same, and lithium cell utilizing the same
JPH047070B2 (en)
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3555321B2 (en) Anode material and lithium secondary battery
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees