JPH0691024B2 - Dry thin film processing equipment - Google Patents

Dry thin film processing equipment

Info

Publication number
JPH0691024B2
JPH0691024B2 JP62255973A JP25597387A JPH0691024B2 JP H0691024 B2 JPH0691024 B2 JP H0691024B2 JP 62255973 A JP62255973 A JP 62255973A JP 25597387 A JP25597387 A JP 25597387A JP H0691024 B2 JPH0691024 B2 JP H0691024B2
Authority
JP
Japan
Prior art keywords
power supply
electrostatic chuck
wafer
electrodes
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62255973A
Other languages
Japanese (ja)
Other versions
JPH0198218A (en
Inventor
泰明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62255973A priority Critical patent/JPH0691024B2/en
Publication of JPH0198218A publication Critical patent/JPH0198218A/en
Publication of JPH0691024B2 publication Critical patent/JPH0691024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ECRプラズマを用いて特に半導体基板上に
薄膜を成長させるCVD(Chemical Vapour Deposition,ガ
ス状物質が反応して基板上に固体を析出する反応)成膜
装置に関するものであり、詳しくは、ほぼ一平面内に複
数の電極が対をなして配され各対の電極が直流電源から
互いに異なる極性に課電されるとともにこの課電時に前
記平面にほぼ平行に接近した平板状試料を静電的に吸
着,保持する静電チャックを備え、ECRプラズマを用い
て前記平板状試料の反吸着面側にエッチングまたは成膜
加工を施す乾式薄膜加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to CVD (Chemical Vapor Deposition) for growing a thin film particularly on a semiconductor substrate by using ECR plasma to react solid substances on the substrate. The present invention relates to a film forming apparatus. More specifically, a plurality of electrodes are arranged in a pair in a substantially one plane, and the electrodes of each pair are applied with different polarities from a DC power source and Sometimes it is equipped with an electrostatic chuck that electrostatically attracts and holds a flat plate sample that is nearly parallel to the plane, and uses an ECR plasma to etch or form a film on the side opposite to the flat plate sample. A thin film processing apparatus.

〔従来の技術〕[Conventional technology]

近年、ECRプラズマを用いたプロセス技術が注目され、
研究開発が進められている。このCVD技術をLSIの微細な
配線の被膜の生成に用いたとき、配線の頂頭部と側壁と
で膜の成長速度や緻密さが異なり、とくに側壁における
膜質が悪い欠点があった。これの対応策として半導体ウ
エハ上に高周波電圧を印加しつつ成膜する方法があり、
この方法を用いると上述の欠点が除去されることが分か
っている。この方法はRFバイアスECRプラズマ法と呼ば
れる。基板にRFバイアス(RFはラジオ周波数13.56MHz)
を印加する方法としては第3図に例示する方法が試みら
れている。すなわち、たとえば乾式薄膜加工装置を構成
する反応槽8内で半導体ウエハ10を載置する水冷のウエ
ハステージ9をRF発生器12とマッチングボックス11とを
介して接地電位に接続し、半導体ウエハの電位を反応槽
に対して高周波数で正,負極性に変化させるものであ
る。他方、LSIの微細化にともないCVDプロセス中に発生
するごみによる歩留りの低下が重要な問題となってきて
いる。とくにRFバイアスECRプラズマ法はサブミクロン
ルールに有効な技術であると考えられるため、ごみの除
去は重要な課題である。
In recent years, process technology using ECR plasma has attracted attention,
Research and development is in progress. When this CVD technique is used to form a fine wiring film of an LSI, the growth rate and the density of the film are different between the top of the wiring and the side wall, and the film quality on the side wall is particularly bad. As a countermeasure to this, there is a method of forming a film on a semiconductor wafer while applying a high frequency voltage,
It has been found that this method eliminates the drawbacks mentioned above. This method is called the RF bias ECR plasma method. RF bias on the substrate (RF is radio frequency 13.56MHz)
The method illustrated in FIG. 3 has been attempted as a method of applying a voltage. That is, for example, a water-cooled wafer stage 9 on which a semiconductor wafer 10 is mounted is connected to a ground potential via an RF generator 12 and a matching box 11 in a reaction tank 8 constituting a dry thin film processing apparatus, and the potential of the semiconductor wafer is Is changed to positive or negative polarity at a high frequency with respect to the reaction tank. On the other hand, with the miniaturization of LSIs, the decrease in yield due to dust generated during the CVD process has become an important issue. In particular, the RF bias ECR plasma method is considered to be an effective technique for the submicron rule, so dust removal is an important issue.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ごみの除去に対しては、従来、ウエハの表面を下方へ向
けて膜成長させることにより、重力の影響によるウエハ
表面へのごみの落下を防止することができ、ごみの付着
が激減することが実験的に知られている。しかし、ウエ
ハ表面を下向きに保持することは、とくに、未処理のウ
エハを収納するロードカセット室からエッチングまたは
成膜加工が施される反応室へウエハを搬送するためのウ
エハ搬送系と、反応室内のウエハ保持部との受渡しが難
しいことか、ウエハ表面を下向きに保持する装置はまだ
実機として完成していない。その理由はつぎの通りであ
る。すなわち、ウエハを真空中で吸着しておく手段とし
て、静電気による吸引力を利用した静電チャックが知ら
れているが、その吸引力は、第4図に示すように、静電
チャックの吸着面とウエハの被吸着面との間のエアギャ
ップとともに激減する。なお、この図における静電チャ
ックは、静電チャックを構成する電極が平板状に形成さ
れて誘電体内に埋め込まれ、その埋込み深さすなわち電
極面上の吸着側絶縁層の厚さを100μmとしたものであ
る。
For removing dust, conventionally, by growing the film on the surface of the wafer downward, it is possible to prevent the dust from falling onto the wafer surface due to the influence of gravity, and the adhesion of dust can be drastically reduced. Known experimentally. However, holding the wafer surface downward is particularly important because the wafer transfer system for transferring wafers from the load cassette chamber that stores unprocessed wafers to the reaction chamber where etching or film formation processing is performed, and the reaction chamber. The device for holding the wafer surface downward is not yet completed as an actual machine, probably because it is difficult to deliver it to the wafer holding part. The reason is as follows. That is, as a means for holding a wafer in a vacuum, an electrostatic chuck utilizing an attractive force of static electricity is known, and the attractive force is as shown in FIG. Drastically decreases with the air gap between the wafer and the surface to be attracted of the wafer. In the electrostatic chuck in this figure, the electrodes forming the electrostatic chuck are formed in a flat plate shape and embedded in the dielectric body, and the embedded depth, that is, the thickness of the adsorption side insulating layer on the electrode surface is 100 μm. It is a thing.

このように、エアギャップによる吸着力の変化が大きい
ため、ウエハ搬送系から静電チャックへのウエハの受渡
しの際、ウエハの静電チャックへの押付けが平等にかつ
十分な接触圧力をもって行われないと吸着に失敗するお
それがある。したがって適当な手段により吸着を十分に
確認してから搬送系を退避させないと、ウエハが落下
し、破損し、そのかけらが容器内に散乱してしまい、こ
れの除去のために装置の分解,清掃が必要となる。この
ようなことがしばしば起こることは当然許されない。
In this way, since the change in the suction force due to the air gap is large, when the wafer is transferred from the wafer transfer system to the electrostatic chuck, the wafer is not uniformly pressed against the electrostatic chuck with sufficient contact pressure. And there is a risk that the adsorption will fail. Therefore, if the transfer system is not evacuated after adequately confirming the adsorption by appropriate means, the wafer will drop and be damaged, and the fragments will be scattered in the container. Is required. Of course, this is often unacceptable.

吸着を確認する手段として、まず、市販の近接センサを
静電チャックに取りつけることが考えられる。しかし、
市販の近接センサには、その構成部材として有機物が使
用されており、一方、ECRプラズマを用いる乾式薄膜加
工装置では、装置の容器内が活性ガスで満ちていて、有
機物はすべて侵されてしまうという問題点がある。
As a means for confirming the adsorption, first, a commercially available proximity sensor may be attached to the electrostatic chuck. But,
Commercially available proximity sensors use organic substances as their constituent members, while in dry thin-film processing equipment that uses ECR plasma, the inside of the equipment container is filled with active gas, and all organic matter is attacked. There is a problem.

この発明の目的は、活性ガス中におけるウエハの吸着状
態の確認を、材質上の問題を生じることなく可能ならし
める乾式薄膜加工装置の構成を提供することである。
An object of the present invention is to provide a structure of a dry thin film processing apparatus which enables confirmation of a state of adsorption of a wafer in an active gas without causing a problem in a material.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、この発明によれば、ほぼ
一平面内に複数の電極が対をなして配され各対の電極が
直流電源から互いに異なる極性に課電されるとともにこ
の課電時に前記平面にほぼ平行に接近した平板状試料を
静電的に吸着,保持する静電チャックを備え、ECRプラ
ズマを用いて前記平板状試料の反吸着面側にエッチング
または成膜加工を施す乾式薄膜加工装置において、前記
各対の電極に高周波電圧を同時に供給可能な高周波電源
と、この高周波電源から出力される高周波電流を測定す
る電流計測手段を備え、且つ、静電チャックの各対の電
極に対する直流電源からの課電は、該電源側に配された
高抵抗と前記電極側に配されたインダクタンスとを直列
に介して行われるとともに、高周波電源からの前記各対
の電極間への高周波電圧の供給は、前記高抵抗とインダ
クタンスとの接続点に高周波電源をコンデンサを介して
接続することにより行われるとともに、このコンデンサ
の静電容量と前記静電チャックと平板状試料とが形成す
る静電容量との合成の静電容量が前記高周波電源の周波
数において前記インダクタンスと直列共振状態となるよ
うに設定されているものとする。
In order to achieve the above object, according to the present invention, a plurality of electrodes are arranged in a pair in substantially one plane, and the electrodes of each pair are applied with different polarities from a DC power supply and Sometimes it is equipped with an electrostatic chuck that electrostatically attracts and holds a flat plate sample that is nearly parallel to the plane, and uses an ECR plasma to etch or form a film on the side opposite to the flat plate sample. The thin film processing apparatus includes a high-frequency power source capable of simultaneously supplying a high-frequency voltage to the electrodes of each pair, and current measuring means for measuring a high-frequency current output from the high-frequency power source. The power supply from the DC power source is performed through the high resistance arranged on the power source side and the inductance arranged on the electrode side in series, and the high frequency from the high frequency power source between the pair of electrodes. The pressure is supplied by connecting a high-frequency power source to a connection point between the high resistance and the inductance via a capacitor, and at the same time, the capacitance of the capacitor, the static chuck formed by the electrostatic chuck, and the flat sample are formed. It is assumed that the combined capacitance with the capacitance is set to be in series resonance with the inductance at the frequency of the high frequency power supply.

〔作用〕[Action]

このような装置の構成は、静電チャックにウエハが十分
に吸着された場合と、静電チャックとウエハとの接触が
不完全もしくは接触圧力が小さい場合とで、静電チャッ
クとウエハとの間に形成されるコンデンサの静電容量が
顕著に異なるという実験結果に基づいてなされたもので
あり、すべての対の電極間に同時に電圧を供給可能な容
量を有する高周波電源から高周波電流を供給し、この供
給された電流を計測することにより、静電チャックにウ
エハが十分に吸着されているか否かを確認することが可
能になる。以下に実験結果の一例につき説明する。
Such an apparatus is configured such that the electrostatic chuck and the wafer are sufficiently attracted to each other and the electrostatic chuck and the wafer are incompletely contacted with each other or the contact pressure is small. It was made based on the experimental results that the capacitance of the capacitors formed in the is significantly different, supply a high-frequency current from a high-frequency power source having a capacity capable of simultaneously supplying a voltage between all pairs of electrodes, By measuring the supplied current, it becomes possible to confirm whether or not the wafer is sufficiently attracted to the electrostatic chuck. An example of the experimental result will be described below.

第5図は静電チャックとウエハとが非接触のとき、すな
わちここでは静電チャックの吸着面とウエハの被吸着面
との間のエアギャップが5mmのとき、静電チャックとウ
エハとの間に形成されているコンデンサに印加される高
周波電源の電圧とこの電源からこのコンデンサに供給さ
れる高周波電流との関係を示すオシログラムである。こ
のオシログラムにおいて振幅の大きい方が電圧であり、
小さい方が電流であって目盛りは電圧が1目盛り当り5
V,電流が0.5mA,時間軸が2μsに設定されている。ま
た、当然のことながら、電流は電圧よりも位相が90゜進
んでいる。このオシログラムから静電チャックとウエハ
との間に形成されているコンデンサの静電容量を求める
と8pFとなる。
FIG. 5 shows the relationship between the electrostatic chuck and the wafer when the electrostatic chuck and the wafer are not in contact with each other, that is, when the air gap between the attracting surface of the electrostatic chuck and the attracted surface of the wafer is 5 mm. 3 is an oscillogram showing the relationship between the voltage of the high frequency power source applied to the capacitor formed in and the high frequency current supplied from this power source to this capacitor. In this oscillogram, the one with the larger amplitude is the voltage,
The smaller one is the current, and the scale has a voltage of 5 per scale.
V, current is set to 0.5mA and time axis is set to 2μs. Also, of course, the current leads the voltage by 90 ° in phase. The capacitance of the capacitor formed between the electrostatic chuck and the wafer is calculated from this oscillogram to be 8 pF.

第6図は静電チャックとウエハとが無荷重で接触してい
るときのオシログラムを示し、振幅の大きい方が電圧,
小さい方が電流であり、また目盛りの設定も第5図と同
じである。このオシログラムから静電容量を求めると15
pFとなる。
FIG. 6 shows an oscillogram when the electrostatic chuck and the wafer are in contact with each other with no load.
The smaller one is the current, and the setting of the scale is the same as in FIG. If the capacitance is calculated from this oscillogram, it is 15
It becomes pF.

第7図は静電チャックとウエハとが十分な圧力で接触し
ている場合を示し、ここでは振幅の小さい方が電圧,大
きい方が電流である。このオシログラムから静電容量を
求めると146pFとなり、上記第5図,第6図の場合の静
電容量8pF,15pFと比較して顕著に大きくなる。なお、こ
の実験において使用した静電チャックは、誘電体内に埋
め込まれた円板状電極の直径が10cm、電極面の吸着側埋
込み深さが100μmのものである。
FIG. 7 shows a case where the electrostatic chuck and the wafer are in contact with each other with a sufficient pressure. Here, the smaller amplitude is the voltage and the larger amplitude is the current. The capacitance obtained from this oscillogram is 146 pF, which is significantly larger than the capacitances of 8 pF and 15 pF in the cases of FIGS. 5 and 6 above. The electrostatic chuck used in this experiment had a disk-shaped electrode embedded in a dielectric body having a diameter of 10 cm and an electrode-side embedded depth of 100 μm on the adsorption side.

このように、一見同じように吸着されているように見え
ても、無荷重で辛うじて接触している場合と、十分な圧
力で接触している場合とでコンデンサの静電容量が顕著
に変化する。従って高周波電圧をこのコンデンサに印加
し、その際にコンデンサに流れる高周波電流の大きさを
計測することにより、吸着状態の良否を判別することが
容易に可能となる。
In this way, even if they seem to be adsorbed in the same way at first glance, the capacitance of the capacitor remarkably changes depending on whether they are barely contacting with no load or contacting with sufficient pressure. . Therefore, by applying a high-frequency voltage to this capacitor and measuring the magnitude of the high-frequency current flowing through the capacitor at that time, it is possible to easily determine whether the adsorption state is good or bad.

〔実施例〕〔Example〕

第1図に本発明の一実施による乾式薄膜加工装置の構成
を示す。ECRプラズマの発生方法は従来と同じであり、
プラズマ室4の内部に、外部に配した磁気ソレノイド3
によって静磁場を発生させておき、導波管1により導い
たマイクロ波をマイクロ波窓2を通して送りこむ。プラ
ズマガス導入管路6を介してN2,O2などのガスを流す
と、プラズマ室4内にそれぞれのガスに応じたプラズマ
が発生し、磁気拡散効果によってこのプラズマが反応槽
8内に流出する。反応槽にシランなどの成膜原料ガスを
流すことにより、プラズマと原料ガスとの相互作用によ
り生じたイオンや活性種がウエハ表面で反応して窒化膜
や酸化膜等を形成することができる。
FIG. 1 shows the structure of a dry thin film processing apparatus according to an embodiment of the present invention. ECR plasma generation method is the same as before,
Inside the plasma chamber 4, a magnetic solenoid 3 placed outside
A static magnetic field is generated in advance, and the microwave guided by the waveguide 1 is sent through the microwave window 2. When a gas such as N 2 or O 2 is flown through the plasma gas introducing pipe 6, plasma corresponding to each gas is generated in the plasma chamber 4, and the plasma flows out into the reaction tank 8 due to the magnetic diffusion effect. To do. By flowing a film forming material gas such as silane into the reaction tank, ions and active species generated by the interaction between the plasma and the material gas react on the wafer surface to form a nitride film, an oxide film, or the like.

第1図の装置が従来と異なるところは、装置の配置を従
来と上下逆とするとともに、水冷ステージ9に静電チャ
ック13をその吸着面が重力方向下向きとなるように固定
した点である。この静電チャック13は、第2図に示すよ
うに、一平面内に配されて対をなす半円形状の板状電極
33,34をそれぞれ電極端子36,37とともに酸化アルミニウ
ムいわゆるアルミナからなる誘電体中に埋め込んでなる
円板状のものであり、この埋め込まれた板状電極33,34
のそれぞれの電極端子36,37からは電極リード38,39が引
き出されている。この電極リード38,39は、第1図に示
すように、0.1mHオーダのインダクタンスLとMΩオー
ダの高抵抗Rとを介して直流電源18に接続され、この直
流電源から静電チャックの電極33,34間にkVオーダの電
圧が供給されている。また、電極リード38,39はそれぞ
れコンデンサC2を介した後、共通にマッチング回路11を
介してRF発生器12の一方の端子に接続されるとともにRF
発生器の他方の端子は接地電位ならびに反応槽8に接続
されている。直流電源18とRF発生器12とをこのように接
続することにより、直流電源の電圧はコンデンサC2に遮
られかつC2の出口側すなわち図の右側は短絡されている
からRF発生器には全く侵入せず、また、RF発生器のラジ
オ周波数電圧は高抵抗Rを介しかつ同極性で直流電源の
両端子に印加されるから、直流電源には全く影響を及ぼ
さない。そして、直流電源側に接続された高抵抗Rとイ
ンダクタンスLとの接続点には、本発明による高周波電
源14がコンデンサC1と電流計測手段15とを介して接続さ
れている。
The apparatus of FIG. 1 is different from the conventional one in that the arrangement of the apparatus is upside down and the electrostatic chuck 13 is fixed to the water-cooled stage 9 so that its suction surface faces downward in the gravity direction. This electrostatic chuck 13 is, as shown in FIG. 2, a semicircular plate electrode arranged in a plane and forming a pair.
A disk-shaped electrode 33, 34 is embedded together with electrode terminals 36, 37 in a dielectric made of aluminum oxide, so-called alumina.
Electrode leads 38 and 39 are drawn out from the respective electrode terminals 36 and 37. As shown in FIG. 1, the electrode leads 38 and 39 are connected to a DC power source 18 via an inductance L of the order of 0.1 mH and a high resistance R of the order of MΩ, and the electrodes 33 of the electrostatic chuck are connected from this DC power source. A voltage on the order of kV is supplied between the and 34. Further, the electrode leads 38 and 39 are respectively connected to one terminal of the RF generator 12 via the matching circuit 11 after passing through the capacitor C 2 and RF
The other terminal of the generator is connected to ground potential and to the reaction vessel 8. By connecting the DC power source 18 and the RF generator 12 in this way, the voltage of the DC power source is blocked by the capacitor C 2 and the outlet side of C 2 , that is, the right side of the figure is short-circuited, so that the RF generator is It does not enter at all, and since the radio frequency voltage of the RF generator is applied to both terminals of the DC power supply through the high resistance R and with the same polarity, it does not affect the DC power supply at all. A high frequency power supply 14 according to the present invention is connected to a connection point between the high resistance R and the inductance L connected to the DC power supply side via a capacitor C 1 and a current measuring means 15.

高周波電源14の周波数は、本実施例では、100KHzのオー
ダに設定され、コンデンサC1の静電容量と静電チャック
とウエハとが形成する静電容量との合成の静電容量はこ
の周波数においてインダクタンスLと直流共振状態とな
る大きさ近くに設定されている。これにより、測定感度
が著しく向上するメリットが得られる。
The frequency of the high frequency power supply 14 is set to the order of 100 KHz in this embodiment, and the combined capacitance of the capacitance of the capacitor C 1 and the capacitance formed by the electrostatic chuck and the wafer is at this frequency. It is set to a value close to the inductance L and a DC resonance state. This has the advantage of significantly improving the measurement sensitivity.

なお、高周波電源14と直流電源18とは高抵抗Rとコンデ
ンサC1とを介して接続されているから、直流電源の電圧
はコンデンサC1に遮られて高周波電源には侵入せず、高
周波電源の電圧は高抵抗Rにより直流電源に向かう電流
を抑制されて実質的な影響を直流電源に与えない。ま
た、高周波電源14からRF発生器12へ向かう電圧はコンデ
ンサC2の右側で短絡され、RF発生器12から高周波電源14
へ向かう電圧は同極性で高周波電源の両端子に印加され
るから、高周波電源14とRF発生器12とは互いに影響を及
ぼさない。従って、直流電源18とRF発生器12とを接続し
たままで、すなわち装置を運転状態に維持したままでこ
れらの電源に影響されることなく高周波電源14から流出
する電流すなわち静電チャック13とウエハ10との間に形
成さるコンデンサを通過する電流を計測することが可能
である。
Since the high frequency power supply 14 and the direct current power supply 18 are connected via the high resistance R and the capacitor C 1 , the voltage of the direct current power supply is not blocked by the capacitor C 1 and does not enter the high frequency power supply. The high resistance R suppresses the current flowing to the DC power supply, and does not substantially affect the DC power supply. Further, the voltage from the high frequency power supply 14 to the RF generator 12 is short-circuited on the right side of the capacitor C 2 , and the RF generator 12 outputs a high frequency power supply 14
Since the voltage going to the same polarity is applied to both terminals of the high frequency power supply, the high frequency power supply 14 and the RF generator 12 do not influence each other. Therefore, with the DC power supply 18 and the RF generator 12 connected, that is, with the device kept in an operating state, the current flowing out of the high frequency power supply 14 without being affected by these power supplies, that is, the electrostatic chuck 13 and the wafer. It is possible to measure the current passing through the capacitor formed between 10 and.

従ってこのように構成された装置の操作はつぎのように
行われる。まず、プラズマ発生の準備が整ったら反応室
8に設けられた,図示されないゲートバルブを開き、ロ
ードロック室に待機させた搬送系統を反応室内に導入
し、搬送系統によって反応槽内に運ばれたウエハを搬送
系統のメカニズムにより静電チャック13の吸着面に押し
付ける。この状態で直流電源18の電圧を、図示されない
スイッチをオンすることにより静電チャックの電極同志
の間に印加する。このとき押付けが正常であればウエハ
は静電チャックに吸着され、押付けが不十分であれば吸
着されない。そこで、高周波電源14の電圧を、図示され
ない該電源出口のスイッチをオンすることにより静電チ
ャックの各電極とウエハとの間に形成されているコンデ
ンサに印加し、コンデンサを通過する電流を電流計測手
段15を用いて計測する。電流計測手段15が十分な電流を
計測し、ウエハの吸着が確認されたら電源出口のスイッ
チをオフし、ウエハを押し付けている搬送系統のメカニ
ズムを解除し、搬送系統を反応槽からロードロック室に
退避させてゲートバルブを閉じることにより成膜の準備
が整う。
Therefore, the operation of the apparatus configured as described above is performed as follows. First, when the preparation for plasma generation is completed, a gate valve (not shown) provided in the reaction chamber 8 is opened, and a carrier system waiting in the load lock chamber is introduced into the reaction chamber, and is carried into the reaction tank by the carrier system. The wafer is pressed against the attraction surface of the electrostatic chuck 13 by the mechanism of the transfer system. In this state, the voltage of the DC power supply 18 is applied between the electrodes of the electrostatic chuck by turning on a switch (not shown). At this time, if the pressing is normal, the wafer is attracted to the electrostatic chuck, and if the pressing is insufficient, it is not attracted. Therefore, the voltage of the high-frequency power source 14 is applied to a capacitor formed between each electrode of the electrostatic chuck and the wafer by turning on a switch at the power source outlet (not shown), and the current passing through the capacitor is measured as a current. Measure using the means 15. The current measuring means 15 measures a sufficient current, and when the adsorption of the wafer is confirmed, the power outlet switch is turned off, the mechanism of the transfer system pressing the wafer is released, and the transfer system is moved from the reaction tank to the load lock chamber. Preparation for film formation is completed by retracting and closing the gate valve.

特にLSIなどの微細な細線被膜の膜質を向上させるため
にRFバイアスをウエハに印加するような場合には、RF発
生器12に設けられた図示されないスイッチをオンするこ
とにより静電チャックの電極すべてにラジオ周波数電圧
を同極性で与えると、この電極とウエハとの間に形成さ
れた,比較的静電容量の大きいコンデンサと、ウエハと
反応槽との間に形成される,比較的静電容量の小さいコ
ンデンサとによりRFバイアス電圧が分圧電され、反応槽
に対しほぼフルにRFバイアスがウエハに印加される。
Especially when an RF bias is applied to the wafer in order to improve the film quality of a fine fine wire coating such as LSI, all electrodes of the electrostatic chuck are turned on by turning on a switch (not shown) provided in the RF generator 12. When a radio frequency voltage is applied to the electrodes with the same polarity, a capacitor with a relatively large capacitance formed between this electrode and the wafer and a relatively large capacitance formed between the wafer and the reaction tank The RF bias voltage is piezoelectrically divided by the capacitor having a small value, and the RF bias is applied to the wafer almost completely with respect to the reaction tank.

なお、このようにRFバイアスが印加されると、プラズマ
と交流との相互作用によりよく知られたセルフバイアス
電圧がウエハ表面に発生する。この電圧は負極性の直流
電圧であるから、直流電源18の正極性端子に接続された
静電チャックの電極位置ではウエハに対する吸引力が強
くなり、負極性端子に接続された電極位置では吸引力が
弱められることになるが、実用上害はない。
When the RF bias is applied in this manner, a well-known self-bias voltage is generated on the wafer surface due to the interaction between plasma and alternating current. Since this voltage is a negative DC voltage, the attracting force on the wafer becomes strong at the electrode position of the electrostatic chuck connected to the positive terminal of the DC power supply 18, and the attractive force at the electrode position connected to the negative terminal. Will be weakened, but there is no practical harm.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明によれば、ほぼ一平面内に
複数の電極が対をなして配され各対の電極が直流電源か
ら互いに異なる極性に課電されるとともにこの課電時に
前記平面にほぼ平行に接近した平板状試料を静電的に吸
着,保持する静電チャックを備え、ECRプラズマを用い
て前記平板状試料の反吸着面側にエッチングまたは成膜
加工を施す乾式薄膜加工装置において、平板状試料に対
する吸着が十分に行われている場合と、吸着が不十分な
場合たとえば平板状試料が辛うじて静電チャックの吸着
面に接触しているに過ぎない程度の吸着のされ方の場合
とでは、静電チャックと平板状試料との間に形成される
コンデンサの静電容量が顕著に異なるという実験結果に
基づき、乾式薄膜加工装置に、上記の構成を採用した結
果、薄膜加工に先立つ平板状試料の吸着時に、前記高周
波電源を前記各対の電極に接続し、静電チャックと平板
状試料との間に形成されるコンデンサを流れる電流すな
わち高周波電源から出力される高周波電流を計測するこ
とにより吸着状態の良否を容易に判別することができ、
従来のように、静電チャックが存在する活性ガス中に近
接センサのような,有機物を構成部材として有する判別
手段の装着を必要とすることなく静電チャックの吸着面
を重力方向下向きとした装置が可能となる結果、ごみの
付着の少ない成膜が可能となり、この装置を用いて加工
された平板状試料を組み込んだデバイスの歩留りや信頼
性が著しく向上する効果が得られる。
As described above, according to the present invention, a plurality of electrodes are arranged in a pair in a substantially one plane, and the electrodes of each pair are applied with different polarities from the DC power supply, Equipped with an electrostatic chuck that electrostatically adsorbs and holds a flat plate sample that is nearly parallel to the flat surface, and uses an ECR plasma to perform dry etching or film formation on the non-adsorbed surface side of the flat plate sample. In the device, when adsorption to the flat plate sample is sufficient and when adsorption is insufficient, for example, how the flat plate sample is barely in contact with the adsorption surface of the electrostatic chuck. Based on the experimental result that the electrostatic capacitance of the capacitor formed between the electrostatic chuck and the flat plate sample is significantly different from the case of, the result of adopting the above configuration in the dry thin film processing device is Prior to At the time of adsorption of the flat plate-shaped sample, the high-frequency power source is connected to the electrodes of each pair, and the current flowing through the capacitor formed between the electrostatic chuck and the flat-plate sample, that is, the high-frequency current output from the high-frequency power source is measured. By doing so, it is possible to easily determine the quality of the suction state,
An apparatus in which the adsorption surface of the electrostatic chuck is directed downward in the direction of gravity without the need to attach a discrimination unit having an organic substance as a constituent member such as a proximity sensor in the active gas in which the electrostatic chuck exists, unlike the conventional device. As a result, it becomes possible to form a film with less dust adhesion, and it is possible to obtain an effect of significantly improving the yield and reliability of a device incorporating a flat plate sample processed by using this apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による乾式薄膜加工装置の構
成を示す説明図、第2図は第1図に示す静電チャックま
わりの詳細構成図であって、(a)は正面断面図、
(b)は平面図、第3図は特にLSIを対象とした乾式薄
膜加工装置の従来の構成例を示す説明断面図、第4図は
静電チャックの吸着面とウエハの被吸着面との間のエア
ギャップと吸着力との関係を示す線図、第5図は静電チ
ャックの吸着面とウエハの被吸着面との間にエアギャッ
プが存在するときの、静電チャックを構成する電極とウ
エハとの間に形成されるコンデンサに印加される高周波
電圧とこの電圧のもとでコンデンサを通過する高周波電
流とのそれぞれの波形を示すオシログラム、第6図は静
電チャックの吸着面とウエハの被吸着面とが辛うじて接
触している,無接触圧力時の高周波電圧,電流のそれぞ
れの波形を示すオシログラム、第7図は静電チャックの
吸着面とウエハの被吸着面とが十分な接触圧力のもとに
接触しているときの高周波電圧,電流のそれぞれの波形
を示すオシログラムである。 1:導波管、3:磁気ソレノイド、4:プラズマ室、6:プラズ
マガス導入管路、7:成膜原料ガス導入管路、8:反応槽、
10:ウエハ(平板状試料)、13:静電チャック、14:高周
波電源、15:電流計測手段、18:直流電源、33,34:電極、
R:高抵抗、L:インダクタンス、C1:コンデンサ。
FIG. 1 is an explanatory view showing the constitution of a dry type thin film processing apparatus according to an embodiment of the present invention, FIG. 2 is a detailed constitution view around an electrostatic chuck shown in FIG. 1, and FIG. ,
(B) is a plan view, FIG. 3 is an explanatory cross-sectional view showing a conventional configuration example of a dry thin film processing apparatus especially for LSI, and FIG. 4 is a view showing an attracting surface of an electrostatic chuck and an attracted surface of a wafer. FIG. 5 is a diagram showing the relationship between the air gap and the attraction force between the electrodes, and FIG. 5 is an electrode constituting the electrostatic chuck when an air gap exists between the attraction surface of the electrostatic chuck and the attraction surface of the wafer. Fig. 6 is an oscillogram showing the waveforms of the high-frequency voltage applied to the capacitor formed between the capacitor and the wafer, and the high-frequency current passing through the capacitor under this voltage. The oscillograms showing the waveforms of the high-frequency voltage and the current at the time of no contact pressure, which barely make contact with the surface to be attracted, and Fig. 7 shows sufficient contact between the surface to be attracted of the electrostatic chuck and the surface to be attracted of the wafer. When in contact with pressure Frequency voltage, a oscillogram showing the respective waveforms of the current. 1: Waveguide, 3: Magnetic solenoid, 4: Plasma chamber, 6: Plasma gas introduction line, 7: Film forming material gas introduction line, 8: Reaction tank,
10: Wafer (flat sample), 13: Electrostatic chuck, 14: High frequency power supply, 15: Current measuring means, 18: DC power supply, 33, 34: Electrodes,
R: high resistance, L: inductance, C 1: the capacitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ほぼ一平面内に複数の電極が対をなして配
され各対の電極が直流電源から互いに異なる極性に課電
されるとともにこの課電時に前記平面にほぼ平行に接近
した平板状試料を静電的に吸着,保持する静電チャック
を備え、ECRプラズマを用いて前記平板状試料の反吸着
面側にエッチングまたは成膜加工を施す乾式薄膜加工装
置において、前記各対の電極間に高周波電圧を供給可能
な高周波電源と、この高周波電源から出力される高周波
電流を測定する電流計測手段を備え、且つ、静電チャッ
クの各対の電極に対する直流電源からの課電は、該電源
側に配された高抵抗と前記電極側に配されたインダクタ
ンスとを直列に介して行われるとともに、高周波電源か
らの前記各対の電極間への高周波電圧の供給は、前記高
抵抗とインダクタンスとの接続点に高周波電源をコンデ
ンサを介して接続することにより行われるとともに、こ
のコンデンサの静電容量と前記静電チャックと平板状試
料とが形成する静電容量との合成の静電容量が前記高周
波電源の周波数において前記インダクタンスと直列共振
状態となるように設定されていることを特徴とする乾式
薄膜加工装置。
1. A flat plate in which a plurality of electrodes are arranged in pairs in substantially one plane, and the electrodes of each pair are charged with different polarities from a DC power source and, at the time of this voltage application, are approached substantially parallel to the plane. Electrode of each pair in a dry thin film processing apparatus that is equipped with an electrostatic chuck that electrostatically attracts and holds a flat sample, and uses an ECR plasma to perform etching or film formation processing on the side opposite to the suction surface of the flat sample. A high-frequency power supply capable of supplying a high-frequency voltage and a current measuring means for measuring a high-frequency current output from the high-frequency power supply are provided, and the charging from the DC power supply to each pair of electrodes of the electrostatic chuck is performed by The high resistance arranged on the power supply side and the inductance arranged on the electrode side are connected in series, and the high frequency voltage is supplied from the high frequency power supply between the pair of electrodes to the high resistance and the inductor. The This is done by connecting a high frequency power source to the connection point with a capacitor via a capacitor, and the combined capacitance of the electrostatic capacitance of this capacitor and the electrostatic capacitance formed by the electrostatic chuck and the flat sample is The dry thin film processing apparatus is set so as to be in series resonance with the inductance at the frequency of the high frequency power supply.
JP62255973A 1987-10-09 1987-10-09 Dry thin film processing equipment Expired - Fee Related JPH0691024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255973A JPH0691024B2 (en) 1987-10-09 1987-10-09 Dry thin film processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255973A JPH0691024B2 (en) 1987-10-09 1987-10-09 Dry thin film processing equipment

Publications (2)

Publication Number Publication Date
JPH0198218A JPH0198218A (en) 1989-04-17
JPH0691024B2 true JPH0691024B2 (en) 1994-11-14

Family

ID=17286141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255973A Expired - Fee Related JPH0691024B2 (en) 1987-10-09 1987-10-09 Dry thin film processing equipment

Country Status (1)

Country Link
JP (1) JPH0691024B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651597B2 (en) * 1988-06-27 1997-09-10 富士通株式会社 Dry etching method and apparatus
JPH02246327A (en) * 1989-03-20 1990-10-02 Fujitsu Ltd Semiconductor manufacturing equipment
JP2008277275A (en) * 2007-03-30 2008-11-13 Tokyo Electron Ltd Plasma treatment device, measuring apparatus, measuring method, and control device
KR101390444B1 (en) * 2010-03-26 2014-04-30 가부시키가이샤 알박 Substrate holding device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979545A (en) * 1982-10-29 1984-05-08 Toshiba Corp Electrostatic chucking device
JPS60110133A (en) * 1983-01-24 1985-06-15 Toshiba Corp Fault checking apparatus in electrostatic chuck

Also Published As

Publication number Publication date
JPH0198218A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US6373681B2 (en) Electrostatic chuck, and method of and apparatus for processing sample using the chuck
US7541283B2 (en) Plasma processing method and plasma processing apparatus
KR0184296B1 (en) Method of removing substrate and apparatus for controlling applied voltage
JPH10150100A (en) Electrostatic chuck, method and system for processing sample using it
KR20000006443A (en) Etching method, cleaning method, plasma processing unit and matching circuit
JPH08236602A (en) Electrostatic chuck
JP4484883B2 (en) Method for treating adsorbed material
TWI612611B (en) Sample detachment method and plasma processing device
JP6462283B2 (en) Plasma processing equipment
JP3230821B2 (en) Electrostatic chuck with pusher pin
JPH09213778A (en) Semiconductor wafer processor and semiconductor wafer processing method
EP0790642A2 (en) Method and apparatus for removing contaminant particles from surfaces in semiconductor processing equipment
JP2007324154A (en) Plasma treating apparatus
JP2976861B2 (en) Electrostatic chuck and method of manufacturing the same
JP2002203837A (en) Plasma treatment method and apparatus, and manufacturing method of semiconductor device
JPH0691024B2 (en) Dry thin film processing equipment
JPH1027780A (en) Plasma treating method
JP3733448B2 (en) Plasma processing method and apparatus, substrate desorption method, and applied voltage control apparatus
JP3913355B2 (en) Processing method
JP4579206B2 (en) Detachment state determination method and vacuum processing apparatus
US20030150123A1 (en) Gap gauge
JPH0982787A (en) Plasma treating apparatus and method
JPH0786383A (en) Electrostatic device and method therefor
US20220102120A1 (en) Operating method of etching device
JPH0198217A (en) Dry type thin-film processing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees