JPH0691293A - Control method of aerobic-anaerobic active sludge process - Google Patents

Control method of aerobic-anaerobic active sludge process

Info

Publication number
JPH0691293A
JPH0691293A JP24537892A JP24537892A JPH0691293A JP H0691293 A JPH0691293 A JP H0691293A JP 24537892 A JP24537892 A JP 24537892A JP 24537892 A JP24537892 A JP 24537892A JP H0691293 A JPH0691293 A JP H0691293A
Authority
JP
Japan
Prior art keywords
nitrification
tank
reaction rate
reaction
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24537892A
Other languages
Japanese (ja)
Inventor
Masahide Ichikawa
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP24537892A priority Critical patent/JPH0691293A/en
Publication of JPH0691293A publication Critical patent/JPH0691293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To maintain the reaction rate of nitrification and to downsize a nitrification tank in an aerobic-anaerobic active sludge process by attaching a thermometer and a pH meter to the nitrification tank and increasing the pH value set as the temperature in the nitrification tank decreases. CONSTITUTION:A thermometer 20 and a pH meter 9 are attached to the upstream part of a nitration tank 2, and the reaction rate of nitration is determined by a reaction rate arithmetic unit 21 corresponding to the temperature measured by the thermometer. The relationship between the temperature and the reaction rate is determined in advance, and the temperature is regulated so that a desirable reaction rate can be maintained. The pH value is set by a pH setting unit 22 corresponding to the reaction rate determined. The reaction rate is affected by pH which in general decreases with the progress of the reaction and concurrently causes a decrease in the reaction rate. When the pH value decreases remarkably, an alkaline agent 12 is added to restore the value to around 6 to control the reaction rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、嫌気好気活性汚泥法に
おいて、水温や流入負荷変動に対する硝化反応の安定化
制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stabilizing and controlling a nitrification reaction against changes in water temperature and inflow load in an anaerobic aerobic activated sludge method.

【0002】[0002]

【従来の技術】排水中の窒素を生物学的に除去する方法
として嫌気好気活性汚泥法が実用化されている。この方
法は、図2で示すように、嫌気槽1,硝化槽2,最終沈
澱池3を有し、標準活性汚泥法の生物反応槽である曝気
槽(硝化槽)の前段1/3〜1/2位の部分の曝気を止
めて嫌気状態で運転することを特徴としている。
An anaerobic aerobic activated sludge method has been put into practical use as a method for biologically removing nitrogen in waste water. As shown in FIG. 2, this method has an anaerobic tank 1, a nitrification tank 2 and a final settling tank 3, and is a first stage 1/3 to 1 of the aeration tank (nitrification tank) which is a biological reaction tank of the standard activated sludge method. / It is characterized by stopping aeration of the 2nd place and driving in an anaerobic state.

【0003】反応槽に流入した排水中の窒素成分は、曝
気を行っている硝化槽2で硝化細菌の働きにより酸化さ
れる。酸化された窒素の一部は再び硝化液循環ポンプ5
を通して嫌気槽1に戻され、この嫌気槽において嫌気状
態で脱窒菌の働きにより流入水の有機物を消費して窒素
ガスに還元され除去される。
The nitrogen component in the waste water flowing into the reaction tank is oxidized by the action of nitrifying bacteria in the aeration nitrifying tank 2. Part of the oxidized nitrogen is again in the nitrification solution circulation pump 5
It is returned to the anaerobic tank 1 through the anaerobic tank 1, and in this anaerobic tank, the denitrifying bacteria act in an anaerobic state to consume the organic matter of the inflowing water and reduce it to nitrogen gas for removal.

【0004】[0004]

【発明が解決しようとする課題】窒素を効率的に除去す
るには、硝化反応が十分に行われなければならない。と
ころが、この硝化反応は、BOD酸化反応に比べて非常
に遅いため、標準活性汚泥法よりも大きな反応槽(硝化
槽)が必要となる。
In order to remove nitrogen efficiently, the nitrification reaction must be carried out sufficiently. However, since this nitrification reaction is much slower than the BOD oxidation reaction, a reaction tank (nitrification tank) larger than the standard activated sludge method is required.

【0005】以下で硝化のための硝化槽の容量の計算方
法を示す。
A method for calculating the volume of the nitrification tank for nitrification will be described below.

【0006】 流 入 T−N(総窒素) CN mg/l 流入量 Q m3/d ここで硝化の反応速度KNInflow TN (total nitrogen) C N mg / l Inflow Q m 3 / d where nitrification reaction rate K N

【0007】[0007]

【数1】 [Equation 1]

【0008】(ただしTは水温℃)とし、反応槽汚泥濃
度MLSSをM(g/l)とすると、硝化槽の容積VN
(T is the water temperature in ° C), and the sludge concentration MLSS in the reaction tank is M (g / l), the volume V N of the nitrification tank is

【0009】[0009]

【数2】 [Equation 2]

【0010】となる。[0010]

【0011】したがって、硝化槽容積は硝化速度に逆比
例することになる。硝化速度水温が低下すると速度は著
しく下がるため、硝化槽容積は低水温時を基準に計算さ
れる。
Therefore, the nitrification tank volume is inversely proportional to the nitrification rate. Nitrification rate When the water temperature decreases, the rate decreases significantly, so the nitrification tank volume is calculated based on the low water temperature.

【0012】今水温を13℃とすると、KN=0.67
(mgN/g.MLSSh)となり、流入のCNを25(mg/l)MLSS
を3(g/l)として硝化槽の滞留時間tは
Now, assuming that the water temperature is 13 ° C., K N = 0.67
(MgN / g.MLSS · h) and the inflow C N is 25 (mg / l) MLSS
Is 3 (g / l) and the residence time t in the nitrification tank is

【0013】[0013]

【数3】 [Equation 3]

【0014】となる。[0014]

【0015】このように嫌気好気活性汚泥法では、硝化
槽と脱窒槽(嫌気槽)を合わせると標準活性汚泥法の曝
気槽の2〜3倍程度の容積を必要とする。このため、設
置スペースに余裕のない都市では、その効果が認められ
ているにもかかわらず導入例が少ない。硝化反応槽を小
さくするためには、MLSSを大きくすることも効果的であ
るが、最終沈澱池3でSS成分が流出しやすくなるため、
3g/l程度が限度と言われている。
As described above, in the anaerobic aerobic activated sludge method, when the nitrification tank and the denitrification tank (anaerobic tank) are combined, the volume required is about 2 to 3 times that of the aeration tank in the standard activated sludge method. For this reason, in cities where there is not enough installation space, there are few examples of introduction even though the effect is recognized. Increasing the MLSS is also effective in reducing the nitrification reaction tank, but SS components easily flow out in the final settling tank 3, so
It is said that the limit is about 3 g / l.

【0016】なお、図2において、6はブロアで硝化槽
2を曝気するための空気を送付する。7は返送汚泥ポン
プ、8は余剰汚泥引抜き用ポンプ、9はpH計で、硝化
槽2のpHを検出し、この検出値に応じてコントローラ
10を制御してポンプ11を介しアルカリ剤12を硝化
槽2に投入する。
In FIG. 2, 6 is a blower for sending air for aerating the nitrification tank 2. 7 is a returning sludge pump, 8 is a pump for extracting excess sludge, and 9 is a pH meter, which detects the pH of the nitrification tank 2 and controls the controller 10 according to the detected value to nitrify the alkaline agent 12 via the pump 11. Add to tank 2.

【0017】そこで、本発明が目的とするところは、硝
化反応の効率を高めて反応槽の必要容積を小さくできる
この種の制御方法を提供せんとするものである。
Therefore, an object of the present invention is to provide a control method of this kind which can increase the efficiency of nitrification reaction and reduce the required volume of the reaction vessel.

【0018】[0018]

【課題を解決するための手段】本発明は嫌気好気活性汚
泥法において、硝化槽にpH計と水温計を設け、硝化槽
の水温低下に反応して設定pH値を高くして運転するよ
うにしたものである。
According to the present invention, in the anaerobic aerobic activated sludge method, a pH meter and a water thermometer are provided in the nitrification tank, and the set pH value is increased to operate in response to the decrease in the water temperature of the nitrification tank. It is the one.

【0019】[0019]

【作用】前記(1)式で示されるように、硝化速度は水温
に大きく影響される。
[Function] As shown in the equation (1), the nitrification rate is greatly affected by the water temperature.

【0020】一方、硝化速度はpHによっても影響さ
れ、一般に硝化反応の進行とともにpHは下がり、同時
に硝化反応は低下する。
On the other hand, the nitrification rate is also affected by the pH, and generally the pH decreases with the progress of the nitrification reaction, and at the same time, the nitrification reaction decreases.

【0021】本発明は、上記した硝化速度の変化に着目
し、硝化槽のpH値を高くすることで硝化速度を上げ、
低水温時における必要反応槽容積を減らしたものであ
る。
The present invention pays attention to the above-mentioned change in nitrification rate, and raises the nitrification rate by raising the pH value of the nitrification tank.
This is a reduction of the required reaction tank volume at low water temperature.

【0022】[0022]

【実施例】図1は本発明の制御方法に適用される構成図
の一実施例を示したもので、図2で示す従来のものと同
一部分、もしくは相当する部分に同一符号を付してその
説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a block diagram applied to the control method of the present invention, in which the same parts as the conventional one shown in FIG. The description is omitted.

【0023】20は水温計で、pH計9と共に硝化槽2
の上流部分に設置される。21は硝化速度演算部で、水
温計20によって検出された水温に応じた硝化速度が演
算される。その際、水温と硝化速度の関係を予め測定し
ておき、効率のよい硝化率が維持されるよう出力され
る。22はpH値設定部で求められた硝化速度に応じて
pH値を設定する。
Reference numeral 20 denotes a water temperature meter, which together with the pH meter 9 has a nitrification tank 2
Will be installed in the upstream part of. Reference numeral 21 denotes a nitrification rate calculation unit, which calculates the nitrification rate according to the water temperature detected by the water temperature gauge 20. At that time, the relationship between the water temperature and the nitrification rate is measured in advance, and output is performed so that an efficient nitrification rate is maintained. 22 sets the pH value according to the nitrification rate obtained by the pH value setting unit.

【0024】次に実験例について説明する。Next, an experimental example will be described.

【0025】前記(1)式で示されるように硝化速度は水
温に大きく影響される。したがって、一般には硝化槽の
大きさは最低水温時、例えば13℃時の硝化速度で決め
ることになる。最低水温13℃から16℃になったと仮
定すると、(1)式からKN=1.06(mgN/g.MLSSh)と
なり、硝化槽2における必要滞留時間は、13℃時では
9.93時間であったものが、16℃では7.87時間と
なる。
As shown in the above equation (1), the nitrification rate is greatly affected by the water temperature. Therefore, the size of the nitrification tank is generally determined by the nitrification rate at the minimum water temperature, for example, 13 ° C. Assuming that the minimum water temperature has changed from 13 ° C to 16 ° C, K N = 1.06 (mgN / g.MLSS · h) from the equation (1), and the required residence time in the nitrification tank 2 is 9. What was 93 hours now becomes 7.87 hours at 16 ° C.

【0026】一方、硝化速度はpHによっても影響され
るが、一般に硝化反応の進行とともにpHは下がり、同
時に硝化速度は低下する。そこでpHが著しく低下した
とき、pH6付近を目安としてアルカリ剤を注入する制
御が行われる。
On the other hand, the nitrification rate is also affected by pH, but generally the pH decreases with the progress of the nitrification reaction, and at the same time the nitrification rate decreases. Therefore, when the pH is remarkably lowered, the control for injecting the alkaline agent is carried out with a pH of around 6 as a guide.

【0027】本発明は、これらのpHによる硝化速度の
変化に着目し、硝化槽のpHを高くすることで硝化速度
を上げ、低水温時における必要反応槽容積を減らそうと
する意図でpH以上に設定したときにおける硝化速度の
変化を以下のように調べた。
The present invention pays attention to changes in nitrification rate depending on these pH values, and raises the nitrification rate by increasing the pH of the nitrification tank to reduce the required reaction tank volume at low water temperature. The change in nitrification rate when set to was examined as follows.

【0028】硝化が起きている活性汚泥にNH4Clを
15mg/lになるようにして1lのフラスコに投入し、曝
気を行ってアンモニア性窒素の経時変化を測定した。そ
して、pHはpH計とコントローラを使用し、設定値以
下になると1規定の水酸化ナトリウム溶液を注入した。
設定値は7.4,7.9,8.4の3段階で、それぞれの
平均pHは7.5,8.0,8.5で何れも±0.1の変動
幅で制御した。その結果、水温13℃で硝化速度はそれ
ぞれ0.71,0.96,1.06(mgN/g.MLSSh)が得
られた。
NH 4 Cl was added to the activated sludge in which nitrification had occurred at a concentration of 15 mg / l in a 1-liter flask, and aeration was performed to measure the time-dependent change of ammonia nitrogen. Then, using a pH meter and a controller, when the pH was less than a set value, 1N sodium hydroxide solution was injected.
The set values were three levels of 7.4, 7.9, and 8.4, and the average pH of each was 7.5, 8.0, and 8.5, and all were controlled with a fluctuation range of ± 0.1. As a result, at a water temperature of 13 ° C., nitrification rates of 0.71 , 0.96, and 1.06 (mgN / g.MLSS · h) were obtained, respectively.

【0029】このことから、硝化速度が(1)式に従う場
合は、水温が16℃以下になるとコントローラ10はポ
ンプ11を介してアルカリ剤12の注入を開示し、水温
の低下とともに、設定pHを上げ、13℃まで低下した
ときpHを8.5にすると硝化槽2での必要滞留時間は
7.87時間あればよいことになる。
From this, when the nitrification rate complies with the equation (1), the controller 10 discloses the injection of the alkaline agent 12 through the pump 11 when the water temperature becomes 16 ° C. or lower, and the set pH is lowered as the water temperature is lowered. When the pH is raised to 13 ° C. and the pH is adjusted to 8.5, the required residence time in the nitrification tank 2 is 7.87 hours.

【0030】ここで、水温変化による硝化速度を示す式
は予めその対象とする活性汚泥で測定しておき、(1)式
の定数項を変えることにより作成する。
Here, the formula showing the nitrification rate due to the change in the water temperature is prepared by measuring the target activated sludge in advance and changing the constant term of the formula (1).

【0031】[0031]

【発明の効果】以上本発明によれば、水温低下や窒素負
荷が高くなった場合、pHを高くして運転することによ
り硝化反応の効率低下を防止でき、且つ硝化のための反
応槽の必要容積を小さくすることができる。
As described above, according to the present invention, when the water temperature is lowered or the nitrogen load is increased, it is possible to prevent the efficiency of the nitrification reaction from decreasing by operating at a higher pH, and it is necessary to provide a reaction tank for nitrification. The volume can be reduced.

【0032】また、嫌気好気活性汚泥法に応用すること
により窒素除去の効率が上がる。
Further, the efficiency of nitrogen removal is improved by applying it to the anaerobic aerobic activated sludge method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の嫌気好気活性汚泥処理装置の構成図であ
る。
FIG. 2 is a configuration diagram of a conventional anaerobic / aerobic activated sludge treatment device.

【符号の説明】[Explanation of symbols]

1…嫌気槽 2…硝化槽 3…最終沈澱池 9…pH計 10…コントローラ 11…ポンプ 12…アルカリ剤 20…水温計 21…硝化速度演算部 22…pH設定部 1 ... Anaerobic tank 2 ... Nitrification tank 3 ... Final settling tank 9 ... pH meter 10 ... Controller 11 ... Pump 12 ... Alkaline agent 20 ... Water thermometer 21 ... Nitrification speed calculation unit 22 ... pH setting unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流入水を嫌気槽を介して曝気を行ってい
る硝化槽に導入し、最終沈澱池を通して処理水として放
出する嫌気好気活性汚泥法において、前記硝化槽に水温
計とpH計を設け、硝化槽の水温低下に応じて設定pH
値を高くして運転することを特徴とする嫌気好気活性汚
泥法におけるその制御方法。
1. In an anaerobic aerobic activated sludge method in which inflowing water is introduced into a nitrification tank that is aerated through an anaerobic tank and is discharged as treated water through a final settling tank, a water temperature meter and a pH meter are provided in the nitrification tank. The pH is set according to the decrease in water temperature in the nitrification tank.
A method for controlling the anaerobic aerobic activated sludge process, which is characterized by operating at a high value.
【請求項2】 pH制御は硝化反応開始と同時に行うこ
とを特徴とする請求項1記載の嫌気好気活性汚泥法にお
ける制御方法。
2. The control method in the anaerobic aerobic activated sludge method according to claim 1, wherein the pH control is performed at the same time as the start of the nitrification reaction.
JP24537892A 1992-09-16 1992-09-16 Control method of aerobic-anaerobic active sludge process Pending JPH0691293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24537892A JPH0691293A (en) 1992-09-16 1992-09-16 Control method of aerobic-anaerobic active sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24537892A JPH0691293A (en) 1992-09-16 1992-09-16 Control method of aerobic-anaerobic active sludge process

Publications (1)

Publication Number Publication Date
JPH0691293A true JPH0691293A (en) 1994-04-05

Family

ID=17132773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24537892A Pending JPH0691293A (en) 1992-09-16 1992-09-16 Control method of aerobic-anaerobic active sludge process

Country Status (1)

Country Link
JP (1) JPH0691293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127383A (en) * 2019-02-08 2020-08-27 学校法人 東洋大学 Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127383A (en) * 2019-02-08 2020-08-27 学校法人 東洋大学 Culture method, culture apparatus, waste water treatment method, and waste water treatment apparatus

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
JP2017006894A (en) Method for controlling the amount of aeration in activated sludge
JP4229999B2 (en) Biological nitrogen removal equipment
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JPH0691293A (en) Control method of aerobic-anaerobic active sludge process
JP4190145B2 (en) Efficient addition method of organic carbon source for denitrification
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP3023921B2 (en) Activated sludge treatment equipment
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP2987103B2 (en) Intermittent aeration
JP2000325991A (en) Control device of biological water treatment apparatus
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP3677811B2 (en) Biological denitrification method
JP3260558B2 (en) Control method of intermittent aeration type activated sludge method
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JP2005000715A (en) Method for controlling operation of aerating stirrer
JP3260574B2 (en) Control method of intermittent aeration type activated sludge method
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP3396959B2 (en) Nitrification method and apparatus
JP2000084585A (en) Aerator and method for controlling operation of sludge removal pump
JPH06312197A (en) Activated sludge treatment apparatus