JPH0690085B2 - Interference filter spectroscope - Google Patents
Interference filter spectroscopeInfo
- Publication number
- JPH0690085B2 JPH0690085B2 JP60161720A JP16172085A JPH0690085B2 JP H0690085 B2 JPH0690085 B2 JP H0690085B2 JP 60161720 A JP60161720 A JP 60161720A JP 16172085 A JP16172085 A JP 16172085A JP H0690085 B2 JPH0690085 B2 JP H0690085B2
- Authority
- JP
- Japan
- Prior art keywords
- interference filter
- dielectric thin
- cavity layer
- incident angle
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Optical Filters (AREA)
Description
【発明の詳細な説明】 本発明は平行光路内にバンドパス干渉フィルタを回動自
在に配置して単色光を選択する干渉フィルタ分光装置に
関する。The present invention relates to an interference filter spectroscope for rotatably disposing a bandpass interference filter in a parallel optical path and selecting monochromatic light.
種々の光源から単色光を採り出すためにプリズムやグレ
ーティングが採用される。この方式は光軸調整が難しく
高価でもある。平行光路内に既存の干渉フィルタを回動
自在にした所定波長の単色光をえる方式では,入射角度
が大きくなるにつれて透過率は低下し,尖端は二分され
る。急峻でひずみのない単色光が広範囲に渡ってえられ
る干渉フィルタを採用し,入射角度の設定により所望の
単色光をえようとするのが本発明である。Prisms and gratings are used to extract monochromatic light from various light sources. This method is difficult to adjust the optical axis and is expensive. In a system that obtains monochromatic light of a predetermined wavelength by rotating an existing interference filter in a parallel optical path, the transmittance decreases as the incident angle increases, and the tip is divided into two. The present invention employs an interference filter capable of obtaining steep and undistorted monochromatic light over a wide range, and attempts to obtain desired monochromatic light by setting the incident angle.
表(1)に示すように300℃に加熱したガラス基板G上
に,屈折率が2.25の二酸化チタンを光学膜厚(n×d)
が217.2nmの薄膜として真空蒸着し,その上に屈折率が
1.38のフッ化マグネシウムを同じ光学膜厚の薄膜として
同じように蒸着する。透過光の波長の1/4が光学膜厚に
なる。二酸化チタンとフッ化マグネシウムからなるこの
誘電体薄膜を交互に繰り返し11層積層する。生膜順序が
中間の12番目であるキャビティ層は,屈折率が2.25と1.
38のあいだを採るフッ化セリウム(屈折率は1.58)を光
学膜厚が435nmの薄膜として蒸着する。キャビティ層の
光学膜厚は,透過波長の1/2の整数倍である。このキャ
ビティ層の上に二酸化チタンとフッ化マグネシウムを同
じように交互に繰り返して積層し合計23層の誘電体薄膜
を形成する。中間のキャビティ層に対して上下の繰り返
し層は対称関係にある。As shown in Table (1), on the glass substrate G heated to 300 ° C, titanium dioxide with a refractive index of 2.25 was added to the optical film thickness (n × d)
Is vacuum-deposited as a 217.2 nm thin film, and the refractive index is
1.38 magnesium fluoride of 1.38 is similarly deposited as a thin film of the same optical thickness. The optical film thickness is 1/4 of the wavelength of transmitted light. This dielectric thin film consisting of titanium dioxide and magnesium fluoride is alternately repeated to form 11 layers. The cavity layer, which has the 12th intermediate biofilm sequence, has a refractive index of 2.25 and 1.
Cerium fluoride (refractive index: 1.58), which takes the interval 38, is deposited as a thin film with an optical film thickness of 435 nm. The optical thickness of the cavity layer is an integral multiple of 1/2 of the transmission wavelength. Titanium dioxide and magnesium fluoride are alternately and repeatedly laminated on the cavity layer to form a total of 23 dielectric thin films. The upper and lower repeating layers are symmetrical with respect to the intermediate cavity layer.
この誘電体多層膜フィルムを第4図のように入射光線に
対して逐一傾けて分光器で測定した結果が第2図であ
る。入射角度(θ°)が0,15.27,21.75,26.85,31.25,3
5.25,38.97,42.53,45.95と変化した時の透過スペクトル
曲線が右側より順番に並んでいる。広範囲な入射角度に
わたって急峻で半値幅の極めて小さい単色光がえられ
る。キャビティ層に交互積層と同じ屈折率の誘電体を採
用した従来のフィルタでは入射角度が大きくなるにつれ
て透過率は低下し尖端が二分されるが,本発明ではキャ
ビティ層(共振層)に交互積層の屈折率のあいだの屈折
率を有する誘電体を採用したため,入射光の偏波成分で
あるS波とP波に対する透過波長値にずれを生じなくな
り,減衰や尖端ひずみのない安定した透過光スペクトル
が得られる。 FIG. 2 shows the result of measuring this dielectric multilayer film with a spectroscope while tilting it one by one with respect to the incident light beam as shown in FIG. Incident angle (θ °) is 0,15.27,21.75,26.85,31.25,3
The transmission spectrum curves when changing to 5.25, 38.97, 42.53, 45.95 are arranged in order from the right side. It is possible to obtain monochromatic light that is steep and has an extremely small half-width over a wide range of incident angles. In a conventional filter that employs a dielectric material having the same refractive index as that of the alternating layers in the cavity layer, the transmittance decreases and the tip is divided into two as the incident angle increases. Since a dielectric material with a refractive index between those of the refractive indexes is adopted, there is no deviation in the transmission wavelength values for the S and P waves, which are the polarization components of the incident light, and a stable transmitted light spectrum with no attenuation or tip distortion is obtained. can get.
この干渉フィルタ1を平行光路内で傾けた時の分光デー
タをプロットしたのが第3図である。入射角度(θ°)
に対するピーク透過波長(単色光波長)のシフト量(△
λ)の関係が示されている。このデータとは別に光学膜
厚や透過波長との関係等から,θ=0°の時の透過波長
をλ0,Aが干渉フィルタ固有の定数とすると入射角度θ
の時の透過波長λは式より演算される。FIG. 3 is a plot of the spectral data when the interference filter 1 is tilted in the parallel optical path. Incident angle (θ °)
Shift of peak transmission wavelength (monochromatic light wavelength) with respect to
The relationship of λ) is shown. From the relationship or the like between the optical thickness and transmission wavelength Apart from this data, the incident angle transmission wavelength lambda 0, A is an interference filter specific constant when the θ = 0 ° θ
The transmission wavelength λ at the time of is calculated from the equation.
λ=λ0×(1−A×Sin2θ)1/2…… 定数Aを求めて第3図に描いてみると,恰も×印点を結
んだように両者は合致した。第2図の如き尖端ひずみが
なく半値幅が極めて小さい単色光がえられる本干渉フィ
ルタ採用に起因する。λ = λ 0 × (1-A × Sin 2 θ) 1/2・ ・ ・ When the constant A was obtained and plotted in Fig. 3, the two coincided as if the X mark was connected. This is due to the adoption of the present interference filter that produces monochromatic light with a very small full width at half maximum without the tip distortion as shown in FIG.
第1図は光源2から所定の透過単色光をえる実施例であ
り,ファイバーコリメータ3からの平行光路内に干渉フ
ィルタ1を回動自在に配置する。干渉フィルタ1の支軸
5にツマミ4と歯車を取付け,この歯車に噛合する歯車
を可変抵抗器6側に設ける。ポテンショメータであるこ
の可変抵抗器6の出力をデジタル変換してコンピュータ
7に接続する。このコンピュータ7は可変抵抗器6から
の入力でまず入射角度(θ)を求め上記理論式により
透過光の波長(λ)演算し、その結果を表示器に表示す
る。同図では850nmの透過単色光が得られている。ツマ
ミ4の代わりにパルスモータを採用し,一定間隔の波長
を順次透過しえるように設けても良い。また,干渉フィ
ルタ1のキャビティ層(共振層)として,アルミナ,一
酸化ケイ素,二酸化ジルコンが採用され,交互に積層す
る誘電体薄膜として,二酸化ケイ素等を採用しても良
い。FIG. 1 shows an embodiment in which a predetermined transmitted monochromatic light is obtained from a light source 2, and an interference filter 1 is rotatably arranged in a parallel optical path from a fiber collimator 3. A knob 4 and a gear are attached to a support shaft 5 of the interference filter 1, and a gear meshing with the gear is provided on the variable resistor 6 side. The output of the variable resistor 6 which is a potentiometer is digitally converted and connected to the computer 7. The computer 7 first obtains the incident angle (θ) by the input from the variable resistor 6 and calculates the wavelength (λ) of the transmitted light by the above theoretical formula, and displays the result on the display. In the figure, 850 nm transmitted monochromatic light is obtained. A pulse motor may be adopted instead of the knob 4, and may be provided so as to sequentially transmit wavelengths at a constant interval. Further, alumina, silicon monoxide, zirconium dioxide may be used as the cavity layer (resonance layer) of the interference filter 1, and silicon dioxide or the like may be used as the dielectric thin films that are alternately laminated.
次に作用について説明する。ツマミ4を回して平行光路
内の干渉フィルタ1を所定角度に設定する。この角度は
可変抵抗器6によって検出され,コンピュータ7に入力
されて透過単色光のピーク波長が演算表示される(第1
図)。Next, the operation will be described. The knob 4 is turned to set the interference filter 1 in the parallel optical path at a predetermined angle. This angle is detected by the variable resistor 6 and input to the computer 7 to calculate and display the peak wavelength of the transmitted monochromatic light (first
Figure).
分光光度計としての実施例を第5図に示す。標準光源8
とLED光源9を選択的に干渉フィルタ1に入射し,透過
光を受光器10に導く。検出された干渉フィルタ1の傾き
角度と光度情報により分光スペクトル分布を作成する。
まず,標準光源8を分光し,各波長における光度を記憶
する。次にLED光源9を同じ操作で分光し波長における
光度を求め,割算をして各波長における光度を演算す
る。An embodiment as a spectrophotometer is shown in FIG. Standard light source 8
The LED light source 9 is selectively made incident on the interference filter 1, and the transmitted light is guided to the light receiver 10. A spectral distribution is created from the detected tilt angle of the interference filter 1 and the luminous intensity information.
First, the standard light source 8 is spectrally separated, and the luminous intensity at each wavelength is stored. Next, the LED light source 9 is dispersed by the same operation to obtain the luminous intensity at the wavelength, and the division is performed to calculate the luminous intensity at each wavelength.
要するに,本発明は屈折率の異なる誘電体薄膜を交互に
繰り返して積層し,両誘電体薄膜の屈折率のあいだの屈
折率を有する誘電体薄膜をこの上に積層してキャビティ
層を形成し,このキャビティ層の上に再び上記屈折率の
異なる誘電体薄膜を同じように繰り返し積層してなる干
渉フィルタと,この干渉フィルタを平行光路内に回動自
在に配置して入射角度を変化させる手段と,この入射角
度から透過波長を演算する手段とを有するため,干渉フ
ィルタの入射角度設定により急峻でひずみの少ない透過
単色光を選択できる。In short, according to the present invention, dielectric thin films having different refractive indexes are alternately and repeatedly laminated, and dielectric thin films having a refractive index between those of both dielectric thin films are laminated on the dielectric thin films to form a cavity layer, An interference filter in which dielectric thin films having different refractive indexes are repeatedly laminated on the cavity layer in the same manner, and means for changing the incident angle by rotatably arranging the interference filter in a parallel optical path. Since there is a means for calculating the transmission wavelength from this incident angle, it is possible to select transmitted monochromatic light that is steep and has little distortion by setting the incident angle of the interference filter.
図面は本発明実施例の一例を示すものにして,第1図は
概略説明図,第2図は平行光路内に配置された干渉フィ
ルタの入射角度を順次変化させた時の透過スペクトル
図,第3図は干渉フィルタを徐々に傾けた時のピーク透
過波長の実測値と理論値のグラフ図,第4図は干渉フィ
ルタ内の光の屈折説明図,第5図は分光光度計としての
実施ブロック図である。The drawings show one example of the present invention, FIG. 1 is a schematic explanatory view, FIG. 2 is a transmission spectrum diagram when the incident angle of an interference filter arranged in a parallel optical path is sequentially changed, Fig. 3 is a graph of the measured and theoretical values of the peak transmission wavelength when the interference filter is gradually tilted, Fig. 4 is an explanatory view of the refraction of light in the interference filter, and Fig. 5 is an implementation block as a spectrophotometer. It is a figure.
Claims (2)
して積層し,両誘電体薄膜の屈折率のあいだの屈折率を
有する誘電体薄膜をこの上に積層してキャビティ層を形
成し,このキャビティ層の上に再び上記屈折率の異なる
誘電体薄膜を同じように繰り返し積層してなる干渉フィ
ルタと,この干渉フィルタを平行光路内に回動自在に配
置して入射角度を変化させる手段と,この入射角度から
透過波長を演算する手段とを有する干渉フィルタ分光装
置。1. A dielectric thin film having a different refractive index is alternately and repeatedly laminated, and a dielectric thin film having a refractive index between those of the two dielectric thin films is laminated thereon to form a cavity layer, An interference filter in which dielectric thin films having different refractive indexes are repeatedly laminated on the cavity layer in the same manner, and means for changing the incident angle by rotatably arranging the interference filter in a parallel optical path. , An interference filter spectroscopic device having means for calculating a transmission wavelength from this incident angle.
タン,フッ化マグネシウム,そして二酸化ケイ素の群か
ら二つを採用し,透過波長の半分の整数倍の光学厚さを
有するキャビティ層として,フッ化セリウム,アルミ
ナ,一酸化ケイ素,そし二酸化ジルコンの群から一つを
採用する,特許請求の範囲第1項記載の干渉フィルタ分
光装置。2. Adopting two from the group of titanium dioxide, magnesium fluoride, and silicon dioxide as the dielectric thin film to be laminated alternately, as a cavity layer having an optical thickness of an integral multiple of half the transmission wavelength, The interference filter spectroscopic device according to claim 1, wherein one is selected from the group consisting of cerium oxide, alumina, silicon monoxide, and zircon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161720A JPH0690085B2 (en) | 1985-07-22 | 1985-07-22 | Interference filter spectroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161720A JPH0690085B2 (en) | 1985-07-22 | 1985-07-22 | Interference filter spectroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6222034A JPS6222034A (en) | 1987-01-30 |
JPH0690085B2 true JPH0690085B2 (en) | 1994-11-14 |
Family
ID=15740596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60161720A Expired - Lifetime JPH0690085B2 (en) | 1985-07-22 | 1985-07-22 | Interference filter spectroscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0690085B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63215925A (en) * | 1987-03-04 | 1988-09-08 | Shimadzu Corp | Etalon spectroscope |
JP2938881B2 (en) * | 1988-10-24 | 1999-08-25 | 株式会社ニデック | Lighting equipment |
GB9009132D0 (en) * | 1990-04-24 | 1990-06-20 | Gersan Ets | Method and apparatus for examining an object |
JPH04113235A (en) * | 1990-09-04 | 1992-04-14 | Minolta Camera Co Ltd | Photosensor |
US5225888A (en) * | 1990-12-26 | 1993-07-06 | International Business Machines Corporation | Plasma constituent analysis by interferometric techniques |
JP2873884B2 (en) * | 1991-03-22 | 1999-03-24 | 日立ソフトウェアエンジニアリング 株式会社 | Multicolor electrophoresis pattern reader |
JPH06281813A (en) * | 1993-01-29 | 1994-10-07 | Nec Corp | Transmission wavelength variable device |
US8441710B2 (en) * | 2010-01-08 | 2013-05-14 | Semrock, Inc. | Tunable thin-film filter |
JP5048795B2 (en) | 2010-01-21 | 2012-10-17 | 浜松ホトニクス株式会社 | Spectrometer |
WO2011155026A1 (en) * | 2010-06-08 | 2011-12-15 | 浜松ホトニクス株式会社 | Light source device |
JP5633334B2 (en) | 2010-11-25 | 2014-12-03 | セイコーエプソン株式会社 | Spectrometer |
FR3028051B1 (en) * | 2014-10-31 | 2016-12-09 | Thales Sa | ACTIVE WAVELENGTH MULTIPLEXING STEREOSCOPIC VISUALIZATION SYSTEM |
JP6684875B2 (en) * | 2018-09-13 | 2020-04-22 | 株式会社片岡製作所 | Spectroscopic analyzer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55149023A (en) * | 1979-05-09 | 1980-11-20 | Asahi Chem Ind Co Ltd | Infrared ray spectroscopic method |
JPS55152428A (en) * | 1979-05-17 | 1980-11-27 | Ricoh Co Ltd | Spectroscopic filter and spectrocope provided therewith |
JPS5831307A (en) * | 1981-08-20 | 1983-02-24 | Tokyo Optical Co Ltd | Interference filter |
-
1985
- 1985-07-22 JP JP60161720A patent/JPH0690085B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6222034A (en) | 1987-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0690085B2 (en) | Interference filter spectroscope | |
JP2837868B2 (en) | Spectrometer | |
US7319559B2 (en) | Spectral optical element | |
US9268144B2 (en) | Method for producing a mirror plate for Fabry-Perot interferometer, and a mirror plate produced by the method | |
EP2397873A1 (en) | Infrared optical filter and method for producing same | |
CN102375172B (en) | Light filter, filter module, optical spectrum instrumentation and light device | |
JPH04213403A (en) | Variable wavelength optical filter and sensor system | |
WO2001001070A1 (en) | Light source device, spectroscope comprising the light source device, and film thickness sensor | |
JP3941432B2 (en) | Film thickness measurement method | |
CN211013242U (en) | Spectrum calibration structure based on gradual change optical microcavity | |
JPH06265722A (en) | Wavelength variable type interference optical filter and its production and wavelength variable type interference optical filter device | |
JP3937748B2 (en) | Colored film thickness measuring apparatus and colored film thickness measuring method | |
JPH07103824A (en) | Spectrometer | |
JP3512974B2 (en) | Laser light source wavelength monitor | |
JPH06281812A (en) | Wavelength variable type interference optical filter device | |
JP5226420B2 (en) | Optical filter | |
JP4547489B2 (en) | Optical thin film forming apparatus equipped with film thickness measuring device and optical thin film forming method | |
JPH0526162B2 (en) | ||
Turner et al. | For Compactness and Ruggedness, Linear Variable Filters Fit the Bill | |
JP2002311236A (en) | Variable wavelength interference optical filter, production method therefor and variable wavelength interference optical filter device | |
WO2022137902A1 (en) | Optical member and optical device | |
JPH11304588A (en) | Narrow-band filter device | |
JPS62203024A (en) | Fabry-perot spectroscope | |
Barr | Visible and ultraviolet bandpass filters | |
Greenler | Interferometric spectrometer for the infrared |