JPH0691058B2 - Semiconductor wafer polishing method - Google Patents

Semiconductor wafer polishing method

Info

Publication number
JPH0691058B2
JPH0691058B2 JP63250894A JP25089488A JPH0691058B2 JP H0691058 B2 JPH0691058 B2 JP H0691058B2 JP 63250894 A JP63250894 A JP 63250894A JP 25089488 A JP25089488 A JP 25089488A JP H0691058 B2 JPH0691058 B2 JP H0691058B2
Authority
JP
Japan
Prior art keywords
wafer
plate
polishing
semiconductor wafer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63250894A
Other languages
Japanese (ja)
Other versions
JPH0298926A (en
Inventor
好一 田中
勇雄 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP63250894A priority Critical patent/JPH0691058B2/en
Publication of JPH0298926A publication Critical patent/JPH0298926A/en
Publication of JPH0691058B2 publication Critical patent/JPH0691058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、半導体ウエーハを高精度に鏡面状に研磨する
為の研磨方法に係り、特に負圧力を利用して半導体ウエ
ーハ又は該ウエーハを保持するキャリアをプレート面上
に吸着させながら所定の研磨を行う半導体ウエーハ研磨
方法に関する。
TECHNICAL FIELD The present invention relates to a polishing method for polishing a semiconductor wafer in a mirror surface with high accuracy, and particularly to a semiconductor wafer or a holding method for holding the semiconductor wafer by using negative pressure. The present invention relates to a semiconductor wafer polishing method for performing a predetermined polishing while adsorbing a carrier to the plate surface.

「従来の技術」 従来より、ダイオード、トランジスタ、IC(集積回
路)、LSI(大規模集積回路)等の半導体装置を製造す
る為の基体となるべき半導体ウエーハは、シリコン、ゲ
ルマニウム等の半導体単結晶インゴットをスライスして
薄板化した後、その少なくとも一側表面をいわゆるメカ
ノケミカルポリシング法と呼ばれる研磨方法(機械的研
磨と化学研磨を組み合わせた研磨方法)に基づいて鏡面
研磨する事により形成される。
“Conventional Technology” Conventionally, a semiconductor wafer that should be a base for manufacturing a semiconductor device such as a diode, a transistor, an IC (integrated circuit), and an LSI (large-scale integrated circuit) is a semiconductor single crystal such as silicon or germanium. The ingot is sliced into a thin plate, and at least one side surface of the ingot is mirror-polished based on a so-called mechanochemical polishing method (a polishing method combining mechanical polishing and chemical polishing).

かかる研磨装置は例えば第2図に示すように、上面に研
磨布1が貼設された外部よりの駆動力を受けて回転する
ターンテーブル(以下定盤2という)と、該研磨布貼設
面(以下研磨面1Aという)上に位置し、下面に一又は複
数の半導体ウエーハ3を固定させたプレート4と、加圧
軸50を利用して該プレート4の上面側より押圧力を付勢
するマウントヘッド(以下ヘッド部5という)とからな
り、研磨剤分散器6等を利用して前記研磨布1上に例え
ばSiO2の砥粒を含む研磨剤を分散させながら、半導体ウ
エーハ3と研磨布1(研磨剤剤)間で摺擦運動を生じせ
しめて所定の研磨を行うように構成されているが、半導
体ウエーハ3の鏡面仕上精度は、IC、LSI上に形成され
る半導体素子の微細化、高集積化に伴ない年々厳しくな
り、特にチップ当たりの素子数が100,000以上のVLSIの
時代に突入した現在においては、鏡面に仕上げられたウ
エーハ3表面の平面度は、サブミクロン以下に設定され
つつある。
As shown in FIG. 2, for example, such a polishing apparatus has a turntable (hereinafter referred to as a surface plate 2) having a polishing cloth 1 stuck on the upper surface thereof and rotated by receiving a driving force from the outside, and the polishing cloth sticking surface. A plate 4 located above (hereinafter referred to as polishing surface 1A) and having one or a plurality of semiconductor wafers 3 fixed to the lower surface thereof, and a pressing shaft 50 are used to apply a pressing force from the upper surface side of the plate 4. The semiconductor wafer 3 and the polishing cloth are composed of a mount head (hereinafter referred to as a head portion 5), and while using the abrasive disperser 6 or the like to disperse the abrasive containing, for example, SiO 2 abrasive grains on the polishing cloth 1. 1 (polishing agent) is configured to generate a rubbing motion to perform a predetermined polishing. However, the mirror-finishing accuracy of the semiconductor wafer 3 depends on the miniaturization of the semiconductor element formed on the IC or LSI. As the level of integration increases, it gets severer year by year, especially per chip In the current number of elements it has entered the era of more than 100,000 VLSI, flatness of the finished wafer 3 surface mirror are being set below submicron.

この為前記ウエーハ3をプレート4下面に固定する際に
おいても極めて精度よく平坦性を維持して固定する必要
がある。
Therefore, when the wafer 3 is fixed to the lower surface of the plate 4, it is necessary to fix the wafer 3 with extremely high flatness.

一般にかかる固定手段は、ワックスを用いて半導体ウエ
ーハ3をプレート4面に接着させる方法と、負圧力を利
用した吸引手段によりプレート4面にウエーハ3を直接
吸着させるノンワックス方法が存在するが、前者におい
ては、ウエーハ3がワックス膜を介した間接的な固定方
法である為にウエーハ3の平坦度の向上等を図る上で次
のような問題が生じる。
Generally, such a fixing means includes a method of adhering the semiconductor wafer 3 to the plate 4 surface using wax and a non-wax method of directly adsorbing the wafer 3 on the plate 4 surface by a suction means using negative pressure. In the above, since the wafer 3 is an indirect fixing method via the wax film, the following problems occur in improving the flatness of the wafer 3 and the like.

即ちかかる固定手段は熱溶融化されたワックス面上にウ
エーハ3を圧着させた後、前記ワックス膜を冷却固化さ
せる事により固定する訳であるが、プレート上のワック
スを軟化状態に保持し、これに前記ウエーハ3を圧着す
る際の加圧力の均一化、又冷却固化時の温度分布の均一
化を図る事は極めて困難であり、ワックス膜厚分布に多
少のバラツキが発生したり又ウエーハ自身の変形を生ず
る。従って、剛体であるプレート4面にウエーハ3を直
接吸着させる後者のノンワックス法に比較してウエーハ
3の平坦性を維持する事が困難である。
That is, such fixing means fixes the wafer 3 on the heat-melted wax surface by pressure bonding, and then cools and solidifies the wax film to fix the wax film. It is extremely difficult to make uniform the pressure applied when the wafer 3 is pressure-bonded, and to make the temperature distribution uniform at the time of cooling and solidification, and some variations may occur in the wax film thickness distribution or the wafer itself. Cause deformation. Therefore, it is difficult to maintain the flatness of the wafer 3 as compared with the latter non-wax method in which the wafer 3 is directly adsorbed on the surface of the plate 4 which is a rigid body.

一方、後者のノンワックス法は、説明を簡単にするため
に枚葉式プレートを想定すると、例えば第2図に示すよ
うにプレート4に穿孔した多数の吸引孔41′を介してヘ
ッド部5とプレート4間の密閉空間51′内を真空吸引す
る事により剛体のプレート4面にウエーハ3を直接吸着
させるものである為に、前記欠点を解消し得るが、かか
る固定方法においては、研磨作業中にウエーハ3を固定
する為の真空吸引を常に行う必要がある為に、ウエーハ
3背面側のプレート4接触面内に研磨剤がしばしば侵入
し、これは吸引孔41′を経て減圧系配管に到達するが、
その前にプレート4の吸引孔41′内が減圧状態となって
いる為に、侵入研磨液は吸着孔端に到達した段階で、直
ちにその入口部で水分が蒸発除去され濃縮化されて該研
磨液中に含まれるコロイダルシリカはゲル化し、次いで
固体物となり、吸引孔41′入口部に付着固化してしま
う。
On the other hand, in the latter non-wax method, if a single-wafer plate is assumed for the sake of simplicity, for example, as shown in FIG. 2, the head unit 5 and the head unit 5 are provided through a large number of suction holes 41 ′ formed in the plate 4. Since the wafer 3 is directly attracted to the rigid plate 4 surface by vacuum suction in the closed space 51 'between the plates 4, the above-mentioned drawback can be solved. Since it is necessary to always perform vacuum suction for fixing the wafer 3 to the wafer, the abrasive often penetrates into the contact surface of the plate 4 on the back side of the wafer 3, which reaches the decompression system pipe through the suction hole 41 '. But
Before that, since the inside of the suction hole 41 'of the plate 4 is in a depressurized state, when the invading polishing liquid reaches the end of the adsorption hole, the water is immediately evaporated and concentrated at the inlet portion of the polishing liquid to be concentrated. The colloidal silica contained in the liquid gels and then becomes a solid substance, which adheres to the inlet of the suction hole 41 'and solidifies.

また侵入研磨液のために、ウエーハ3背面が化学的に腐
食し、微妙な凹凸を発生したり、外観上好ましくなくな
る。またプレート4吸着孔41′端と同様に、その近傍で
ウエーハ3にゲルが固着する。
Further, the back surface of the wafer 3 is chemically corroded due to the invading polishing liquid, resulting in subtle unevenness and unfavorable appearance. Further, like the end of the adsorption hole 41 'of the plate 4, the gel is fixed to the wafer 3 in the vicinity thereof.

そしてこのように付着した固形物は、その後の洗浄にに
よっても完全には除去し得ず、第3図に示すようにその
一部が吸引孔41′入口部に突起状を形成し、該突起が次
位のウエーハ3吸着時に該ウエーハ3を該当部分におい
て僅かに隆起させる原因となり、当然のことであるが研
磨工程により該隆起した部分が除去され、研磨後におい
て該ウエーハ3の吸着を解除するとその部分のみが凹み
となってウエーハの平面度が部分的に劣化する。
The solid matter thus adhered cannot be completely removed by the subsequent washing, and as shown in FIG. 3, a part of the solid matter forms a projection at the inlet of the suction hole 41 '. Causes a slight swelling of the wafer 3 at a corresponding portion at the time of adsorbing the next wafer 3, and as a matter of course, when the raised portion is removed by the polishing process and the adsorption of the wafer 3 is released after polishing. Only that portion becomes a depression, and the flatness of the wafer is partially deteriorated.

かかる欠点を解消する為に、前記ウエーハ3と接するプ
レート4下面の外縁側にリング状ゴム弾性体を密着して
囲繞し、該弾性体をプレート4下面より微小寸法突出さ
せた技術を開示している。(特公昭63−4937号) 「発明が解決しようとする問題点」 しかしながらかかる従来技術によれば、前記弾性体をプ
レート下面より微小寸法突出させる構成の為に、研磨時
にウエーハ中心部と周縁域の押圧力が必然的に不均一と
なり、高精度な平坦研磨を行い得ない。
In order to solve such a drawback, a technique is disclosed in which a ring-shaped rubber elastic body is closely adhered to and surrounded by the outer edge side of the lower surface of the plate 4 which is in contact with the wafer 3, and the elastic body is projected from the lower surface of the plate 4 by a small dimension. There is. (Japanese Patent Publication No. 63-4937) "Problems to be solved by the invention" However, according to such a conventional technique, since the elastic body is made to project from the lower surface of the plate by a small dimension, the central portion of the wafer and the peripheral area thereof are polished. The pressing force of is inevitably non-uniform, and highly accurate flat polishing cannot be performed.

更に前記微小寸法の設定及び弾性体を周方向に均一な寸
法で形成する事は加工上中々困難であり、またリング状
弾性体内部は、研磨時に常に負圧であり、研磨液に直接
接するために、完全な研磨液侵入防止が不可能であり、
次位のウエーハ研磨に際し、前述と同様な固化ゲルによ
る不具合を生ずる。
Further, it is difficult to set the above-mentioned minute dimensions and to form the elastic body with a uniform size in the circumferential direction, and the inside of the ring-shaped elastic body is always under negative pressure during polishing and is in direct contact with the polishing liquid. In addition, it is impossible to completely prevent the penetration of polishing liquid,
In the case of polishing the next wafer, the same trouble as the above-mentioned solidified gel occurs.

本発明は、かかる従来技術の欠点に鑑み、ウエハ各域で
の押圧力の均一さを維持しつつ、ウエーハ背面側のプレ
ート接触面内への研磨剤の侵入を完全に阻止し得る研磨
方法を提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention provides a polishing method capable of completely preventing the intrusion of an abrasive into the plate contact surface on the back surface side of the wafer while maintaining the uniformity of the pressing force in each region of the wafer. The purpose is to provide.

「課題を解決しようとする手段」 本発明はかかる技術的課題を達成する為に、前記プレー
トを単一のプレートで形成すると共に、該プレート面の
吸着されたウエーハ背面の中心域に形成した負圧力発生
部位を囲繞する如く、該プレートと半導体ウエーハ面間
に流体シール層、特に水を用いてシール層を形成すると
ともに、前記シール層を形成する流体の圧力を0.1〜0.4
Kgf/cm2(ゲージ圧)の範囲で制御しながら、研磨材の
吸引を防ぐことを特徴とする半導体ウエーハの研磨方法
を提案する。
[Means for Solving the Problems] In order to achieve the technical object, the present invention forms the plate with a single plate and forms a negative plate in the central region of the back surface of the wafer on which the plate surface is sucked. A fluid seal layer, particularly a seal layer using water, is formed between the plate and the semiconductor wafer surface so as to surround the pressure generating portion, and the pressure of the fluid forming the seal layer is set to 0.1 to 0.4.
We propose a method for polishing semiconductor wafers, which is characterized by preventing the suction of abrasives while controlling in the range of Kgf / cm 2 (gauge pressure).

「作用」 かかる技術手段によれば、プレート面に吸着されたウエ
ーハ背面の中心域に負圧力発生部位が形成されている為
に、ウエーハを円滑に吸着保持する事が出来るととも
に、該負圧力発生部位の外周側には、該発生部位を囲繞
する如く正圧の流体シール層が形成されてある為に、該
シール層によりウエーハ背面側への研磨剤の侵入を完全
に阻止し得る。
[Operation] According to such technical means, since the negative pressure generating portion is formed in the central region of the back surface of the wafer sucked on the plate surface, the wafer can be sucked and held smoothly and the negative pressure generation can be performed. Since a positive pressure fluid seal layer is formed on the outer peripheral side of the portion so as to surround the generation portion, the seal layer can completely prevent the abrasive from entering the back surface of the wafer.

又本発明は流体、特に水によりシール層を形成する構成
を取る為に、その構成が極めて簡単であり且つ特公昭63
−4937号に示す従来技術のように、シール層たる弾性体
をプレート下面より微小寸法突出させる必要もなく、ウ
エーハ背面側全域に亙って剛性且つ平坦なプレート面で
保持出来る為に、押圧力の不均一性が生じる余地もなく
高精度な平坦研磨が可能となる。
Further, since the present invention has a structure in which the sealing layer is formed by a fluid, especially water, the structure is extremely simple and
Unlike the prior art shown in No. 4937, it is not necessary to project the elastic body that is the sealing layer from the bottom surface of the plate by a small dimension, and since the entire surface on the back side of the wafer can be held by the rigid and flat plate surface, the pressing force It is possible to perform highly accurate flat polishing without any unevenness of

尚、前記流体シール層は好ましいシール効果を達成する
には正圧状態に維持する事が必要である。
The fluid sealing layer must be maintained in a positive pressure state in order to achieve the desired sealing effect.

シール層は、ウエーハとプレートが密着していても、表
面粗さのため両者の間に僅かに存在するすきまに存在し
ているが、水圧が、ウエーハの押圧力即ち研磨圧力より
高くなるとウエーハとプレートの密着が維持できなくな
るため、ウエーハの加圧精度が低下してしまう。このた
め水圧は正圧であつても研磨圧力が一般に0.5Kgf/cm2
上あるためにそれより低く、具体的には0.1〜0.4Kgf/cm
2(ゲージ圧)の範囲になければならない。
Even if the wafer and the plate are in close contact with each other, the sealing layer exists in a gap that is slightly present between the wafer and the plate, but when the water pressure becomes higher than the pressing force of the wafer, that is, the polishing pressure, Since the close contact of the plates cannot be maintained, the accuracy of pressing the wafer is reduced. Therefore, even if the water pressure is positive, the polishing pressure is generally lower than 0.5 Kgf / cm 2 because it is 0.5 Kgf / cm 2 or more.
Must be in the range of 2 (gauge pressure).

又、前記流体シール層を形成する流体が負圧力発生部位
側に侵入したとしても、該流体が水や空気であれば特に
問題となる事はないが、特にプレートを回転可能に構成
する事により遠心力の作用を受け、前記シール層を形成
している流体が、負圧力発生部位側に侵入する事なく、
前記ウエーハとプレート面間の外縁側より漏出可能に構
成するのがよい。
Further, even if the fluid forming the fluid sealing layer enters the negative pressure generating portion side, if the fluid is water or air, there is no particular problem, but especially by making the plate rotatable. The fluid that forms the sealing layer under the action of centrifugal force does not enter the negative pressure generation site side,
It is preferable to be configured to be able to leak from the outer edge side between the wafer and the plate surface.

これにより、流体シール層と負圧力発生部位間のシール
性の維持とともに前記流体が常に外部に漏出する為の、
ウエーハ背面側の清浄度の維持を図る事が出来る。
Thereby, because the fluid is constantly leaked to the outside while maintaining the sealing property between the fluid seal layer and the negative pressure generating portion,
It is possible to maintain cleanliness on the back side of the wafer.

又前記シール層を形成する流体を水で構成する事によ
り、該流体が研磨剤中に混入しても何等支障となる事が
なく、且つ空気の場合に比較してシール効果も増大す
る。
In addition, when the fluid forming the seal layer is composed of water, there is no problem even if the fluid is mixed into the abrasive, and the sealing effect is increased as compared with the case of air.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto unless otherwise specified, and are merely descriptions. It's just an example.

第1図は本発明の実施例に係る研磨装置であって、特に
枚葉式の研磨装置を示し、前記従来技術と同様に上面に
研磨布1が貼設され外部よりの駆動力を受けて回転する
定定盤2と、研磨面1A上に位置し、下面に半導体ウエー
ハ3を同心状に固定させるプレート4と、該プレート4
の上面側より押圧力を付勢しながら回転軸により回転可
能に構成したヘッド部5を含む点においては前記従来技
術と同様である。
FIG. 1 shows a polishing apparatus according to an embodiment of the present invention, in particular, a single-wafer polishing apparatus, in which a polishing cloth 1 is stuck on the upper surface and receives a driving force from the outside as in the prior art. A rotating surface plate 2, a plate 4 located on the polishing surface 1A and concentrically fixing the semiconductor wafer 3 on the lower surface, and the plate 4
It is the same as the above-mentioned conventional art in that it includes a head portion 5 configured to be rotatable by a rotary shaft while urging a pressing force from the upper surface side.

次にこれらの部材の内、本実施例の要部構成について詳
細に説明する。
Next, of these members, the configuration of the main part of this embodiment will be described in detail.

ヘッド部5はその下面側中心域に円形凹部51と、仕切壁
53を介してその外周側にリング状凹部54を夫々形成する
とともに、そ前記円形凹部51には回転軸52内に穿孔した
中心孔55を介して真空ポンプ61と、又リング状凹部54に
は側孔56及び流体調整弁62を介して水圧源63と夫々連結
させている。
The head portion 5 has a circular recess 51 in the center area on the lower surface side and a partition wall.
A ring-shaped recess 54 is formed on the outer peripheral side of the vacuum pump 61 via a central hole 55 bored in the rotary shaft 52, and a ring-shaped recess 54 is formed in the circular recess 51. The water pressure source 63 is connected via the side hole 56 and the fluid regulating valve 62, respectively.

プレート4は、前記ヘッド部5外径と同一の外径を有し
且つ上下両面が平滑な平面状をなすステンレス製の円板
で形成するとともに、前記円形凹部51と対応する面上に
吸引用細孔41を、又リング状凹部54と対応する個所に流
体導入用細孔42を夫々多数穿孔しておく。
The plate 4 has the same outer diameter as that of the head portion 5 and is formed of a circular plate made of stainless steel whose upper and lower surfaces are smooth and has a flat surface. A large number of pores 41 and a plurality of fluid introduction pores 42 are formed at positions corresponding to the ring-shaped recesses 54.

尚流体導入用細孔42の穿孔位置は、該細孔42〜ウエーハ
3外端までの距離より、該細孔42〜最外側の吸引用細孔
41までの距離を大に設定するのが好ましい。
The position of the holes 42 for introducing the fluid is determined by the distance from the holes 42 to the outer end of the wafer 3 and the holes 42 to the outermost suction holes.
It is preferable to set a large distance to 41.

そしてかかる実施例において前記円形凹部51内の負圧を
約−0.5Kg/cm2(ゲージ圧)、又リング状凹部54内に供
給される水は、前記ヘッド部5側の押圧力に抗して極め
て薄い薄膜状にウエーハ3背面側の外周端側に水シール
層が形成可能に、言い換えれば水圧は正圧であってウエ
ーハの研磨圧力よりは低い範囲で制御して且つ回転軸を
介してヘッド部5−プレート4を回転させる際に生じる
遠心力によりウエーハ3外周端より適度に水が漏出する
程度にかつ押圧力より低い水圧及び流量を調整するのが
よい。
In such an embodiment, the negative pressure in the circular recess 51 is about −0.5 Kg / cm 2 (gauge pressure), and the water supplied in the ring-shaped recess 54 resists the pressing force on the head 5 side. It is possible to form a water seal layer on the outer peripheral edge side of the back surface of the wafer 3 in a very thin film form. In other words, the water pressure is positive pressure and controlled within a range lower than the polishing pressure of the wafer, and via the rotary shaft. It is preferable to adjust the water pressure and the flow rate lower than the pressing force to such an extent that the water leaks appropriately from the outer peripheral end of the wafer 3 due to the centrifugal force generated when the head portion 5 -plate 4 is rotated.

前記水圧及び流量は細孔42よりウエーハ3背面側に直接
噴出する構成を取る為に、前記水圧がウエーハの研磨圧
力より高いとその細孔42周囲のウエーハ3を局部的に変
形させたり、又前記吸引用細孔41よりの保持力を大幅に
低下させる方向に働きウエーハ3のプレート4面への密
着を維持出来ない場合がある。
Since the water pressure and the flow rate are directly ejected from the pores 42 to the back surface side of the wafer 3, if the water pressure is higher than the polishing pressure of the wafer, the wafer 3 around the pores 42 is locally deformed, or In some cases, the holding force from the suction pores 41 is greatly reduced, and the close contact of the wafer 3 with the plate 4 surface may not be maintained.

又逆に前記水圧が正圧以下になると、流体シール層とし
ての機能が低下し、本発明の効果を円滑に達成し得な
い。従って前記水圧は細孔42の直径及びウエーハ3の肉
厚にも関係するが具体的には0.1〜0.4KgF/cm2、又流量
は例えば0.1〜0.3cc/min程度に設定するのがよい。
On the other hand, when the water pressure is less than the positive pressure, the function of the fluid seal layer is deteriorated, and the effect of the present invention cannot be achieved smoothly. Therefore, the water pressure is related to the diameter of the pores 42 and the wall thickness of the wafer 3, but specifically, it is preferable to set 0.1 to 0.4 KgF / cm 2 and the flow rate to, for example, about 0.1 to 0.3 cc / min.

例えば第1A図に示すように、前記細孔42の流出端を段差
状又はすり鉢状に拡径化するかリング状凹部を形成し
て、いわゆる水圧緩衝手段42aを介して細孔42とウエー
ハ3を接触するように構成する事もできる。
For example, as shown in FIG. 1A, the outflow end of the pore 42 is enlarged in the shape of a step or a mortar or a ring-shaped recess is formed, and the pore 42 and the wafer 3 are formed through a so-called hydraulic buffer means 42a. Can also be configured to contact.

複葉式の場合には、遠心力を利用せず、流体圧を若干高
めると良い。流体圧、流量は具体的には、上述の水の場
合枚葉式の操作と殆ど変わらない。
In the case of the compound leaf type, it is advisable to slightly increase the fluid pressure without using the centrifugal force. Specifically, the fluid pressure and the flow rate are almost the same as in the above-mentioned single-wafer operation in the case of water.

かかる実施例によれば前記した本発明の作用効果が円滑
に達成し得る。
According to this embodiment, the above-described effects of the present invention can be smoothly achieved.

第4図は、第2発明に係る実施例を示し、半導体ウエー
ハ3外径より僅かに大なる内穴を有し且つ該ウエーハ3
より僅かに小なる肉厚をもって形成したキャリア71と、
該キャリア71の中心域側に吸引用細孔71を又その両側に
流体導入用細孔72、73を穿孔したプレート4と、前記細
孔71〜73と対応する部位に、夫々仕切壁82、84を介して
同心状にリング状凹部81、83、85を形成したヘッド部5
よりなり、前記各リング状凹部81、83、85に夫々穿孔し
た貫通孔81a、83a、85aを介して、真空ポンプ61と、又
流体調整弁62を介して水圧源63と夫々連結させている。
FIG. 4 shows an embodiment according to the second invention, which has an inner hole slightly larger than the outer diameter of the semiconductor wafer 3, and
Carrier 71 formed with a slightly smaller wall thickness,
A plate 4 in which suction holes 71 are formed on the center side of the carrier 71 and fluid introduction holes 72, 73 are formed on both sides thereof, and a partition wall 82 is provided at a portion corresponding to the holes 71 to 73, respectively. Head portion 5 in which ring-shaped recesses 81, 83, 85 are formed concentrically with 84
The vacuum pump 61 is connected via the through holes 81a, 83a, 85a drilled in the ring-shaped recesses 81, 83, 85, respectively, and is connected to the water pressure source 63 via the fluid regulating valve 62, respectively. .

かかる実施例においてはキャリア71中心域の側でキャリ
ア71を吸着しつつ、その両側周縁側で流体シール層が形
成される為に、キャリア71の背面側に研磨剤が侵入する
事を阻止する事が出来る。尚本実施例の場合には前記仕
切壁84にOリングを設けてもウエーハ3の平坦研磨を図
る上で特に問題となる事がなく且つキャリア71中心域側
への流体の侵入も防止出来好ましい。
In this embodiment, while the carrier 71 is adsorbed on the side of the center area of the carrier 71, the fluid seal layers are formed on both sides of the periphery of the carrier 71, so that it is possible to prevent the abrasive from entering the back side of the carrier 71. Can be done. In the case of the present embodiment, even if an O-ring is provided on the partition wall 84, there is no particular problem in achieving flat polishing of the wafer 3 and the invasion of the fluid to the center side of the carrier 71 can be prevented, which is preferable. .

「発明の効果」 以上記載の如く本発明によれば、ウエハ各域での押圧力
の均一さを維持しつつ、ウエーハ背面側のプレート接触
面内への研磨剤の侵入を完全に阻止し得、これにより高
平坦度を維持しながらウエーハの研磨が可能になるとと
もに、ウエーハ背面側の汚染防止と洗浄の容易化等が達
成し得る。
[Advantages of the Invention] As described above, according to the present invention, it is possible to completely prevent the polishing agent from entering the plate contact surface on the back surface side of the wafer while maintaining the uniformity of the pressing force in each region of the wafer. This makes it possible to polish the wafer while maintaining high flatness, and at the same time, prevent contamination of the back side of the wafer and facilitate cleaning.

等の種々の著効を有す。It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る研磨装置を示す概略断面
図、第1A図は第1図の変形例を示す要部拡大図、第4図
は他の実施例に係る研磨装置を示す概略断面図、第2図
及び第3図は従来技術の研磨装置を示す概略断面図と、
その問題点を示す作用図である。
FIG. 1 is a schematic sectional view showing a polishing apparatus according to an embodiment of the present invention, FIG. 1A is an enlarged view of an essential part showing a modified example of FIG. 1, and FIG. 4 shows a polishing apparatus according to another embodiment. 2 and 3 are schematic sectional views showing a conventional polishing apparatus,
It is an operation view showing the problem.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】負圧力を利用して半導体ウエーハをプレー
ト面上に吸着させながら所定の研磨を行う半導体ウエー
ハ研磨方法において、 前記プレートを単一のプレートで形成すると共に、前記
プレート面の吸着ウエーハの背面中心域に形成した負圧
力発生部位を囲繞する如く、該プレートと半導体ウエー
ハ面間に正圧の流体シール層を形成し、研磨材の吸引を
防ぐことを特徴とする半導体ウエーハの研磨方法
1. A semiconductor wafer polishing method for performing a predetermined polishing while adsorbing a semiconductor wafer onto a plate surface using a negative pressure, wherein the plate is formed of a single plate, and the adsorption wafer on the plate surface is formed. A method for polishing a semiconductor wafer, characterized in that a positive pressure fluid sealing layer is formed between the plate and the surface of the semiconductor wafer so as to surround the negative pressure generating portion formed in the central region of the back surface of the semiconductor wafer, thereby preventing the suction of the abrasive.
【請求項2】前記シール層を形成する流体が水である請
求項1)記載の半導体ウエーハの研磨方法
2. The method for polishing a semiconductor wafer according to claim 1, wherein the fluid forming the seal layer is water.
【請求項3】負圧力を利用して半導体ウエーハをプレー
ト面上に吸着させながら所定の研磨を行う半導体ウエー
ハ研磨方法において、前記プレート面の吸着ウエーハの
背面中心域に形成した負圧力発生部位を囲繞する如く、
該プレートと半導体ウエーハ面間に正圧の流体シール層
を形成するとともに、前記シール層を形成する流体の圧
力を0.1〜0.4Kgf/cm2(ゲージ圧)の範囲で制御しなが
ら、研磨材の吸引を防ぐことを特徴とする半導体ウエー
ハの研磨方法
3. A semiconductor wafer polishing method for performing a predetermined polishing while adsorbing a semiconductor wafer onto a plate surface using a negative pressure, wherein a negative pressure generating portion formed in the center of the back surface of the adsorption wafer on the plate surface is formed. As if to be surrounded
While forming a positive pressure fluid seal layer between the plate and the semiconductor wafer surface, while controlling the pressure of the fluid forming the seal layer in the range of 0.1 to 0.4 Kgf / cm 2 (gauge pressure), Polishing method for semiconductor wafer characterized by preventing suction
JP63250894A 1988-10-06 1988-10-06 Semiconductor wafer polishing method Expired - Fee Related JPH0691058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250894A JPH0691058B2 (en) 1988-10-06 1988-10-06 Semiconductor wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250894A JPH0691058B2 (en) 1988-10-06 1988-10-06 Semiconductor wafer polishing method

Publications (2)

Publication Number Publication Date
JPH0298926A JPH0298926A (en) 1990-04-11
JPH0691058B2 true JPH0691058B2 (en) 1994-11-14

Family

ID=17214606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250894A Expired - Fee Related JPH0691058B2 (en) 1988-10-06 1988-10-06 Semiconductor wafer polishing method

Country Status (1)

Country Link
JP (1) JPH0691058B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY120754A (en) * 1997-08-11 2005-11-30 Tokyo Seimitsu Co Ltd Wafer polishing apparatus
JP2001298006A (en) 2000-04-17 2001-10-26 Ebara Corp Polishing device
JP4732736B2 (en) * 2004-11-08 2011-07-27 株式会社岡本工作機械製作所 Device wafer vacuum chuck system and method for polishing back surface of device wafer using the same
JP2006229027A (en) * 2005-02-18 2006-08-31 Disco Abrasive Syst Ltd Wafer transfer device
JP4759298B2 (en) * 2005-03-30 2011-08-31 株式会社フジミインコーポレーテッド Abrasive for single crystal surface and polishing method
KR101174925B1 (en) 2005-08-31 2012-08-17 신에쓰 가가꾸 고교 가부시끼가이샤 Wafer polishing method and polished wafer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671689B2 (en) * 1985-11-27 1994-09-14 株式会社日立製作所 Vacuum suction device for polishing and grinding

Also Published As

Publication number Publication date
JPH0298926A (en) 1990-04-11

Similar Documents

Publication Publication Date Title
JP3027551B2 (en) Substrate holding device, polishing method and polishing device using the substrate holding device
US6881135B2 (en) Polishing head of chemical mechanical polishing apparatus and polishing method using the same
JP2933488B2 (en) Polishing method and polishing apparatus
JP2002187060A (en) Substrate holding device, polishing device and grinding method
JP2000190211A (en) Chemical mechanical polishing device and its method
EP0860238B1 (en) Polishing apparatus
JPH0691058B2 (en) Semiconductor wafer polishing method
JP3566430B2 (en) Method for manufacturing semiconductor device
JPH0957612A (en) Polishing apparatus
US6913516B1 (en) Dummy process and polishing-pad conditioning process for chemical mechanical polishing apparatus
JP3095516B2 (en) Waxless polishing machine
JP4051663B2 (en) Waxless mount polishing method
JP2615317B2 (en) Spinner chuck
JP3463345B2 (en) Polishing apparatus, polishing method and bonding method
JP2000094310A (en) Substrate-being-polished holding device, polishing method for substrate and manufacture of semiconductor device
JP3615592B2 (en) Polishing equipment
JPH03173129A (en) Polishing apparatus
JP2007274012A (en) Waxless-mount type polishing method
JP2003220553A (en) Polishing head and polishing method
JP2000301453A (en) Polishing device
JP2002252192A (en) Polishing equipment, method for manufacturing semiconductor device using the equipment, and semiconductor device manufactured using the method
JPH09326379A (en) Method and apparatus for polishing semiconductor substrate
JPH1094958A (en) Substrate polishing method and polishing device used therefor
JPH097984A (en) Manufacture of semiconductor device and polishing apparatus used therefore
JPH10135127A (en) Substrate developing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees