JPH0691005A - Catheter - Google Patents
CatheterInfo
- Publication number
- JPH0691005A JPH0691005A JP4245327A JP24532792A JPH0691005A JP H0691005 A JPH0691005 A JP H0691005A JP 4245327 A JP4245327 A JP 4245327A JP 24532792 A JP24532792 A JP 24532792A JP H0691005 A JPH0691005 A JP H0691005A
- Authority
- JP
- Japan
- Prior art keywords
- catheter
- softening
- softening portion
- temperature
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、医療器具のカテーテル
及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical device catheter and a method for manufacturing the same.
【0002】[0002]
【従来の技術】カテーテルは体腔または管状器官より体
液や薬剤の排出、注入のために使用される器具であっ
た。近年、カテーテルの高機能化が進み、例えば、血管
の狭窄部を拡張する経皮的血管形成術に用いられる血管
拡張用バルーンカテーテル、導尿と膀胱温測定が同時に
行える温度センサー付き導尿バルーンカテーテル、心臓
の内部に留置し心拍出量測定に用いられるサーモダイリ
ューションカテーテル、動注療法や血管造影を行うため
の血管内処理診断用カテーテル等の応用がなされてい
る。これらのカテーテルは上記以外にも種々の応用が試
みられている。そして今やすべての臓器、体腔、管状器
官に適用されようとしている。2. Description of the Related Art A catheter is a device used for discharging and injecting a body fluid or drug from a body cavity or tubular organ. In recent years, functionalization of catheters has advanced, and for example, a vascular dilatation balloon catheter used for percutaneous angioplasty to dilate a narrowed portion of a blood vessel, a urinary balloon catheter with a temperature sensor capable of simultaneous urination and bladder temperature measurement. , A thermodilution catheter that is placed inside the heart and used for measuring cardiac output, and an intravascular diagnostic catheter for performing intraarterial injection therapy and angiography have been applied. Various applications other than those described above have been attempted for these catheters. It is now being applied to all organs, body cavities and tubular organs.
【0003】これまで、心臓や脳の手術では開胸・開頭
等を必要とする大がかりな手術が必要で、手術そのもの
よりも、むしろ術後の回復が成否の鍵を握っていた。前
記、高機能カテーテルを用いた手技では開胸・開腹・開
頭等人体を切り刻むようなことはなく、肉体的侵虐性の
低い診断・治療が可能になってきている。Up to now, a large-scale operation that requires thoracotomy, craniotomy, and the like has been required for heart and brain surgery, and postoperative recovery rather than surgery itself has been the key to success. With the above-mentioned technique using a high-performance catheter, it is possible to perform diagnosis and treatment with low physical aggression without cutting the human body such as thoracotomy, laparotomy, and craniotomy.
【0004】従って、大がかりな手術を必要としないた
め以下の利点を有する。例えば、患者の術中・術後の苦
痛の低減。術後の早期回復・早期社会復帰。肉体的損傷
が少く、精神的負担が少ない。経済的負担の軽減。など
である。従って、今後、カテーテルを用いた診断・治療
法はますます発展するものと考えられる。Therefore, there is the following advantage because no major surgery is required. For example, reduction of patient's intraoperative and postoperative pain. Early recovery and early social return after surgery. Less physical damage and less mental burden. Reduction of financial burden. And so on. Therefore, it is expected that diagnostic and therapeutic methods using catheters will continue to develop in the future.
【0005】診断・治療用のカテーテルは、例えば、血
管内を進み目的病変部に達し狭窄部の拡張を行ったり、
薬剤の注入等を行ったり、温度や圧力等の測定を行った
りして目的を達成するものである。従って、基本的に求
められる機能は消化器、循環器、呼吸器、臓器への到達
の容易性である。目的部位への到達の手段としては血
管、消化管、リンパ管、気道、尿道、その他の体腔ある
いは組織への挿入・走行がある。体内へのカテーテルの
挿入・走行に於いて重要な性能としては屈曲面に対する
追従性があること(トラッカビリィティ)、カテーテル
を押し込み進め易いこと(プッシャビリィティ)等が要
求される。また、生体組織を傷つけない柔らかさも要求
される。トラッカビリィティはカテーテルの柔軟性が大
きく左右し、プッシャビリィティはカテーテルの剛性に
左右されると考えられている。即ち、カテーテルの挿通
性の良さを左右する固さと柔らかさという相反する性質
を両立させることが望まれている。[0005] A catheter for diagnosis and treatment, for example, advances in a blood vessel to reach a target lesion and expands a stenosis,
The purpose is achieved by injecting a drug and measuring the temperature and pressure. Therefore, the basically required function is easy access to the digestive system, circulatory system, respiratory system and organs. Means for reaching the target site include insertion / running into blood vessels, digestive tracts, lymphatic vessels, respiratory tracts, urethra, and other body cavities or tissues. When inserting and running the catheter into the body, it is important that the performance is such that it follows the curved surface (trackability) and that the catheter can be easily pushed in (pushability). In addition, softness that does not damage living tissues is also required. It is considered that the trackability depends on the flexibility of the catheter, and the pusher ability depends on the rigidity of the catheter. That is, it is desired to achieve both the contradictory properties of hardness and softness that influence the good insertability of the catheter.
【0006】従来、トラッカビリィティ及びプッシャビ
リィティを改善し、カテーテルの挿通性を向上させる為
にいくつかの試みがなされていた。[0006] In the past, several attempts have been made to improve the tracker and pusher bilities and to improve the catheter insertability.
【0007】例えば、米国特許第4976690号では
素材にポリエチレンを用いカテーテルの基部と先端部で
径を次第に細く異径化したもの。このカテーテルは先端
に行くほどチューブ径が細くなっているので先端側は柔
軟でトラッカビリィティに優れ、しかも、基部側はチュ
ーブ径が太いので剛性が確保されプッシャビリィティに
優れる。しかしながら、異径化カテーテルは製造方法が
複雑であり、また、実用上、段差部分で折れ易いことが
指摘されていた。即ち、段差部でチューブ強度が極端に
異なるため、応力集中を受け易く、結果として耐キンク
性が劣るという問題点がある。中空構造物の曲げ強度は
断面の二次モーメントと素材の弾性率の積に比例する訳
であるが、この例の様に断面形状の大きさで柔軟性をコ
ントロールした場合、カテーテル強度が段差部で急激に
変化するため段差部への応力集中は避けられない。同じ
ことは、径の異なるチューブを繋ぎ合わせた場合も同様
である。For example, in US Pat. No. 4,976,690, polyethylene is used as a material, and the diameter is gradually reduced to be different between the base portion and the tip portion of the catheter. This catheter has a smaller tube diameter as it goes to the tip, so the tip side is flexible and has excellent trackability, and the base side has a larger tube diameter, which ensures rigidity and pusherability. However, it has been pointed out that the catheter having a different diameter has a complicated manufacturing method and is apt to be broken at the step portion in practical use. That is, since the tube strength is extremely different at the step portion, stress concentration is likely to occur, resulting in poor kink resistance. The bending strength of a hollow structure is proportional to the product of the moment of inertia of the cross section and the elastic modulus of the material. When the flexibility is controlled by the size of the cross section as in this example, the catheter strength is The stress concentration on the step is inevitable because it changes abruptly. The same is true when tubes with different diameters are connected.
【0008】また、米国特許第4775371号では素
材として高密度ポリエチレンを用い細径化したカテーテ
ル先端部に柔軟な低密度ポリエチレンを被覆し、基部側
と先端側でチューブ径が同一でありながら、先端部のみ
を柔軟化したものなどがある。この場合、異径化カテー
テルの製造及び細径部への樹脂被覆という複雑な製造工
程を必要とし、しかも、細径部に被覆した柔軟層の接着
不良による剥離を生じ易いという問題点がある。[0008] In US Pat. No. 4,775,371, a high-density polyethylene is used as a material, and the diameter of the catheter is reduced, and a flexible low-density polyethylene is coated on the tip of the catheter. There are things that only the department is made flexible. In this case, there is a problem that a complicated manufacturing process of manufacturing a catheter having a different diameter and coating a resin on the small diameter portion is required, and that the flexible layer covering the small diameter portion is likely to be peeled off due to poor adhesion.
【0009】上記、二つの先行技術に見られるようにカ
テーテル先端部の柔軟化はトラッカビリィティ−向上・
プッシャビリィティ確保に効果が認められ、上記問題点
は存在するものの実用化されている。しかし、傾斜的に
柔軟化を達成する技術はいまだ提案されていない。As seen in the above-mentioned two prior arts, the softening of the catheter tip portion improves the trackability.
It has been confirmed that it is effective in ensuring pushability, and although the above problems exist, it has been put to practical use. However, no technology has been proposed so far that achieves softening in an inclined manner.
【0010】その他、柔軟性をコントロールする以外に
挿通性の向上策として、カテーテル外表面の低摩擦抵抗
化、潤滑化等がある。しかし、効果の持続性の問題、用
いる素材が固いと屈曲面への追随性がないなどの問題、
また、用いる素材が柔らかいとプッシャビリィティが悪
くなるなどの問題がある。従って、シャフト表面の低摩
擦抵抗化及び潤滑化はカテーテルの挿通性に効果が認め
られるが、カテーテル自身に挿通性を持たせることが必
要である。その上での低摩擦抵抗化や潤滑化を行うこと
により効果をさらに倍加させることができると考えられ
る。In addition to the control of flexibility, other measures for improving the insertability include lowering friction resistance and lubricating the outer surface of the catheter. However, the problem of persistence of effect, the problem of not following the curved surface if the material used is hard,
In addition, if the material used is soft, there is a problem such as poor pushability. Therefore, lowering friction resistance and lubrication of the shaft surface are effective for the catheter insertability, but the catheter itself must be insertable. It is considered that the effect can be further doubled by further reducing the frictional resistance and lubrication.
【0011】[0011]
【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、種々の体腔に適用される
診断・治療用高機能カテーテルに必要な性質、即ち、挿
通性の向上を目指すものである。特に、屈曲面への追従
性(以下、トラッカビリィティと言う)及び押し込み性
(以下、プッシャビリィティと言う)を高度に両立させ
たカテーテルの提供を目的とする。医師の意見によれば
カテーテルの柔軟性は先端部は傾斜的に柔らかくトラッ
カビリィティに優れ、基部側は固く押し込み易いプッシ
ャビリィティに優れるカテーテルが理想であるとされて
いる。この目的を達成するためにはカテーテルの部分的
柔軟化や傾斜的にカテーテルの柔軟性を変化させること
が有効であり、本発明はその具体的製造法及びものにつ
いての提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and improves the property necessary for a high-performance diagnostic / therapeutic catheter applied to various body cavities, that is, the insertability. Is aimed at. In particular, it is an object of the present invention to provide a catheter that is highly compatible with the ability to follow a curved surface (hereinafter, referred to as trackability) and the pushability (hereinafter, referred to as pusherability). According to the doctor's opinion, the catheter is ideally a catheter having a tip portion softly inclined and excellent in trackability and a base portion hard and easy to push in and excellent in pushability. In order to achieve this object, it is effective to partially soften the catheter or change the flexibility of the catheter in a tilted manner, and an object of the present invention is to provide a specific manufacturing method thereof and the like.
【0012】[0012]
【課題を解決するための手段】本発明者らは鋭意研究し
た結果、カテーテルチューブを成形するに当たり分子配
向をコントロールすることにより、カテーテルシャフト
の柔軟性がコントロールできることを見いだした。上記
目的は以下の本発明により達成される。As a result of intensive studies, the present inventors have found that the flexibility of a catheter shaft can be controlled by controlling the molecular orientation when molding a catheter tube. The above object is achieved by the present invention described below.
【0013】(1)均質に成形された単層あるいは多層
チューブであって、配向緩和処理による傾斜的に柔軟性
の変化する部分および/または均一なる柔軟化部分から
なる柔軟化部と、非柔軟化部とからなり、当該柔軟化部
と当該非柔軟化部は同一素材からなり、また当該柔軟化
部と当該非柔軟化部の引張弾性率が少なくとも5%以上
の差を有することを特徴とするカテーテル。(1) A homogenously molded single-layer or multi-layer tube, which has a softening portion composed of a portion in which the flexibility changes in a gradient due to orientation relaxation treatment and / or a uniform softening portion, and a non-flexible portion. The softening portion and the non-softening portion are made of the same material, and the tensile elastic moduli of the softening portion and the non-softening portion have a difference of at least 5% or more. Catheter to be.
【0014】(2)高分子材料を成形加工し異方性を持
たせた中空成形物を得て、前記成形物の一部を使用高分
子の軟化点温度雰囲気下におきアニールし分子配向を緩
和して柔軟化する上記(1)記載のカテーテルを製造す
る方法。(2) A polymer material is molded and processed to obtain a hollow molded article having anisotropy, and a part of the molded article is annealed by placing it in a softening temperature atmosphere of the polymer to be used for molecular orientation. A method for producing the catheter according to (1) above, which comprises relaxing and softening.
【0015】(3)原料樹脂が特定範囲のメルトフロー
レート(MFR)を有する熱可塑性高分子である上記
(1)記載のカテーテルおよび(2)記載のカテーテル
を製造する方法。この場合、MFRの範囲とは好ましく
は20以下、さらに好ましくは0.1〜10の範囲であ
る。(3) The method for producing the catheter according to (1) and the catheter according to (2), wherein the raw material resin is a thermoplastic polymer having a melt flow rate (MFR) within a specific range. In this case, the MFR range is preferably 20 or less, and more preferably 0.1 to 10.
【0016】本発明のカテーテルは、原料に特定範囲の
メルトフローレート(MFR)を有する熱可塑性樹脂を
用い、チューブ軸方向に分子配向させた異方性の高い中
空成形物を押出成形・射出成形等の成形法により得る。
この場合、成形時の分子配向が緩和されにくい樹脂を用
いる方が良く、MFRの低い樹脂を用いることが望まし
い。好ましいMFRの範囲は20以下、さらに好ましく
は0.1〜10の範囲であり、特には成形の容易さか
ら、0.5〜5の範囲が好ましい。In the catheter of the present invention, a thermoplastic resin having a melt flow rate (MFR) in a specific range is used as a raw material, and a highly anisotropic hollow molded product in which molecules are oriented in the axial direction of the tube is extruded / injected. And the like.
In this case, it is better to use a resin whose molecular orientation during molding is less likely to be relaxed, and it is desirable to use a resin having a low MFR. The range of MFR is preferably 20 or less, more preferably 0.1 to 10, and particularly preferably 0.5 to 5 from the viewpoint of easy molding.
【0017】この成形体の一部を柔軟化するには、該成
形体の一部を使用高分子の軟化点温度近傍の雰囲気下に
置き、分子配向を緩和すれば良い。配向緩和処理により
柔軟化部が得られる。以上の単純な製造方法により得ら
れる本発明のカテーテルは柔軟化部と熱処理を行ってい
ない非柔軟化部に於いて明確な柔軟性の差が認められ、
しかも、柔軟化部と非柔軟化部の寸法の差が基本的にな
い。このようなカテーテルは目的とする挿通性の向上を
大幅に改善できるものである。即ち、配向性によるトラ
ッカビリィティ・プッシャビリィティ確保及び先端・基
部での柔軟性の傾斜化を達成したカテーテルであり、こ
のようなカテーテルは本発明によりはじめて提供が可能
となる。In order to soften a part of the molded body, a part of the molded body may be placed in an atmosphere near the softening point temperature of the polymer used to relax the molecular orientation. A softened portion is obtained by the orientation relaxation treatment. The catheter of the present invention obtained by the above simple manufacturing method has a clear difference in flexibility between the softened portion and the non-softened portion that has not been heat-treated,
Moreover, there is basically no difference in size between the softened portion and the non-softened portion. Such a catheter can greatly improve the desired insertability. That is, it is a catheter that achieves trackability and pusherability by orientation and has a graded flexibility at the distal end / base portion, and such a catheter can be provided for the first time by the present invention.
【0018】本明細書中において、「傾斜的に柔軟性の
変化する」とは、柔軟化部の引張弾性率が一端から他端
へ移動するに連続的に低く、または高くなることを示
す。In the present specification, "gradiently changes in flexibility" means that the tensile elastic modulus of the softened portion continuously decreases or increases as it moves from one end to the other end.
【0019】本発明に用いられる原料は高分子材料が望
ましく、成形加工の容易さから、熱可塑性樹脂が適して
いる。特に、カテーテルに用いられる樹脂には素材自身
の柔軟性が求められるので、従来からカテーテル素材と
して用いられているポリ塩化ビニル、ポリエチレン、ポ
リプロピレン、ポリブテン、フッ素樹脂、ポリエーテル
ポリエステル、ポリエーテルポリアミド、ポリウレタ
ン、ポリエステル、ナイロン、熱可塑性エラストマー等
が好ましい。その他これらの樹脂をベースとしたポリマ
ーアロイあるいはポリマーブレンドを用いることも可能
である。The raw material used in the present invention is preferably a polymer material, and a thermoplastic resin is suitable because it is easy to mold. In particular, since the resin used for the catheter is required to have flexibility of the material itself, polyvinyl chloride, polyethylene, polypropylene, polybutene, fluororesin, polyether polyester, polyether polyamide, polyurethane which have been conventionally used as a catheter material. , Polyester, nylon, thermoplastic elastomer and the like are preferable. It is also possible to use a polymer alloy or a polymer blend based on these resins.
【0020】原料に用いる樹脂の溶融粘度は高い方が望
ましく、フィルム成形に用いられるようなメルトフロー
レート(MFR)の低いものが望ましい。MFRの試験
方法はASTM D1238記載の方法により、g/1
0分の樹脂流量とする。簡易的には購入樹脂のカタログ
値を目安とする。物性の異方性をだすためにはMFRが
低い方が好ましく、例えば、20以下であることが好ま
しく、成形の容易さを考慮すると、MFR0.5〜5の
範囲が特に好ましい。It is desirable that the melt viscosity of the resin used as a raw material be high, and that the melt flow rate (MFR) used in film formation be low. The test method of MFR is g / 1 according to the method described in ASTM D1238.
The resin flow rate is 0 minutes. For simplicity, use the catalog value of the purchased resin as a guide. The MFR is preferably low in order to bring out the anisotropy of physical properties, for example, it is preferably 20 or less, and in view of easiness of molding, the range of MFR 0.5 to 5 is particularly preferable.
【0021】原料樹脂を用い通常の射出・押出成形等に
より中空成形物を得るのであるが、この場合、特に好ま
しいのはMFRの低い樹脂を用いた押出成形が簡便であ
り推奨される。特に、注意すべき点は一軸方向への分子
配向がでるように成形することであり、熱間延伸を円滑
に行わず、分子配向を固定するために冷却を強化するこ
とである。またこの場合、単層、多層、複数の穴を持つ
チューブに成形することは自由である。A hollow molded article is obtained by using a raw material resin by ordinary injection / extrusion molding. In this case, particularly preferable is extrusion molding using a resin having a low MFR because it is simple and recommended. In particular, the point to be noted is that the molding is performed so that the molecular orientation in the uniaxial direction can be obtained, the hot stretching is not smoothly performed, and the cooling is strengthened to fix the molecular orientation. Further, in this case, it is free to form a tube having a single layer, a multilayer, or a plurality of holes.
【0022】作成されたチューブは形状保持の為、芯が
ねを通し、部分柔軟化処理を行う。これは、使用樹脂の
軟化点温度付近の温度雰囲気下に放置し、熱を加え、高
分子分子鎖の運動をある程度自由にして、結果、分子配
向を緩和させるのが目的で、分子配向の緩和度を温度及
び時間でコントロールする。ただし、樹脂が流動するほ
どの温度・時間をかけるのは好ましくない。In order to maintain the shape of the produced tube, the core tube is passed through and the tube is partially softened. The purpose of this is to leave the resin in a temperature atmosphere near the softening point of the resin used and to apply heat to release the motion of the polymer molecular chains to some extent, resulting in the relaxation of the molecular orientation. The degree is controlled by temperature and time. However, it is not preferable to take the temperature and time for the resin to flow.
【0023】装置的には非常に単純であり、柔軟化部分
を温度一定のオーブンの中にいれるだけでよい。配向の
緩和度は温度と時間によりコントロール可能であり、例
えば、温度勾配をつけた炉の中に一定時間放置する方法
や一定温度の炉の中に一定速度で出し入れするなどの方
法によることができる。また、炉ではなく水やグリセリ
ン、オイル等を熱媒に用いた恒温槽を用いることもでき
る。The device is very simple, and the softening part only needs to be placed in an oven having a constant temperature. The degree of relaxation of orientation can be controlled by temperature and time, and for example, it can be left in a furnace having a temperature gradient for a certain period of time or put in and out of a furnace at a certain temperature at a certain speed. . Further, instead of the furnace, a constant temperature bath using water, glycerin, oil or the like as a heat medium can be used.
【0024】本発明で言うカテーテルの分子配向性はチ
ューブの引張試験で求められる引張弾性率及び強度・伸
度で評価する。測定方法は通常の引張試験機を用い、試
料チューブをチャック間に固定し一定速度で引っ張り、
応力・歪み曲線を記録し計算により、引張弾性率及び強
度・伸度を求める。緩和され柔軟化された部分は非柔軟
化部分に比べ弾性率及び強伸度特性が異なるので分子配
向性及びその緩和度を評価できる。The molecular orientation of the catheter referred to in the present invention is evaluated by the tensile elastic modulus and strength / elongation required in the tube tensile test. The measurement method uses a normal tensile tester, the sample tube is fixed between the chucks and pulled at a constant speed,
Record the stress / strain curve and calculate the tensile modulus and strength / elongation. The relaxed and softened portion is different in elastic modulus and strength / elongation property from the non-softened portion, so that the molecular orientation and its relaxation degree can be evaluated.
【0025】本発明のカテーテルは柔軟化部と非柔軟化
部の差が明確であり、数値的に引張弾性率で5%以上の
差があることを特徴とする。本発明によれば傾斜的に物
性をコントロールできる訳であるから、柔軟化部と非柔
軟化部の境界を明確にすることはできないが、測定誤差
ではなく確かに柔軟化されていると言う意味で引張弾性
率に於いて5%以上の差がある事とする。即ち、5%以
上の明らかな差をもつて柔軟化部と非柔軟化部と定義す
る。この場合非柔軟化部の引張弾性率を分母とし百分率
で表現する。したがって、柔軟化部は95%以下の引張
弾性率を持つ部分と定義する。The catheter of the present invention is characterized in that the difference between the softened portion and the non-softened portion is clear, and there is a numerical difference in tensile elastic modulus of 5% or more. According to the present invention, since it is possible to control the physical properties in an inclined manner, it is not possible to clarify the boundary between the softened portion and the non-softened portion, but it does not mean a measurement error, but it means that the softened portion is certainly softened. It is assumed that there is a difference of 5% or more in the tensile elastic modulus. That is, they are defined as a softening part and a non-softening part with a clear difference of 5% or more. In this case, the tensile elastic modulus of the non-softened portion is used as a denominator and expressed as a percentage. Therefore, the softened portion is defined as a portion having a tensile elastic modulus of 95% or less.
【0026】本発明のカテーテルの効果を更に高める
為、低摩擦性素材の使用や表面処理による潤滑化を同時
に行う事も自由であり、本発明の効果を相乗的に高める
事ができる。In order to further enhance the effect of the catheter of the present invention, it is free to use a low friction material and lubricate it by surface treatment at the same time, and the effect of the present invention can be enhanced synergistically.
【0027】[0027]
【実施例】以下、実施例を示し本発明の具体的に説明す
る。なお、実施例は本発明の一例であり、これに限定さ
れるものではない。EXAMPLES The present invention will be described in detail below with reference to examples. The embodiment is an example of the present invention and is not limited to this.
【0028】(比較例1)原料樹脂として、市販のポリ
ブテン−1(PBと略記する;三井石油化学工業
(株),商品名ビューロン,グレードP−4000,M
FR=1.8)を用いた。このペレットを用い、IKG
(株)製MS20−25押出機を用いて銅線被覆成形し
た。ただし、押出成形温度は常識通り200℃で行い、
通常行う銅線の加熱は行わず、銅線は外径0.86mm
のものを用いた。該銅線を注意深く抜去し、外径0.8
4mmの芯がねを通し、オーブン中で60℃、16時間
アニールし、成形歪みを除いた。このチューブの寸法は
肉厚75μm,内径0.85mm×外径1.00mmで
あった。寸法誤差は外径で±4%であった。このチュー
ブを以下の実施例の実験に供した。当然のことながらチ
ューブは均質に成形されており、柔軟性に差は認められ
なかった。(Comparative Example 1) As a raw material resin, commercially available polybutene-1 (abbreviated as PB; Mitsui Petrochemical Co., Ltd., trade name Buron, grade P-4000, M)
FR = 1.8) was used. Using this pellet, IKG
Copper wire coating was carried out using an MS20-25 extruder manufactured by Co., Ltd. However, the extrusion molding temperature is 200 ° C.
Normally, the copper wire is not heated, and the copper wire has an outer diameter of 0.86 mm.
I used the one. Carefully pull out the copper wire to an outside diameter of 0.8
After passing through a 4-mm core, it was annealed in an oven at 60 ° C. for 16 hours to remove molding strain. The tube had a thickness of 75 μm, an inner diameter of 0.85 mm and an outer diameter of 1.00 mm. The dimensional error was ± 4% in outer diameter. This tube was subjected to the experiments of the following examples. As a matter of course, the tube was formed homogeneously, and no difference in flexibility was observed.
【0029】(実施例1)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に3分間保持した。取り出し後、室温
まで冷却し、柔軟化部を持つカテーテルチューブを作成
した。設定温度の115℃は示差走査熱量計(DSC)
法で測定したPBの融点ピークの開始温度である。Example 1 1.5 cm of the core tube containing the core tube prepared in Comparative Example 1 and 21 cm of the tip was held in an oven kept at a temperature of 115 ° C. for 3 minutes. After taking out, it cooled to room temperature and created the catheter tube which has a softening part. The set temperature of 115 ° C is the differential scanning calorimeter (DSC).
It is the starting temperature of the melting point peak of PB measured by the method.
【0030】(実施例2)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に2分間保持した。取り出し後、室温
まで冷却し、柔軟化部を持つカテーテルを作成した。(Example 2) [0030] The core tube containing the core tube having a diameter of 1.5 m prepared in Comparative Example 1 and 21 cm at the tip 21 cm was held in an oven kept at a temperature of 115 ° C for 2 minutes. After taking out, the catheter was cooled to room temperature to prepare a catheter having a softened portion.
【0031】(実施例3)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に60秒間保持した。取り出し後、室
温まで冷却し、柔軟化部を持つカテーテルを作成した。(Example 3) 21 cm of the tip of the core tube with a core of 1.5 m prepared in Comparative Example 1 was held in an oven kept at a temperature of 115 ° C for 60 seconds. After taking out, the catheter was cooled to room temperature to prepare a catheter having a softened portion.
【0032】(実施例4)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に30秒間保持した。取り出し後、室
温まで冷却し、柔軟化部を持つカテーテルを作成した。(Example 4) The core tube containing the core tube having a diameter of 1.5 m prepared in Comparative Example 1 and 21 cm in the front end was held in an oven maintained at a temperature of 115 ° C for 30 seconds. After taking out, the catheter was cooled to room temperature to prepare a catheter having a softened portion.
【0033】(実施例5)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に5秒間保持した。取り出し後、室温
まで冷却し、柔軟化部を持つカテーテルを作成した。Example 5 The tip 21 cm of the core tube with a core of 1.5 m prepared in Comparative Example 1 was held in an oven maintained at a temperature of 115 ° C. for 5 seconds. After taking out, the catheter was cooled to room temperature to prepare a catheter having a softened portion.
【0034】(実施例6)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度115℃に
保ったオーブン中に5秒間入れ、その後、4cm/mi
nの引き上げ速度で取り出した。室温まで冷却して、傾
斜的な柔軟化部を持つカテーテルを作成した。柔軟化部
を7cmづつ分割し弾性率を測定するとそれぞれ異なる
値が得られた。先端の方が低弾性率の値となった。(Example 6) The tip 21 cm of the core tube with a core of 1.5 m prepared in Comparative Example 1 was placed in an oven kept at a temperature of 115 ° C for 5 seconds, and then 4 cm / mi.
It was taken out at a pulling rate of n. Upon cooling to room temperature, a catheter with a graded softening section was created. When the softening portion was divided into 7 cm portions and the elastic modulus was measured, different values were obtained. The tip had a lower elastic modulus value.
【0035】(比較例2)比較例1で作成した芯がね入
り元チューブ1.5mの先端21cmを温度140℃に
保ったオーブン中に3分間保持した。設定温度の140
゜CはDSC法で測定したPBの融点ピークの終了温度
である。この場合、樹脂が垂れ、チューブの一部に穴が
空き、実用に耐え得るようなカテーテルは得られなかっ
た。従って、軟化点を大きく上回る温度で、長時間緩和
処理する事は好ましくない事がわかる。(Comparative Example 2) The tube 21 containing core having a diameter of 1.5 m prepared in Comparative Example 1 and having 21 cm of tip was held in an oven kept at a temperature of 140 ° C. for 3 minutes. Set temperature of 140
° C is the end temperature of the melting point peak of PB measured by the DSC method. In this case, the resin dripped and a hole was formed in a part of the tube, and a catheter that could withstand practical use could not be obtained. Therefore, it is understood that it is not preferable to perform the relaxation treatment for a long time at a temperature which is much higher than the softening point.
【0036】(比較例3)原料樹脂として、比較例1の
PBを用いた。このペレットを用い、IKG(株)製M
S20−25押出機を用いて銅線被覆成形した。ただ
し、押出成形温度は常識通り200℃で行い、本比較例
では高周波誘導加熱により銅線を200℃に加熱した。
銅線は外径0.86mmのものを用いた。該銅線を注意
深く抜去し、外径0.84mmの芯がねを通し、オーブ
ン中で60℃、12時間アニールし、成形歪みを除い
た。このチューブの寸法は肉厚75μm,内径0.85
mm×外径1.00mmであった。寸法誤差は外径で±
4%であった。Comparative Example 3 PB of Comparative Example 1 was used as a raw material resin. Using this pellet, M manufactured by IKG Co., Ltd.
Copper wire coating was formed using an S20-25 extruder. However, the extrusion molding temperature was 200 ° C., as is common sense, and in this comparative example, the copper wire was heated to 200 ° C. by high frequency induction heating.
The copper wire used had an outer diameter of 0.86 mm. The copper wire was carefully removed, passed through a core wire having an outer diameter of 0.84 mm, and annealed in an oven at 60 ° C. for 12 hours to remove molding strain. This tube has a wall thickness of 75 μm and an inner diameter of 0.85.
mm × outer diameter 1.00 mm. Dimensional error is ±
It was 4%.
【0037】作成した芯がね入り元チューブ1.5mの
先端21cmを温度115℃に保ったオーブン中に3分
間保持した。取り出し後、室温まで冷却したが、明確な
柔軟化部を持つカテーテルは作成できなかった。21 cm of the tip of the prepared core tube having a core of 1.5 m was held in an oven kept at a temperature of 115 ° C. for 3 minutes. After taking out, it was cooled to room temperature, but a catheter with a clear softened part could not be made.
【0038】(比較例4)原料樹脂として、市販のポリ
プロピレン(PPと略記する;三井石油化学工業
(株),商品名ハイポール,グレードF−401,MF
R=2.4)を用いた。このペレットを用い、IKG
(株)製MS20−25押出機を用いて銅線被覆成形し
た。ただし、押出成形温度は常識通り220℃で行い、
通常行う銅線の加熱は行わず、銅線は外径0.86mm
のものを用いた。該銅線を注意深く抜去し、外径0.8
4mmの芯がねを通し、オーブン中で60℃、16時間
アニールし、成形歪みを除いた。このチューブの寸法は
肉厚75μm,内径0.85mm×外径1.00mmで
あった。寸法誤差は外径で±4%であった。このチュー
ブを以下の実施例の実験に供した。(Comparative Example 4) As a raw material resin, commercially available polypropylene (abbreviated as PP; Mitsui Petrochemical Co., Ltd., trade name Hypol, grade F-401, MF)
R = 2.4) was used. Using this pellet, IKG
Copper wire coating was carried out using an MS20-25 extruder manufactured by Co., Ltd. However, the extrusion molding temperature is 220 ° C.
Normally, the copper wire is not heated, and the copper wire has an outer diameter of 0.86 mm.
I used the one. Carefully pull out the copper wire to an outside diameter of 0.8
After passing through a 4-mm core, it was annealed in an oven at 60 ° C. for 16 hours to remove molding strain. The tube had a thickness of 75 μm, an inner diameter of 0.85 mm and an outer diameter of 1.00 mm. The dimensional error was ± 4% in outer diameter. This tube was subjected to the experiments of the following examples.
【0039】(比較例5)比較例4で作成した芯がね入
り元チューブ1.5mの先端21cmを温度140℃に
保ったオーブン中に3分間保持した。設定温度の140
℃はDSC法で測定したPPの融点ピークの開始温度よ
り低い温度である。この場合、柔軟化部分は得られなか
った。むしろ、オーブンにいれた部分はより固くなって
いた。(Comparative Example 5) A 21 m tip of the core tube with a core of 1.5 m prepared in Comparative Example 4 was held in an oven kept at a temperature of 140 ° C for 3 minutes. Set temperature of 140
C is a temperature lower than the starting temperature of the melting point peak of PP measured by the DSC method. In this case, no softening part was obtained. Rather, the part placed in the oven was harder.
【0040】比較例2,5から樹脂によって処理温度が
異なる事が分かった。From Comparative Examples 2 and 5, it was found that the treatment temperature was different depending on the resin.
【0041】(実施例7)比較例3で作成した芯がね入
り元チューブ1.5mの先端21cmを温度165℃に
保ったオーブン中に3分間保持した。設定温度の165
℃はDSC法で測定したポリプロピレンの融点ピークの
開始温度である。(Example 7) 21 cm of the tip of the core tube with a core of 1.5 m prepared in Comparative Example 3 was held in an oven kept at a temperature of 165 ° C for 3 minutes. Set temperature of 165
C is the onset temperature of the melting point peak of polypropylene measured by the DSC method.
【0042】樹脂が異なっても柔軟化部を持つカテーテ
ルは作成可能であった。ただし、樹脂によって処理温度
は異なる事が分かった。A catheter having a softened portion could be produced even if the resin was different. However, it was found that the treatment temperature differs depending on the resin.
【0043】(実施例8)原料樹脂として、市販のポリ
エーテルポリアミド(PE−PAと略記する;ATOC
HEM社,商品名ペバックス,グレード2533SA0
0,MFR=6.0)を用いた。このペレットを用い、
IKG(株)製MS20−25押出機を用いて銅線被覆
成形した。ただし、押出成形温度は樹脂メーカーの推奨
する200℃で行い、通常行う銅線の加熱は行わず、銅
線は外径0.86mmのものを用いた。該銅線を注意深
く抜去し、外径0.84mmの芯がねを通し、オーブン
中で60℃、16時間アニールし、成形歪みを除いた。
このチューブの寸法は肉厚75μm,内径0.85mm
×外径0.998mmであった。Example 8 As a raw material resin, a commercially available polyether polyamide (abbreviated as PE-PA; ATOC)
HEM, brand name Pebax, grade 2533SA0
0, MFR = 6.0) was used. With this pellet,
Copper wire coating was carried out using an IKG MS20-25 extruder. However, the extrusion molding temperature was 200 ° C. recommended by the resin manufacturer, the copper wire normally heated was not used, and the copper wire used had an outer diameter of 0.86 mm. The copper wire was carefully removed, passed through a core wire having an outer diameter of 0.84 mm, and annealed in an oven at 60 ° C. for 16 hours to remove molding strain.
This tube has a wall thickness of 75 μm and an inner diameter of 0.85 mm.
× The outer diameter was 0.998 mm.
【0044】作成した芯がね入り元チューブ1.5mの
先端21cmを温度135℃に保ったオーブン中に3分
間保持した。設定温度の135℃はDSC法で測定した
このグレードのPE−PAの融点ピークの開始温度であ
る。21 cm of the tip of the prepared core tube having a core of 1.5 m was held in an oven kept at a temperature of 135 ° C. for 3 minutes. The set temperature of 135 ° C. is the starting temperature of the melting point peak of this grade PE-PA measured by the DSC method.
【0045】樹脂が異なっても柔軟化部を持つカテーテ
ルは作成可能であった。ただし、樹脂によって処理温度
は異なる事が分かった。A catheter having a softened portion could be produced even if the resin was different. However, it was found that the treatment temperature differs depending on the resin.
【0046】(実施例9)原料樹脂として、市販のポリ
エーテルポリエステル(PE−PTと略記する;東レ−
デュポン(株),商品名ハイトレル,グレード4797
B,MFR=2.0)を用いた。このペレットを用い、
IKG(株)製MS20−25押出機を用いて銅線被覆
成形した。ただし、押出成形温度は樹脂メーカーの推奨
する220℃で行い、通常行う銅線の加熱は行わず、銅
線は外径0.86mmのものを用いた。該銅線を注意深
く抜去し、外径0.84mmの芯がねを通し、オーブン
中で60℃、16時間アニールし、成形歪みを除いた。
このチューブの寸法は肉厚75μm,内径0.85mm
×外径1.003mmであった。Example 9 As a raw material resin, a commercially available polyether polyester (abbreviated as PE-PT); Toray
DuPont, Trade name Hytrel, Grade 4797
B, MFR = 2.0) was used. With this pellet,
Copper wire coating was carried out using an IKG MS20-25 extruder. However, the extrusion molding temperature was 220 ° C. recommended by the resin manufacturer, and the copper wire normally used was not heated, and the copper wire used had an outer diameter of 0.86 mm. The copper wire was carefully removed, passed through a core wire having an outer diameter of 0.84 mm, and annealed in an oven at 60 ° C. for 16 hours to remove molding strain.
This tube has a wall thickness of 75 μm and an inner diameter of 0.85 mm.
× The outer diameter was 1.003 mm.
【0047】作成した芯がね入り元チューブ1.5mの
先端21cmを温度180℃に保ったオーブン中に3分
間保持した。設定温度の180゜CはDSC法で測定し
たこのグレードのPE−PTの融点ピークの開始温度で
ある。21 cm of the tip of the prepared core tube having a core of 1.5 m was held in an oven kept at a temperature of 180 ° C. for 3 minutes. The set temperature of 180 ° C. is the onset temperature of the melting point peak of this grade PE-PT measured by the DSC method.
【0048】樹脂が異なっても柔軟化部を持つカテーテ
ルは作成可能であった。ただし、樹脂によって処理温度
は異なる事が分かった。A catheter having a softened portion could be produced even if the resin was different. However, it was found that the treatment temperature differs depending on the resin.
【0049】(試験例1)分子配向緩和による柔軟化 上記、実施例1〜5、比較例1,3の柔軟化部及び非柔
軟化部の寸法測定及びチューブ軸方向の引張試験を行
い、引張弾性率を測定した。その結果を表1にまとめて
示す。Test Example 1 Softening by Relaxation of Molecular Orientation The dimensions of the softened and non- softened parts of Examples 1 to 5 and Comparative Examples 1 and 3 described above and the tensile test in the tube axial direction were carried out to obtain the tensile strength. The elastic modulus was measured. The results are summarized in Table 1.
【0050】[0050]
【表1】 [Table 1]
【0051】表1から、実施例1のPBチューブは柔軟
化部と非柔軟化部に於いて、明確に引張弾性率の違いが
認められた。また、実施例1〜5の結果から、処理時間
により引張弾性率が異なる事も確認された。この実験事
実は配向を緩和する事により柔軟性をコントロールでき
る事を示唆するものである。従って、実施例6の様に引
き上げ速度で傾斜的に柔軟性を変化させ得る事を示唆す
るものである。From Table 1, in the PB tube of Example 1, a clear difference in tensile elastic modulus was observed between the softened portion and the non-softened portion. It was also confirmed from the results of Examples 1 to 5 that the tensile elastic modulus was different depending on the treatment time. This experimental fact suggests that the flexibility can be controlled by relaxing the orientation. Therefore, it is suggested that the flexibility can be changed in an inclined manner at the pulling rate as in Example 6.
【0052】(試験例2)傾斜的柔軟化 表2に実施例6の配向緩和部分につき先端から7cmづ
つ分割して引張試験を行った結果を示す。Test Example 2 Inclined Softening Table 2 shows the results of a tensile test in which the orientation relaxation portion of Example 6 was divided into 7 cm portions from the tip.
【0053】[0053]
【表2】 [Table 2]
【0054】実施例6のチューブは引張弾性率が先端に
行くほど低くなっている事が分かる。従って、傾斜的に
弾性率の変化するチューブであると考えられる。即ち、
傾斜的に柔軟性の変化するカーテルが現実化できたもの
と言える。傾斜的に柔軟性を変化させる方法として、他
に、温度勾配をつけた炉の中に一定時間いれ配向を緩和
する事によっても可能であると考える。It can be seen that the tube of Example 6 has a lower tensile elastic modulus toward the tip. Therefore, it is considered to be a tube whose elastic modulus changes in an inclined manner. That is,
It can be said that a cartel with a gradually changing flexibility has been realized. As a method of changing the flexibility in an inclined manner, it is also possible to put it in a furnace with a temperature gradient for a certain period of time to relax the orientation.
【0055】(試験例3)配向緩和の条件 比較例2では緩和処理する温度時間の条件を極端にし
た。樹脂が流れ落ちるほどの条件では、穴があいたり変
形したりして、評価に値するサンプルは得られなかっ
た。従って、軟化点温度付近での配向緩和が好ましいと
考える。(Test Example 3) Orientation Relaxation Conditions In Comparative Example 2, the temperature and time conditions for the relaxation treatment were made extreme. Under the condition that the resin flows down, holes were formed or deformed, and a sample worthy of evaluation could not be obtained. Therefore, it is considered preferable to relax the orientation near the softening point temperature.
【0056】比較例3は銅線を加熱し、熱間延伸を円滑
に行い、配向を残さない成形法で成形した場合の結果で
ある。従来より、いかに分子配向を残さないで成形する
かと言う点に注意が払われており、銅線の加熱はそのた
めに広く行われている周知の技術である。従って、本発
明の実現の為には分子配向を積極的に残すよう成形する
事が望ましい。Comparative Example 3 is the result when the copper wire was heated, the hot drawing was smoothly performed, and the copper wire was molded by the molding method in which the orientation was not left. Heretofore, attention has been paid to how to mold without leaving the molecular orientation, and heating of a copper wire is a well-known technique widely used for that purpose. Therefore, in order to realize the present invention, it is desirable to mold so as to positively leave the molecular orientation.
【0057】比較例5では軟化点温度以下の温度で処理
を行った場合の例である。この場合、配向は緩和されず
柔軟化部分は得られなかった。Comparative Example 5 is an example in which the treatment is performed at a temperature not higher than the softening point temperature. In this case, the orientation was not relaxed and the softened portion was not obtained.
【0058】実施例7,8,9ではPB以外の樹脂でも
配向緩和により柔軟化が可能である事を示した。基本的
にメルトフローレート(MFR)の低い熱可塑性高分子
であれば、物性に異方性がでるのは周知の事実であり、
配向をいかにしてなくすかが課題となっている。従っ
て、配向緩和を利用した本発明は多くの樹脂で実施でき
ると考えられる。但し、実施例8で用いたPE−PAは
MFRが他の実施例の樹脂に比べると高いので配向しに
くく、為に配向緩和処理による柔軟化率は低値となっ
た。従って、成形可能であればMFRは低いものの方
が、分子配向させ易く、従って、配向緩和による柔軟性
のコントロールしやすいと考えられる。In Examples 7, 8 and 9, it was shown that even resins other than PB can be softened by relaxing the orientation. It is a well-known fact that the physical properties of a thermoplastic polymer having a low melt flow rate (MFR) are basically anisotropic.
The issue is how to eliminate the orientation. Therefore, it is considered that the present invention utilizing orientation relaxation can be carried out with many resins. However, since the PE-PA used in Example 8 has a higher MFR as compared with the resins of the other Examples, it is difficult to be oriented, and therefore the softening rate by the orientation relaxation treatment is low. Therefore, it is considered that if the MFR is low, the one having a lower MFR is more likely to be molecularly oriented, and hence the flexibility is more easily controlled by the orientation relaxation.
【0059】なお、実施例7〜9、比較例2,4,5の
柔軟化部及び非柔軟化部の寸法測定及びチューブ軸方向
の引張試験、引張弾性率の結果を表3にまとめて示す。Table 3 summarizes the results of the dimension measurement of the softened portions and non-softened portions of Examples 7 to 9 and Comparative Examples 2, 4, and 5, the tensile test in the tube axial direction, and the tensile elastic modulus. .
【0060】[0060]
【表3】 [Table 3]
【0061】以上、実施例及び比較例によって、本発明
を具体的に示したが。本発明により先端部の傾斜的に柔
軟化されたカテーテルが得られる事が明らかである。先
端の柔軟化されたチューブを実際に血管拡張用カテーテ
ルに組み込み試験を行った結果、挿通性の向上がはかれ
た。トラッカビリィティに優れ、プッシャビリィティを
確保したカテーテルとなった。The present invention has been specifically shown by the examples and comparative examples. It will be apparent that the present invention provides a catheter with a tip that is softened in an inclined manner. As a result of a test in which a tube with a softened tip was actually installed in a vasodilator catheter, the insertability was improved. The catheter has excellent trackability and pushability.
【0062】[0062]
【発明の効果】本発明のカテーテルは体内への挿通性に
優れ、しかも、血管等の屈曲面に対する追従性に優れ
る。また、本発明の製造法は非常に単純でありコストも
安価で大量生産に向く。従って、安価で有用なカテーテ
ルが得られ、柔軟化部及び非柔軟化部の柔軟性も幅広く
コントロールできる。Industrial Applicability The catheter of the present invention is excellent in the ability to be inserted into the body, and is also excellent in following the curved surface such as a blood vessel. Moreover, the manufacturing method of the present invention is very simple and inexpensive, and is suitable for mass production. Therefore, a cheap and useful catheter can be obtained, and the flexibility of the softened portion and the non-softened portion can be widely controlled.
【0063】以上から、従来のカテーテルに比べ先端部
の柔軟化により、挿通性・追従性及び柔軟性の改善が可
能となった。すなわち、カテーテルの挿入の容易性が得
られ、患者の苦痛軽減や生体組織の損傷防止と言った機
能を付加しやすい。From the above, it is possible to improve the insertability, the followability and the flexibility by making the tip end softer than the conventional catheter. That is, the ease of inserting the catheter is obtained, and it is easy to add functions such as reducing the pain of the patient and preventing damage to the living tissue.
【0064】以上から、本発明のカテーテルは現在急速
に進歩しつつあるカテーテルを用いた診断・治療に大き
く貢献できるものである。From the above, the catheter of the present invention can greatly contribute to the diagnosis and treatment using the catheter, which is currently advancing rapidly.
Claims (1)
ーブであって、配向緩和処理による傾斜的に柔軟性の変
化する部分および/または均一なる柔軟化部分からなる
柔軟化部と、非柔軟化部とからなり、当該柔軟化部と当
該非柔軟化部は同一素材からなり、また当該柔軟化部と
当該非柔軟化部の引張弾性率が少なくとも5%以上の差
を有することを特徴とするカテーテル。1. A homogenously molded single-layer or multi-layer tube, comprising a softening portion comprising a portion where the flexibility changes in a gradient due to orientation relaxation treatment and / or a uniform softening portion, and a non-softening portion. Characterized in that the softening portion and the non-softening portion are made of the same material, and the tensile elastic moduli of the softening portion and the non-softening portion have a difference of at least 5% or more. catheter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24532792A JP3343266B2 (en) | 1992-09-16 | 1992-09-16 | catheter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24532792A JP3343266B2 (en) | 1992-09-16 | 1992-09-16 | catheter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0691005A true JPH0691005A (en) | 1994-04-05 |
JP3343266B2 JP3343266B2 (en) | 2002-11-11 |
Family
ID=17132017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24532792A Expired - Fee Related JP3343266B2 (en) | 1992-09-16 | 1992-09-16 | catheter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3343266B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005177097A (en) * | 2003-12-19 | 2005-07-07 | Asahi Intecc Co Ltd | Intracorporeal catheter |
-
1992
- 1992-09-16 JP JP24532792A patent/JP3343266B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005177097A (en) * | 2003-12-19 | 2005-07-07 | Asahi Intecc Co Ltd | Intracorporeal catheter |
Also Published As
Publication number | Publication date |
---|---|
JP3343266B2 (en) | 2002-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200345979A1 (en) | Transradial Access Systems Particularly Useful for Cerebral Access | |
CA2212808C (en) | Polymeric implements for torque transmission | |
JP4741151B2 (en) | Catheter shaft and method for forming the same | |
US7744587B2 (en) | Surface modified reinforcing member for medical device and method for making same | |
US7455739B2 (en) | Shaped reinforcing member for medical device and method for making the same | |
US4898591A (en) | Nylon-PEBA copolymer catheter | |
RU2576367C2 (en) | Aspiration guide catheter for distal approach | |
CA2813067C (en) | Distal access aspiration guide catheter | |
US8043279B2 (en) | Catheter and medical tube | |
JP3659664B2 (en) | Medical tube | |
US5238004A (en) | High elongation linear elastic guidewire | |
EP0526527B1 (en) | High elongation linear elastic guidewire | |
JP2004526529A (en) | Microcatheter with improved tip and transition | |
JP2001218851A (en) | Catheter | |
JP2000197704A (en) | Medical tube and manufacture thereof | |
JPH04221570A (en) | Catheter assembly | |
JP4815657B2 (en) | Medical polymer blend material and medical balloon using this material | |
CN116966393A (en) | Ultra-thin wall interventional sheath and manufacturing method thereof | |
JP3343266B2 (en) | catheter | |
JP2004033354A (en) | Catheter and method for manufacturing the same | |
JP3756088B2 (en) | Catheter balloon and method of manufacturing the same | |
WO1994002197A9 (en) | Low profile catheter with expandable outer tubular member | |
WO1994002197A1 (en) | Low profile catheter with expandable outer tubular member | |
JP2001299924A (en) | Medical mutlilayer tube and manufacturing method therefor | |
JPH07303693A (en) | Medical tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070823 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090823 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100823 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |