JP2005031007A - Spectroscope using liquid crystal - Google Patents

Spectroscope using liquid crystal Download PDF

Info

Publication number
JP2005031007A
JP2005031007A JP2003272644A JP2003272644A JP2005031007A JP 2005031007 A JP2005031007 A JP 2005031007A JP 2003272644 A JP2003272644 A JP 2003272644A JP 2003272644 A JP2003272644 A JP 2003272644A JP 2005031007 A JP2005031007 A JP 2005031007A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
cell
interferometer
spectroscopic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272644A
Other languages
Japanese (ja)
Inventor
Tetsuya Miyashita
哲哉 宮下
Tatsuo Uchida
龍男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Brains Corp
Original Assignee
Tohoku Techno Brains Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Brains Corp filed Critical Tohoku Techno Brains Corp
Priority to JP2003272644A priority Critical patent/JP2005031007A/en
Publication of JP2005031007A publication Critical patent/JP2005031007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectroscope using liquid crystal, light in weight, light in transmission light, capable of obtaining high spectrum precision, and moreover is capable of being manufactured easily. <P>SOLUTION: The spectroscope is constituted, such that for an interferometer 10 for light separation with the Fourier transform spectrometer which uses a liquid crystal panel 10A, in which one or multiple liquid crystal cells 12 are held between a pair of polarizers 11 and 13, with the light 1 incident on the liquid crystal panel is divided into two components of normal light 1A and abnormal light 1B; and by varying the cell voltage of the liquid crystal cells, the optical path difference δ between the two components is generated, and the resultant interference light 2 is emitted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶を用いた分光装置に関し、特にフーリエ変換分光法で分光する液晶を用いた分光装置に関する。   The present invention relates to a spectroscopic device using a liquid crystal, and more particularly to a spectroscopic device using a liquid crystal that performs spectroscopy by Fourier transform spectroscopy.

液晶を用いた分光装置として、平行偏光子で挟まれた光学的1軸結晶(偏光子と1軸結晶との光軸位相差は45°)を複数積層(1軸結晶の厚さは入射光側からd、2d、4d)してなるリオフィルタ(非特許文献1: ただし、これは液晶を用いていない。) において、光学的1軸結晶の積層の代わりに、液晶セルの1種であるECBセル(electrically controlled birefringent cells)の積層(セル厚はどのセルも同じd)を用いたバンドパスフィルタが提案された(非特許文献2)。なお、非特許文献2のバンドパスフィルタでは可視波長内の不要波長光の透過を抑えるために複数のECBセルのうちの1枚が直交偏光子で挟まれている。これによれば、液晶層に印加する電圧すなわちセル電圧を変えることで、狭い透過スペクトルを示す波長域(または波数域)を変えうるので、フィルタを交換しなくても複数種の狭い透過スペクトルが得られるという長所がある。しかし、リオフィルタの光学的条件を満たすにはセル電圧をセルごとに違えてやらねばならず、そのため複雑な電圧制御回路が必要になる短所があった。   As a spectroscopic device using liquid crystal, a plurality of optical uniaxial crystals sandwiched between parallel polarizers (the optical axis phase difference between the polarizer and the uniaxial crystal is 45 °) are laminated (the thickness of the uniaxial crystal is incident light). In the rio filter formed by d, 2d, and 4d from the side (Non-Patent Document 1: This does not use liquid crystal), it is a kind of liquid crystal cell instead of a stack of optical uniaxial crystals. A band-pass filter using a stack of ECB cells (electrically controlled birefringent cells) (cell thickness is the same for all cells d) has been proposed (Non-patent Document 2). In the bandpass filter of Non-Patent Document 2, one of a plurality of ECB cells is sandwiched between orthogonal polarizers in order to suppress transmission of unnecessary wavelength light within the visible wavelength. According to this, the wavelength range (or wave number range) showing a narrow transmission spectrum can be changed by changing the voltage applied to the liquid crystal layer, that is, the cell voltage, so that a plurality of types of narrow transmission spectra can be obtained without replacing the filter. There is an advantage that it can be obtained. However, in order to satisfy the optical conditions of the rio filter, the cell voltage must be changed for each cell, and thus a complicated voltage control circuit is required.

この短所をなくしたものとして、弾性連続体理論(非特許文献3)に基づき液晶層の電気的‐光学的性質を解析して得られた、セル内の液晶の配向はセル電圧レベルがどうであれセル厚に無関係であるという知見に基づき、積層するECBセルのセル厚をリオフィルタの光学的条件を満たす組み合わせ、すなわち入射側からd、2d、1.5 dとした、電気的に調整可能なカラーフィルタが提案された(非特許文献3)。   In order to eliminate this disadvantage, the orientation of the liquid crystal in the cell obtained by analyzing the electro-optical properties of the liquid crystal layer based on the elastic continuum theory (Non-patent Document 3) Based on the knowledge that there is no relation to the cell thickness, the cell thickness of the ECB cell to be stacked is a combination that satisfies the optical conditions of the Rio filter, ie, d, 2d, 1.5 d from the incident side, and an electrically adjustable color A filter has been proposed (Non-Patent Document 3).

これによれば、セル電圧をどのセルでも同じとし、それを供給する単一の電源の電圧を制御するだけで複数種の狭い透過スペクトルが得られるので、電圧制御回路は極めて単純なもので足りる。なお、非特許文献3では、応答性を改善するために厚み比を保ったままセル厚を薄くし、かつ各セルにリタデーションフィルム(厚み比はセルと同じ 1:2:1.5 )を付属させたもの、および、ECBセルに代えて、視野角および応答性に優れるOCBセル(optically compensated bend cells)(非特許文献4〜11)を採用したものも提案されている。   According to this, since the cell voltage is the same in any cell and a plurality of types of narrow transmission spectra can be obtained simply by controlling the voltage of a single power supply that supplies the cell voltage, the voltage control circuit is very simple. . In Non-Patent Document 3, in order to improve responsiveness, the cell thickness was reduced while maintaining the thickness ratio, and a retardation film (1: 2: 1.5 which is the same as the cell) was attached to each cell. In place of the ECB cell and the ECB cell, an OCB cell (optically compensated bend cells) (Non-Patent Documents 4 to 11) excellent in viewing angle and response has been proposed.

一方、液晶を用いていないものであるが、本発明をなす上で参考にした分光装置として、フーリエ変換赤外分光光度計(FT‐IR:Fourier Transform Infrared Spectroscopy )がある。これは、干渉計によって得られる干渉光をデジタル信号化し、それをコンピュータでフーリエ変換することにより分光するもので、詳しくは、光源から出た光を干渉計に通して干渉光を作り、これを試料室に通して試料に照射し、そこから出てきた光(反射光、散乱光または透過光)を検知器で捉え、検知器の出力信号をAD(アナログ‐デジタル)変換器でデジタル化した後、コンピュータへ送信し、コンピュータがこの送信データをフーリエ変換し、得られたスペクトル波形をディスプレイに表示させるように構成されている。   On the other hand, there is a Fourier Transform Infrared Spectroscopy (FT-IR) as a spectroscopic device that is not used for liquid crystal but is referred to in making the present invention. In this method, the interference light obtained by the interferometer is converted into a digital signal and spectrally dispersed by Fourier transforming it with a computer. Specifically, the light emitted from the light source is passed through the interferometer to produce interference light, which is The sample is irradiated through the sample chamber, the light (reflected light, scattered light, or transmitted light) emitted from the sample chamber is captured by a detector, and the output signal of the detector is digitized by an AD (analog-digital) converter. Thereafter, the data is transmitted to a computer, and the computer performs a Fourier transform on the transmitted data, and the obtained spectrum waveform is displayed on a display.

干渉計は、入ってきた光を複数の光路に分け、それらの間に光路差を作って再び合成することにより干渉を起こさせる構造をもつ光学素子であって、もともとは天体観測で星からの微弱な光を感度良く計測したり、光学レンズや鏡の面精度の精密測定を行う目的で作られ、19世紀以来、様々なものが考案されてきたが、FT‐IRではマイケルソン干渉計が最もよく使われている。   An interferometer is an optical element that has a structure that causes interference by dividing incoming light into multiple optical paths, creating optical path differences between them, and synthesizing them again. It was created for the purpose of measuring faint light with high sensitivity and precise measurement of the surface accuracy of optical lenses and mirrors. Various things have been devised since the 19th century, but FT-IR uses a Michelson interferometer. Most commonly used.

マイケルソン干渉計は、1枚の半透鏡と2枚の平面鏡(うち1枚は移動鏡、もう1枚は固定鏡)とで構成されている。半透鏡に入射した光は直進の方向に透過する透過光と直角の方向に反射する反射光の2光束に分割される。両光束は平面鏡で折り返されて戻り、再び半透鏡で合成される。移動鏡を移動させることで両光束間の光路差が作られる。   The Michelson interferometer is composed of one semi-transparent mirror and two plane mirrors (one of which is a moving mirror and the other is a fixed mirror). The light incident on the semi-transparent mirror is divided into two beams of reflected light that are reflected in a direction perpendicular to the transmitted light that is transmitted in the straight direction. Both luminous fluxes are folded back by a plane mirror and synthesized again by a semi-transparent mirror. By moving the moving mirror, an optical path difference between the two light beams is created.

入射光が波長λ(波数ν=1/λ)の単色光の場合、両光束は、光路差がλ/2の倍数のところで逆位相となって弱め合い、光路差が0またはλの倍数のところで同位相となって強め合う。したがって、移動鏡を連続的に移動させて干渉計からの出力光を観測すると明暗の周期的な繰り返しとなる。光路差を横軸にとってこれをグラフ化すると結局、入射光の波長に従ったコサイン波になる。入射光が波長の違う2つの単色光の場合、移動鏡の連続走査により、各々の単色光はその波長に従って変調され、干渉計からの出力光は2つのコサイン波の和として観測される。さらに多くの波長の光を導入しても、それぞれの波長成分ごとに変調された合成波が出力されることになり、波長の連続した実際の光源からの光では光路差が大きくなるにつれて強度が減衰していくような出力波形が観察される。この波形をインターフェログラムという。インターフェログラムに含まれている各周波数の信号強度を分析することにより、各波長(波数)の光の強度が求まる。   When the incident light is monochromatic light having a wavelength λ (wave number ν = 1 / λ), both light beams are weakened in opposite phases when the optical path difference is a multiple of λ / 2, and the optical path difference is 0 or a multiple of λ. By the way, it becomes the same phase and strengthens each other. Therefore, when the output light from the interferometer is observed by continuously moving the movable mirror, the light and dark are periodically repeated. When this is graphed with the optical path difference as the horizontal axis, the result is a cosine wave according to the wavelength of the incident light. When the incident light is two monochromatic lights having different wavelengths, each monochromatic light is modulated according to the wavelength by continuous scanning of the moving mirror, and the output light from the interferometer is observed as a sum of two cosine waves. Even if light with more wavelengths is introduced, a composite wave modulated for each wavelength component is output, and the intensity of the light from an actual light source having continuous wavelengths increases as the optical path difference increases. A decreasing output waveform is observed. This waveform is called an interferogram. By analyzing the signal intensity of each frequency included in the interferogram, the intensity of light of each wavelength (wave number) can be obtained.

光路差をδとしたとき、インターフェログラムF(δ)は数1式に示す積分関数で表される。   When the optical path difference is δ, the interferogram F (δ) is expressed by an integral function shown in Formula 1.

Figure 2005031007
Figure 2005031007

B(ν)は、波数ごとの光の強度を表した、所謂スペクトルである。数1式はフーリエ変換の式に相当するものであり、この計算を行う(インターフェログラムをフーリエ変換する)ことにより、スペクトルが求められる。FT‐IRではコンピュータがこの計算を行う。
B.Lyot:Comptes Rendus 197,1593(1933) K.Sato,N.Kato,Y.Hanazawa and T.Uchida:proc.Japan Display,392(1989);proc.SID 32,183(1991) P.Sheng:RCA Laboratories,Princeton,N.J.08540 S.Araki,H.Chiba,M.Suzuki,T.Miyashita,T.Uchida:Proc.Eurodisplay'99 19thInt.Display Research Conf.p.133-136(1999) Y.Yamaguchhu,T.Miyashita and T.Uchida:SID Symp.Digest,p.277(1993) T.Miyashita,P.Vetter,M.Suzuki,Y.Yamaguchi and T.Uchida: Eurodisplay Conf.Proc.,p.149(1993);J.SID,3,p.29(1995) C-L.Kuo,T.Miyashita,M.Suzuki and T.Uchida:SID Symp.Digest,p.927(1994);Japan.J.Appl.Phys.,34(1995)L1362;Appl.Phys.Lett.,68.p.1461(1996) T.Miyashita and T.Uchida:IEICE Trans.Electronics,E79E-C.p.1076(1996) T.Miyashita and T.Uchida:Digest of Technical Paper,AM-LCD,p.181(1996) T.Uchida,K.Saitoh,T.Miyashita and M.Suzuki:Conf.Record of The International Display Research Conf.,p.37(1997) K.Saitoh,T.Miyashita,M.Suzuki and T.Uchida:Proc.International Display Workshops,p.179(1997)
B (ν) is a so-called spectrum representing the intensity of light for each wave number. Equation 1 corresponds to an equation of Fourier transform, and a spectrum is obtained by performing this calculation (Fourier transform of the interferogram). In FT-IR, the computer performs this calculation.
B.Lyot: Comptes Rendus 197,1593 (1933) K. Sato, N. Kato, Y. Hanazawa and T. Uchida: proc. Japan Display, 392 (1989); proc. SID 32, 183 (1991) P.Sheng: RCA Laboratories, Princeton, NJ08540 S. Araki, H. Chiba, M. Suzuki, T. Miyashita, T. Uchida: Proc. Eurodisplay '99 19th Int. Display Research Conf. P. 133-136 (1999) Y. Yamaguchhu, T. Miyashita and T. Uchida: SID Symp. Digest, p. 277 (1993) T.Miyashita, P. Vetter, M. Suzuki, Y. Yamaguchi and T. Uchida: Eurodisplay Conf. Proc., P. 149 (1993); J. SID, 3, p. 29 (1995) CL. Kuo, T. Miyashita, M. Suzuki and T. Uchida: SID Symp. Digest, p. 927 (1994); Japan. J. Appl. Phys., 34 (1995) L1362; Appl. Phys. Lett., 68.p.1461 (1996) T.Miyashita and T.Uchida: IEICE Trans.Electronics, E79E-Cp1076 (1996) T. Miyashita and T. Uchida: Digest of Technical Paper, AM-LCD, p.181 (1996) T. Uchida, K. Saitoh, T. Miyashita and M. Suzuki: Conf. Record of The International Display Research Conf., P. 37 (1997) K. Saitoh, T. Miyashita, M. Suzuki and T. Uchida: Proc. International Display Workshops, p. 179 (1997)

上記した従来の技術において、液晶を用いたリオフィルタ型の分光装置は、1枚の液晶セルまたはこれと1枚のリタデーションフィルムとの2枚重ねを1対の偏光子で挟んだもの(これを液晶パネルという)を少なくとも3枚重ねにして構成する(隣り合う液晶パネルでは偏光子の共有可)必要がある。しかも、セル厚はリオフィルタ条件から決まる下限よりも薄くすることはできない。そのため、重量が重くなって携帯に不便であるという問題や、透過光が暗くなり観測しづらいという問題があり、また、重ね合わせる異種層の数が多いため高精度の製造は難しく、そのため分光精度に限界があるという問題もある。   In the prior art described above, a rio filter type spectroscopic device using liquid crystal is a liquid crystal cell or a laminate of two sheets of this and a retardation film sandwiched between a pair of polarizers (this is The liquid crystal panel is required to be configured by stacking at least three sheets (polarizers can be shared between adjacent liquid crystal panels). Moreover, the cell thickness cannot be made thinner than the lower limit determined by the Rio filter conditions. Therefore, there is a problem that the weight is heavy and it is inconvenient to carry, and the transmitted light becomes dark and difficult to observe, and because there are many different layers to overlap, it is difficult to manufacture with high accuracy. There is also a problem that there is a limit.

本発明は、これらの問題を解決し、重量が軽く、透過光が明るく、高い分光精度が得られ、しかも製造しやすい、液晶を用いた分光装置を提供することを目的とする。   An object of the present invention is to solve these problems, and to provide a spectroscopic device using liquid crystal that is light in weight, bright in transmitted light, high in spectral accuracy, and easy to manufacture.

本発明は、次のとおりである。   The present invention is as follows.

(1)1枚又は複数枚の液晶セルを1対の偏光子で挟んだ1枚の液晶パネルを用い、該液晶パネルに入射した光を常光と異常光の二成分に分け、前記液晶セルのセル電圧を変更することにより前記二成分の光に光路差をつけてそれらを合成した干渉光を出射するよう構成された干渉計と、該干渉計から出射された干渉光を2次元的に検知して電気の信号に変換し出力する光検出器と、該光検出器の出力をコンピュータに入力するための変換器と、該変換器から出力された信号を受信し、該受信した信号および前記光路差からフーリエ変換により可視光のスペクトルを算出するコンピュータとを有することを特徴とする液晶を用いた分光装置。   (1) Using one liquid crystal panel in which one or a plurality of liquid crystal cells are sandwiched between a pair of polarizers, the light incident on the liquid crystal panel is divided into two components of ordinary light and extraordinary light. An interferometer configured to emit an interference light obtained by combining the two components of light by changing the cell voltage to add an optical path difference, and two-dimensionally detecting the interference light emitted from the interferometer A photodetector that converts the signal into an electrical signal and outputs it, a converter for inputting the output of the photodetector to a computer, a signal output from the converter, the received signal, and the A spectroscopic device using liquid crystal, comprising: a computer that calculates a spectrum of visible light by Fourier transform from an optical path difference.

(2)前記液晶セルを1軸性の液晶セルとし、該液晶セルの光軸と前記偏光子の透過軸とを斜交させたことを特徴とする(1)記載の液晶を用いた分光装置。   (2) The spectroscopic device using the liquid crystal according to (1), wherein the liquid crystal cell is a uniaxial liquid crystal cell, and the optical axis of the liquid crystal cell and the transmission axis of the polarizer are obliquely crossed. .

(3)前記光検出器を、前記干渉計から出射された干渉光を検知するものに代えて、前記干渉計から出射された干渉光を照射された物体から出射した光を検知するものとしたことを特徴とする(1)または(2)に記載の液晶を用いた分光装置。   (3) Instead of detecting the interference light emitted from the interferometer, the light detector detects light emitted from an object irradiated with the interference light emitted from the interferometer. A spectroscopic device using the liquid crystal according to (1) or (2).

(4)前記1対の偏光子の一方と他方の間に挿入された少なくとも1枚のリタデーションフィルムを有することを特徴とする(1)〜(3)のいずれかに記載の液晶を用いた分光装置。   (4) Spectroscopy using the liquid crystal according to any one of (1) to (3), which has at least one retardation film inserted between one and the other of the pair of polarizers apparatus.

(5)前記液晶セルがOCBセルであることを特徴とする(4)記載の液晶を用いた分光装置。   (5) The spectroscopic device using liquid crystal according to (4), wherein the liquid crystal cell is an OCB cell.

(6)前記光検出器に検知される前の光から所定の波長成分を取り除くカットフィルタを有することを特徴とする(1)〜(5)のいずれかに記載の液晶を用いた分光装置。   (6) The spectroscopic device using the liquid crystal according to any one of (1) to (5), further including a cut filter that removes a predetermined wavelength component from the light before being detected by the photodetector.

本発明によれば、1枚の液晶パネルを干渉計として用いてフーリエ変換分光法により分光する構成としたことにより、重量が軽く、透過光が明るく、高い分光精度が得られ、しかも製造しやすい分光装置が実現する。   According to the present invention, a single liquid crystal panel is used as an interferometer to perform spectroscopy by Fourier transform spectroscopy, so that the weight is light, the transmitted light is bright, high spectral accuracy is obtained, and manufacturing is easy. A spectroscopic device is realized.

本発明の分光装置は、例えば図1に示すように、入射光1を常光と異常光の二成分の間に光路差をつけて合成した干渉光2を出射する干渉計10と、干渉計10から出射された干渉光2を2次元的に検知して電気の信号3に変換し出力する光検出器20と、光検出器20から出力された信号3をコンピュータに入力可能な信号4に変換して出力する変換器30と、変換器30から出力された信号4を受信し、該受信した信号4および前記光路差からフーリエ変換により可視光のスペクトルを算出するコンピュータ40とを有する。入射光1は、自然光源からの光であってもよく、また人工光源からの光であってもよい。   For example, as shown in FIG. 1, the spectroscopic device of the present invention includes an interferometer 10 that emits interference light 2 that is obtained by combining an incident light 1 with an optical path difference between two components of ordinary light and abnormal light, and an interferometer 10. Detector 20 that detects the interference light 2 emitted from the laser beam two-dimensionally, converts it into an electrical signal 3 and outputs it, and converts the signal 3 output from the photodetector 20 into a signal 4 that can be input to a computer. And a computer 40 that receives the signal 4 output from the converter 30 and calculates the spectrum of visible light by Fourier transform from the received signal 4 and the optical path difference. The incident light 1 may be light from a natural light source or light from an artificial light source.

そして本発明では、干渉計10として、例えば図3および図4に示すように、1枚の液晶セル12(セル厚をdとする)を1対の偏光子11、13で挟んだ1枚の液晶パネル10Aを用い、液晶パネル10Aに入射した入射光1を常光1Aと異常光1Bの二成分に分け、液晶セル12のセル電圧を、セル電圧設定器50等を用いて変更することにより常光1Aと異常光1Bとに光路差δをつけてそれらを合成した干渉光2を出射するよう構成したものを用いる。なお、図3、図4に例示した液晶セル12は、1軸性のものを用いたが、2軸性のものやTN(ツイストネマティック)液晶セルでも使用できる。1軸性の場合、液晶セル12の光軸15と偏光子11,13の透過軸14,16とを斜交(斜めに交差)させる必要がある。その交差角θ1、θ2は、θ1=θ2=45°とするのが好ましい。   In the present invention, as the interferometer 10, for example, as shown in FIGS. 3 and 4, one liquid crystal cell 12 (cell thickness d is assumed to be d) is sandwiched between a pair of polarizers 11 and 13. By using the liquid crystal panel 10A, the incident light 1 incident on the liquid crystal panel 10A is divided into two components of ordinary light 1A and extraordinary light 1B, and the cell voltage of the liquid crystal cell 12 is changed by using the cell voltage setting device 50 or the like. An optical path difference δ is added to 1A and extraordinary light 1B so as to emit interfering light 2 that is synthesized is used. Although the liquid crystal cell 12 illustrated in FIGS. 3 and 4 is a uniaxial one, it can also be used as a biaxial one or a TN (twisted nematic) liquid crystal cell. In the case of uniaxiality, the optical axis 15 of the liquid crystal cell 12 and the transmission axes 14 and 16 of the polarizers 11 and 13 need to be obliquely crossed (obliquely crossed). The crossing angles θ1, θ2 are preferably θ1 = θ2 = 45 °.

セル電圧はコンピュータ40から伝送経路6を介して干渉計10のセル電圧設定器50に指令される。なお、セル電圧は、コンピュータ40から指令する代わりに、セル電圧設定器50が自分で設定し、その設定した値をコンピュータ40に送信するようにしてもよい。あるいは干渉計10がコンピュータ40からの指令を確かに受信した旨の確認信号をコンピュータ40に送信するようにしてもよい。また、さらには、コンピュータ40から伝送径路7,8を介して光検出器20、変換器30にそれぞれの動作のタイミングを指令するようにしてもよい。   The cell voltage is commanded from the computer 40 to the cell voltage setter 50 of the interferometer 10 via the transmission path 6. Note that the cell voltage may be set by the cell voltage setting unit 50 by itself instead of instructing from the computer 40, and the set value may be transmitted to the computer 40. Alternatively, the confirmation signal indicating that the interferometer 10 has surely received the command from the computer 40 may be transmitted to the computer 40. Further, the operation timing may be instructed from the computer 40 to the photodetector 20 and the converter 30 via the transmission paths 7 and 8.

光検出器20は複数のCCD等の受光素子を2次元的に配置して構成され、各受光素子からの信号がAD変換器30でコンピュータ40に入力可能な信号に変換される。   The photodetector 20 is configured by two-dimensionally arranging a plurality of light receiving elements such as CCDs, and signals from each light receiving element are converted into signals that can be input to the computer 40 by the AD converter 30.

液晶パネル10Aの偏光子11、13の透過軸14、16間の位相関係は直交(クロスニコル;図3参照)、平行(パラレルニコル;図4参照)のいずれでもよい。なお、出射側の偏光子13を入射側の偏光子11と区別して検光子という。   The phase relationship between the transmission axes 14 and 16 of the polarizers 11 and 13 of the liquid crystal panel 10A may be either orthogonal (cross Nicol; see FIG. 3) or parallel (parallel Nicol; see FIG. 4). The exit side polarizer 13 is distinguished from the entrance side polarizer 11 and is referred to as an analyzer.

上記の液晶パネル10Aで構成された干渉計10では、θ1=θ2=45°とした場合、波数ν(= 1/λ)の入射光1が分かれてできる常光1Aと異常光1Bの強度は等しくなり、これをIとすると、合成されて検光子13を通過した干渉光2の強度Iは、次式で与えられる。 In the interferometer 10 composed of the above-described liquid crystal panel 10A, when θ1 = θ2 = 45 °, the intensity of the ordinary light 1A and the extraordinary light 1B generated by dividing the incident light 1 having the wave number ν (= 1 / λ) is equal. It will, when it is referred to as I i, the intensity I t of the interference light 2 which has passed through the analyzer 13 are combined is given by the following equation.

クロスニコルの場合 : I=(1/2) I{1−cos(2πδν)}
パラレルニコルの場合: I=(1/2) I{1+cos(2πδν)}
ここで、光路差δは、δ=Δn(V)d で与えられる。Δn(V)は、常光と異常光の屈折率の差であり、これはセル電圧Vの関数で与えられる。すなわち、液晶パネル10Aを用いて構成した干渉計10は、セル電圧Vを変えることにより光路差δを違えて干渉光2を得ることができる。なお、θ1=θ2=45°でない場合や1軸性以外の液晶セルを用いた場合は、常光と異常光の強度に差が生じるため、干渉光の強度Iの計算式がやや複雑となるが、同様にして光路差δを違えて干渉光を得ることができる。
For cross nicol: I t = (1/2) I i {1-cos (2πδν)}
In the case of parallel Nicol: I t = (1/2) I i {1 + cos (2πδν)}
Here, the optical path difference δ is given by δ = Δn (V) d. Δn (V) is a difference in refractive index between ordinary light and extraordinary light, which is given as a function of the cell voltage V. That is, the interferometer 10 configured using the liquid crystal panel 10A can obtain the interference light 2 by changing the cell voltage V to change the optical path difference δ. In the case of using the liquid crystal cell than when or uniaxial not θ1 = θ2 = 45 °, to produce a difference in intensity of ordinary and extraordinary light, calculation of the interference light intensity I t becomes somewhat complicated However, it is possible to obtain interference light by changing the optical path difference δ in the same manner.

入射光1が連続スペクトル分布をもつ場合、入射光の波数ごとの光の強度をB(ν)とすると、光検出器の各受光素子からは光路差δに応じて前記数1式の上側の式で表されるインターフェログラムF(δ)に相当するアナログ信号が出力されるから、それらを変換器でデジタル信号に変換して、F(δ)のフーリエ変換式すなわち前記数1式の下側の式をコンピュータで計算することにより、可視光の2次元的なスペクトルを測定することができる。   When the incident light 1 has a continuous spectral distribution, assuming that the intensity of the light for each wave number of the incident light is B (ν), each light receiving element of the photodetector detects the upper side of the equation 1 according to the optical path difference δ. Since analog signals corresponding to the interferogram F (δ) expressed by the equation are output, they are converted into digital signals by a converter, and the Fourier transform equation of F (δ), that is, The two-dimensional spectrum of visible light can be measured by calculating the equation on the side with a computer.

本発明では、従来の液晶を用いた分光装置が少なくとも3枚の液晶パネルを用いたリオフィルタであったのに対し、1枚の液晶パネルを用いて干渉計を構成し、フーリエ変換分光法で分光を行うものとしたので、従来のものに比べて重量が軽く、透過光が明るく、高い分光精度が得られる。また、製造も容易である。   In the present invention, a conventional spectroscopic device using liquid crystal is a rio filter using at least three liquid crystal panels, whereas an interferometer is configured using one liquid crystal panel, and Fourier transform spectroscopy is used. Since spectroscopy is performed, the weight is lighter than the conventional one, the transmitted light is bright, and high spectral accuracy is obtained. Moreover, manufacture is also easy.

また、従来のマイケルソン干渉計に比べ、移動鏡のような移動部をもたないから構造が簡素である。また、従来の干渉計ではスリット光を分光するので試料とした物体の2次元像内のスペクトル分布を一度に測定することはできなかったが、本発明では物体の全体あるいはその任意の部分を一視野に入れて撮影しうる光検出器を用いるので、物体の2次元像内のスペクトル分布を一度に測定することができる。   Compared to the conventional Michelson interferometer, the structure is simple because it does not have a moving part like a moving mirror. In addition, since the conventional interferometer splits the slit light, the spectral distribution in the two-dimensional image of the object used as the sample could not be measured at a time. However, in the present invention, the entire object or an arbitrary part thereof is measured. Since a photodetector that can be photographed in the field of view is used, the spectral distribution in the two-dimensional image of the object can be measured at a time.

なお、図1に示した例は、物体から出てきた光を干渉計に入射させる方式の装置であるが、本発明はこれに限らず、例えば図2に示すように、干渉計10と光検出器20の間に試料とした物体100 を置き、干渉計10から出射させた干渉光2を試料100 に照射し、試料100 から出射した光(反射光、透過光、散乱光のいずれでもよい)2Aを光検出器20で受光する方式の装置であってもよい。この方式は、試料が強い光を照射されると壊れるようなものである場合に好適に採用できる。   The example shown in FIG. 1 is an apparatus of a type in which light emitted from an object is incident on the interferometer. However, the present invention is not limited to this, and for example, as shown in FIG. An object 100 as a sample is placed between the detectors 20, the sample 100 is irradiated with the interference light 2 emitted from the interferometer 10, and the light emitted from the sample 100 (any of reflected light, transmitted light, and scattered light may be used). ) A device that receives 2A by the photodetector 20 may be used. This method can be suitably employed when the sample is broken when irradiated with strong light.

また、本発明では、液晶パネル10A内の液晶セルは、1枚に限らず複数枚であってもよい。液晶セルを複数枚重ねて用いると、セルギャップの小さい液晶セルを用いることができるため応答速度の点で有利である。液晶セルが複数枚の場合、例えば図5に液晶セルが3枚の場合を示すように、液晶セル12a、12b、12cには同一のセル電圧を印加すればよい。この場合、光路差δは、各液晶セルの合計の値で与えられる。   In the present invention, the number of liquid crystal cells in the liquid crystal panel 10A is not limited to one, but may be a plurality. When a plurality of liquid crystal cells are used in an overlapping manner, a liquid crystal cell having a small cell gap can be used, which is advantageous in terms of response speed. When there are a plurality of liquid crystal cells, for example, as shown in FIG. 5 where there are three liquid crystal cells, the same cell voltage may be applied to the liquid crystal cells 12a, 12b and 12c. In this case, the optical path difference δ is given by the total value of each liquid crystal cell.

また、本発明では、偏光子11と検光子13の間に、リタデーションフィルムを挿入してもよい。液晶セルとリタデーションフィルムを併用すると、リタデーション量をプラスもしくはマイナスすることができるため、印加する電圧の範囲と必要なリタデーションの範囲を変えたい場合に有利である。リタデーションフィルムの枚数は1枚でも複数枚でもよい。また、リタデーションフィルム17を挿入する位置は、例えば図6に示すように、偏光子11と液晶セル12の間(図6(a))、液晶セル12と検光子13の間(図6(b))のいずれでもよく、あるいは液晶セルが複数枚の場合は、ある液晶セル12aとその隣の液晶セル12bの間(図6(c))でもよい。   In the present invention, a retardation film may be inserted between the polarizer 11 and the analyzer 13. When the liquid crystal cell and the retardation film are used in combination, the amount of retardation can be increased or decreased, which is advantageous when it is desired to change the voltage range to be applied and the necessary retardation range. The number of retardation films may be one or more. Further, the positions where the retardation film 17 is inserted are, for example, as shown in FIG. 6, between the polarizer 11 and the liquid crystal cell 12 (FIG. 6A), and between the liquid crystal cell 12 and the analyzer 13 (FIG. 6B). )), Or when there are a plurality of liquid crystal cells, it may be between a certain liquid crystal cell 12a and the adjacent liquid crystal cell 12b (FIG. 6C).

また、本発明では、液晶セルとリタデーションフィルムを併用する場合、液晶セルとしては、応答特性および広視野角特性に優れているという点で、OCBセル(非特許文献4〜11参照)を用いることが好ましい。   Moreover, in this invention, when using a liquid crystal cell and a retardation film together, as a liquid crystal cell, an OCB cell (refer nonpatent literature 4-11) is used by the point that it is excellent in the response characteristic and the wide viewing angle characteristic. Is preferred.

また、本発明では、例えば図7に示すように、光検出器20に入射する前の、干渉光2(図7(a)参照)、あるいは干渉光2を照射した物体100 から出射した光2Aから、所定の波長成分を取り除くカットフィルタ18を有することが好ましい。このようなカットフィルタとしては例えば赤外線カットフィルタ、紫外線カットフィルタが挙げられる。このようなカットフィルタを設けることにより、光検出器20には、干渉光2あるいは干渉光2を照射した物体100 から出射した光2Aから所定の波長成分が取り除かれた光2Bが入射するので、赤外線あるいは紫外線等といった分光対象としない波長成分が入ることに起因する折り返しノイズが除去され、より高い分解能の装置とすることができる。   Further, in the present invention, for example, as shown in FIG. 7, the interference light 2 (see FIG. 7A) before entering the photodetector 20, or the light 2A emitted from the object 100 irradiated with the interference light 2 Therefore, it is preferable to have a cut filter 18 that removes a predetermined wavelength component. Examples of such a cut filter include an infrared cut filter and an ultraviolet cut filter. By providing such a cut filter, the light 2B from which the predetermined wavelength component is removed from the interference light 2 or the light 2A emitted from the object 100 irradiated with the interference light 2 enters the photodetector 20. The aliasing noise caused by the introduction of wavelength components that are not subject to spectroscopy, such as infrared rays or ultraviolet rays, is eliminated, and a higher resolution device can be obtained.

図1に示した構成をもつ分光装置を試作した。液晶パネルは図6(a)の形態とした。液晶セルにはOCBセル(液晶:チッソ石油化学(株)製TD‐6004XX、セル厚d=10μm)を用いた。液晶セルの光軸と偏光子および検光子(クロスニコルとした)の透過軸との交差角θ1,θ2は45°とした。リタデーションフィルムにはポリカーボネート製のリタデーション量が100nmのフィルム(厚さ200μm)、光検出器には(株)エルモ製ME‐41を用いた。フーリエ変換式は、強度が既知の単色光および離散複色光を入射し、セル電圧を変えて光路差δと干渉光の強度の関係を調べ、その結果に基づいてコンピュータでの演算が可能なソフトウエアの形にした。この装置によれば、入射光の観測データから、例えば図8に示すような波形の、インターフェログラムF(δ)が得られ、これのフーリエ変換がコンピュータにより実行されて、同図に示すような波長λに対するスペクトル分布B(λ)、あるいは図示しない波数ν(=1/λ)に対するスペクトル分布B(ν)が得られる。   A spectroscopic device having the configuration shown in FIG. The liquid crystal panel was configured as shown in FIG. An OCB cell (liquid crystal: TD-6004XX manufactured by Chisso Petrochemical Co., Ltd., cell thickness d = 10 μm) was used as the liquid crystal cell. The crossing angles θ1, θ2 between the optical axis of the liquid crystal cell and the transmission axes of the polarizer and analyzer (made cross Nicol) were set to 45 °. A retardation film made of polycarbonate having a retardation amount of 100 nm (thickness: 200 μm) was used as the retardation film, and ME-41 manufactured by Elmo Co., Ltd. was used as the photodetector. The Fourier transform formula is a software that allows the input of monochromatic light and discrete multi-color light with known intensities, changes the cell voltage, investigates the relationship between the optical path difference δ and the intensity of the interference light, and can perform computer calculations based on the results. It was in the form of wear. According to this apparatus, an interferogram F (δ) having a waveform as shown in FIG. 8, for example, is obtained from the observation data of incident light, and a Fourier transform thereof is executed by the computer, as shown in FIG. A spectral distribution B (λ) for a specific wavelength λ or a spectral distribution B (ν) for a wave number ν (= 1 / λ) (not shown) is obtained.

本発明は、天体観測(星のスペクトル分析)、医療(細胞等の分析)、食品(糖度測定等)など多岐の分野に利用することができる。   The present invention can be used in various fields such as astronomical observation (star spectrum analysis), medical treatment (cell analysis, etc.), food (sugar content measurement, etc.).

本発明の一例を示す模式図である。It is a schematic diagram which shows an example of this invention. 本発明の一例を示す模式図である。It is a schematic diagram which shows an example of this invention. 本発明で用いる干渉計の一例を示す模式図である。It is a schematic diagram which shows an example of the interferometer used by this invention. 本発明で用いる干渉計の一例を示す模式図である。It is a schematic diagram which shows an example of the interferometer used by this invention. 本発明で用いる干渉計の一例を示す模式図である。It is a schematic diagram which shows an example of the interferometer used by this invention. 本発明で用いる干渉計の一例を示す模式図である。It is a schematic diagram which shows an example of the interferometer used by this invention. 本発明の一例を示す模式図である。It is a schematic diagram which shows an example of this invention. 本発明により得られるインターフェログラムF(δ)とこれをフーリエ変換して得られるスペクトル分布B(λ)の一例を示す波形図である。It is a wave form diagram which shows an example of interferogram F ((delta)) obtained by this invention, and spectrum distribution B ((lambda)) obtained by Fourier-transforming this.

符号の説明Explanation of symbols

1 入射光
1A 常光
1B 異常光
2 干渉光
2A 干渉光を照射された物体から出射した光
3 信号(例:アナログ信号)
4 信号(例:デジタル信号)
5 スペクトル
6、7、8 伝送経路
10 干渉計
10A 液晶パネル
11 偏光子
12、12a、12b、12c 液晶セル
13 偏光子(検光子)
14 透過軸
15 光軸
16 透過軸
17 リタデーションフィルム
18 カットフィルタ
20 光検出器
30 変換器
40 コンピュータ
50 セル電圧設定器
100 物体(試料)
DESCRIPTION OF SYMBOLS 1 Incident light 1A Ordinary light 1B Abnormal light 2 Interference light 2A Light emitted from the object irradiated with interference light 3 Signal (example: analog signal)
4 signals (example: digital signals)
5 Spectrum 6, 7, 8 Transmission path
10 Interferometer
10A LCD panel
11 Polarizer
12, 12a, 12b, 12c Liquid crystal cell
13 Polarizer (analyzer)
14 Transmission axis
15 optical axis
16 Transmission axis
17 Retardation film
18 Cut filter
20 photodetector
30 transmitter
40 computers
50 cell voltage setter
100 object (sample)

Claims (6)

1枚又は複数枚の液晶セルを1対の偏光子で挟んだ1枚の液晶パネルを用い、該液晶パネルに入射した光を常光と異常光の二成分に分け、前記液晶セルのセル電圧を変更することにより前記二成分の光に光路差をつけてそれらを合成した干渉光を出射するよう構成された干渉計と、該干渉計から出射された干渉光を2次元的に検知して電気の信号に変換し出力する光検出器と、該光検出器の出力をコンピュータに入力するための変換器と、該変換器から出力された信号を受信し、該受信した信号および前記光路差からフーリエ変換により可視光のスペクトルを算出するコンピュータとを有することを特徴とする液晶を用いた分光装置。   Using one liquid crystal panel with one or more liquid crystal cells sandwiched between a pair of polarizers, the light incident on the liquid crystal panel is divided into two components, ordinary light and abnormal light, and the cell voltage of the liquid crystal cell is An interferometer configured to emit an interference light obtained by adding an optical path difference to the light of the two components by changing and emitting the interference light, and detecting the interference light emitted from the interferometer in two dimensions. A photodetector that converts and outputs the signal to the computer, a converter for inputting the output of the photodetector to a computer, a signal output from the converter, and a signal received from the received signal and the optical path difference A spectroscopic device using liquid crystal, comprising: a computer that calculates a spectrum of visible light by Fourier transform. 前記液晶セルを1軸性の液晶セルとし、該液晶セルの光軸と前記偏光子の透過軸とを斜交させたことを特徴とする請求項1記載の液晶を用いた分光装置。   2. The spectroscopic device using liquid crystal according to claim 1, wherein the liquid crystal cell is a uniaxial liquid crystal cell, and an optical axis of the liquid crystal cell and a transmission axis of the polarizer are obliquely crossed. 前記光検出器を、前記干渉計から出射された干渉光を検知するものに代えて、前記干渉計から出射された干渉光を照射された物体から出射した光を検知するものとしたことを特徴とする請求項1または2に記載の液晶を用いた分光装置。   The light detector is configured to detect light emitted from an object irradiated with interference light emitted from the interferometer, instead of detecting the interference light emitted from the interferometer. A spectroscopic device using the liquid crystal according to claim 1. 前記1対の偏光子の一方と他方の間に挿入された少なくとも1枚のリタデーションフィルムを有することを特徴とする請求項1〜3のいずれかに記載の液晶を用いた分光装置。   The spectroscopic device using a liquid crystal according to any one of claims 1 to 3, further comprising at least one retardation film inserted between one and the other of the pair of polarizers. 前記液晶セルがOCBセルであることを特徴とする請求項4記載の液晶を用いた分光装置。   5. The spectroscopic device using liquid crystal according to claim 4, wherein the liquid crystal cell is an OCB cell. 前記光検出器に検知される前の光から所定の波長成分を取り除くカットフィルタを有することを特徴とする請求項1〜5のいずれかに記載の液晶を用いた分光装置。   The spectroscopic device using a liquid crystal according to claim 1, further comprising a cut filter that removes a predetermined wavelength component from the light before being detected by the photodetector.
JP2003272644A 2003-07-10 2003-07-10 Spectroscope using liquid crystal Pending JP2005031007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272644A JP2005031007A (en) 2003-07-10 2003-07-10 Spectroscope using liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272644A JP2005031007A (en) 2003-07-10 2003-07-10 Spectroscope using liquid crystal

Publications (1)

Publication Number Publication Date
JP2005031007A true JP2005031007A (en) 2005-02-03

Family

ID=34210133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272644A Pending JP2005031007A (en) 2003-07-10 2003-07-10 Spectroscope using liquid crystal

Country Status (1)

Country Link
JP (1) JP2005031007A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013054A (en) * 2009-06-30 2011-01-20 Ricoh Co Ltd Device and method for spectral analysis, and method for detecting light reception signal
EP2439716A2 (en) 2010-09-16 2012-04-11 Ricoh Company, Ltd. Object identification device, moving object controlling apparatus having object identification device and information presenting apparatus having object identification device
EP2447685A1 (en) 2010-10-27 2012-05-02 Ricoh Company, Ltd. Spectral image acquiring apparatus
CN105572042A (en) * 2014-10-17 2016-05-11 中国科学院重庆绿色智能技术研究院 Fourier transform spectrometer and testing method thereof
CN105841825A (en) * 2016-03-15 2016-08-10 华中科技大学 Wavelength resolution monitoring method based on liquid crystal on silicon (LCOS)
JP2019086631A (en) * 2017-11-06 2019-06-06 独立行政法人国立高等専門学校機構 Liquid crystal wavelength variable filter and optical component
JP2019120680A (en) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド Measuring path delay through liquid-crystal variable retarder at non-uniform retardance intervals
KR20190113239A (en) * 2018-03-28 2019-10-08 충남대학교산학협력단 Apparatus and method for observating pitch variation of liquid crystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013054A (en) * 2009-06-30 2011-01-20 Ricoh Co Ltd Device and method for spectral analysis, and method for detecting light reception signal
EP2439716A2 (en) 2010-09-16 2012-04-11 Ricoh Company, Ltd. Object identification device, moving object controlling apparatus having object identification device and information presenting apparatus having object identification device
US9025027B2 (en) 2010-09-16 2015-05-05 Ricoh Company, Ltd. Object identification device, moving object controlling apparatus having object identification device, information presenting apparatus having object identification device, and spectroscopic image capturing apparatus
EP2447685A1 (en) 2010-10-27 2012-05-02 Ricoh Company, Ltd. Spectral image acquiring apparatus
US8593631B2 (en) 2010-10-27 2013-11-26 Ricoh Company, Ltd. Spectral image acquiring apparatus
CN105572042A (en) * 2014-10-17 2016-05-11 中国科学院重庆绿色智能技术研究院 Fourier transform spectrometer and testing method thereof
CN105841825A (en) * 2016-03-15 2016-08-10 华中科技大学 Wavelength resolution monitoring method based on liquid crystal on silicon (LCOS)
JP2019086631A (en) * 2017-11-06 2019-06-06 独立行政法人国立高等専門学校機構 Liquid crystal wavelength variable filter and optical component
JP2019120680A (en) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド Measuring path delay through liquid-crystal variable retarder at non-uniform retardance intervals
JP7289643B2 (en) 2017-12-29 2023-06-12 パロ アルト リサーチ センター インコーポレイテッド Measuring path delay through a liquid crystal variable retarder with non-uniform retardance spacing
KR20190113239A (en) * 2018-03-28 2019-10-08 충남대학교산학협력단 Apparatus and method for observating pitch variation of liquid crystal
KR102080265B1 (en) 2018-03-28 2020-02-24 충남대학교 산학협력단 Apparatus and method for observating pitch variation of liquid crystal

Similar Documents

Publication Publication Date Title
US20200378831A1 (en) Liquid crystal fourier transform imaging spectrometer
Qi et al. Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging
US6421131B1 (en) Birefringent interferometer
Hegyi et al. Hyperspectral imaging with a liquid crystal polarization interferometer
US10250823B2 (en) Liquid crystal fourier transform imaging spectrometer
Craven-Jones et al. Infrared hyperspectral imaging polarimeter using birefringent prisms
Zhang et al. High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope
US9464934B2 (en) System and method for correcting spectral response using a radiometric correction filter
EP1693658B1 (en) Spectroscopic polarimetry
JP5116345B2 (en) Phase difference measuring method and apparatus
US20070177240A1 (en) Optical analysis system using multivariate optical elements
Sattar et al. Review of spectral and polarization imaging systems
Shribak Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution
KR102383467B1 (en) Snapshot ellipsometer
Zhao et al. Spectropolarimetric imaging for pathological analysis of skin
Bian et al. Mueller matrix ellipsometer based on discrete-angle rotating Fresnel rhomb compensators
CN101281091A (en) Phase difference measuring apparatus using light splitter
Li et al. Low crosstalk polarization-difference channeled imaging spectropolarimeter using double-Wollaston prism
JP2005031007A (en) Spectroscope using liquid crystal
Meng et al. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator
Arteaga et al. Snapshot circular dichroism measurements
Zhang et al. Spectropolarimetric detection using photoelastic modulators and acousto-optic tunable filter
Sabatke et al. Linear calibration and reconstruction techniques for channeled spectropolarimetry
Vila-Francés et al. Improving the performance of acousto-optic tunable filters in imaging applications
JP2018200257A (en) Time-division spectroscopic imaging analysis system and time-division spectroscopic imaging analysis method