JPH0689410A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0689410A
JPH0689410A JP24164592A JP24164592A JPH0689410A JP H0689410 A JPH0689410 A JP H0689410A JP 24164592 A JP24164592 A JP 24164592A JP 24164592 A JP24164592 A JP 24164592A JP H0689410 A JPH0689410 A JP H0689410A
Authority
JP
Japan
Prior art keywords
magnetic
gap
magnetic head
recording medium
magnetic gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24164592A
Other languages
Japanese (ja)
Inventor
Toshihiko Ota
俊彦 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24164592A priority Critical patent/JPH0689410A/en
Publication of JPH0689410A publication Critical patent/JPH0689410A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability to sliding with a recording medium surface by forming the end faces of laminated magnetic films constituting a part of yoke parts as magnetic gap surfaces and functioning the film thickness of the laminated magnetic films as a track width. CONSTITUTION:The second magnetic gap 9 of the magnetic head is provided on the side opposite to the first magnetic gap 8 and an MR element 11 is disposed across this second magnetic gap 9, i.e., in the form of bridging the laminated bodies (yokes) 6, 6'. The structure formed by using the end faces of the laminates of the magnetic thin films-nonmagnetic insulating films forming the so-called yoke parts and cores as the magnetic gap surfaces and using the film thickness of the laminates as the track width is easily adoptable and, therefore, the setting of the large gap depth is possible and the wear by sliding with the tape recording medium is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ヘッドに係り、特に
VTRの再生などに適する磁気抵抗効果型の磁気ヘッドに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head, and more particularly to a magnetic head.
The present invention relates to a magnetoresistive effect type magnetic head suitable for VTR reproduction and the like.

【0002】[0002]

【従来の技術】近年、磁気記録の高密度化に伴い、 VTR
では 500Mb/inch2 、 HDDでは 200Mb/inch2 という高
記録密度のシステムが商品化されている。そして、これ
らのシステムにおいては、主として誘導型の磁気ヘッド
を用いているが、高 S/N性である磁気抵抗効果型の磁気
ヘッドに多くの関心が払われている。すなわち、ある種
の磁性薄膜や磁性多層薄膜などの電気抵抗が、外部磁界
によって変化するという磁気抵抗効果を利用した磁気ヘ
ッド(MRヘッド)は、磁気ヘッドと記録媒体との相対速
度が遅いシステムでも高出力が得られる。このため、固
定ヘッド方式のテープ状記録媒体を再生するシステムで
主用されて来たが、最近は、相対速度が数m/秒と民生
用の VTRと同程度のヘッド/記録媒体相対速度をもつ小
型 HDDにおいても、誘導型の磁気ヘッドに替わって磁気
抵抗効果型の磁気ヘッドが使用されている。現状では回
転ヘッド方式の VTRに、磁気抵抗効果型の磁気ヘッドは
実用されていないが、磁気抵抗効果型の磁気ヘッドの高
S/N性は、再生用の磁気ヘッドとして注目されている。
2. Description of the Related Art In recent years, with the increasing density of magnetic recording, VTR
In 500Mb / inch 2, the system of high recording density of 200 Mb / inch 2 in HDD are commercialized. In these systems, an induction type magnetic head is mainly used, but much attention is paid to a magnetoresistive effect type magnetic head having a high S / N property. In other words, a magnetic head (MR head) that utilizes the magnetoresistive effect that the electric resistance of a certain kind of magnetic thin film or magnetic multilayer thin film is changed by an external magnetic field can be used even in a system where the relative speed between the magnetic head and the recording medium is slow. High output can be obtained. For this reason, it has been mainly used in a system for reproducing a fixed head type tape-shaped recording medium, but recently, a relative speed of several meters / sec, which is about the same as that of a consumer VTR, is relatively high. Even in small HDDs, magneto-resistive magnetic heads are used instead of inductive magnetic heads. At present, the magnetoresistive effect type magnetic head is not in practical use in the rotary head type VTR, but
The S / N property has attracted attention as a reproducing magnetic head.

【0003】ところで、前記磁気抵抗効果型の磁気ヘッ
ドが具備する磁気抵抗効果を示す素子1には、図17に示
すごとくリード部1a,1b介してセンス電流と呼ばれる直
流もしくは交流の定電流を通電するため、対象がテープ
状記録媒体の場合、前記センス電流が記録媒体側に漏洩
する恐れがある。したがって、実用されているヨーク型
磁気ヘッドは、図18に要部を斜視的に示すごとく、磁気
抵抗効果を示す素子(MR 素子)1が、テープ状記録媒体
の摺動面に露出しないように、絶縁基板2面に一体的に
支持されたコア磁路を形成するフラックスガイド(ヨー
ク部)3,3′に絶縁膜を介して配置・装着した構成を
採っている。なお、上側のヨーク部3は表面保護のた
め、セラミック系の絶縁基板もしくは絶縁層で被覆され
ている。
By the way, as shown in FIG. 17, a constant current of direct current or alternating current called a sense current is passed through the lead portions 1a and 1b to the element 1 having the magnetoresistive effect included in the magnetoresistive type magnetic head. Therefore, when the target is a tape-shaped recording medium, the sense current may leak to the recording medium side. Therefore, in a practical yoke type magnetic head, the element (MR element) 1 exhibiting the magnetoresistive effect is prevented from being exposed on the sliding surface of the tape-shaped recording medium as shown in a perspective view of the main part in FIG. In this configuration, the flux guides (yoke portions) 3 and 3'that form a core magnetic path integrally supported on the surface of the insulating substrate 2 are arranged and mounted via an insulating film. The upper yoke portion 3 is covered with a ceramic insulating substrate or insulating layer for surface protection.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記構
成のヨーク型磁気ヘッドにおいては、ヨーク部3,3′
が絶縁基板2面に形成された磁性薄膜のメッキやエッチ
ングにより形成されているため、ヨーク部3,3′の厚
さ3aが高々数μm 程度に過ぎない。一般に、薄膜ヘッド
の再生効率を低下させないためには、前記ヨーク部3,
3′の厚さ3aを、記録媒体からの磁界取り込みギャップ
の深さ4と同程度にする必要がある。したがって、前記
図18に図示した構成の場合は、ギャップの深さ4を数μ
m 程度まで小さくしないと、再生効率が低下することに
なる。ところが、 VTRの場合は、周知のように磁気ヘッ
ドの磨耗が可なり激しいので、初期段階でのギャップ深
さ4を少なくとも15μm 程度に設定しておく必要があ
る。こうした問題に対応して、前記ヨーク部3,3′の
厚さ3aを15μm 以上に設定しようとすると、製造プロセ
ス上に多くの困難さを伴うばかりでなく、仮に実現し得
たとしてもヨーク部3,3′の渦電流損失により、高周
波領域での透磁率が非常に低くなって、再生効率の低下
を招来する。また、前記の渦電流損失を止するため、ヨ
ーク部3,3′を多層磁性膜化すると、磁性膜間の絶縁
膜が磁気ギャップとして作用し、再生波形に疑似信号が
重なってしまうという問題がある。つまり、前記構成を
採る従来のヨーク型磁気ヘッドを、回転ヘッド方式の V
TRの再生に用いることは、事実上不可能であった。
However, in the yoke type magnetic head having the above structure, the yoke portions 3, 3'are provided.
Is formed by plating or etching the magnetic thin film formed on the surface of the insulating substrate 2, the thickness 3a of the yoke portions 3 and 3'is only about several .mu.m at the most. Generally, in order to prevent the reproduction efficiency of the thin film head from decreasing, the yoke portion 3,
The thickness 3a of 3'needs to be about the same as the depth 4 of the gap for taking in the magnetic field from the recording medium. Therefore, in the case of the configuration shown in FIG. 18, the gap depth 4 is set to several μm.
Unless it is reduced to about m, the regeneration efficiency will decrease. However, in the case of VTR, as is well known, the wear of the magnetic head can be severe, so it is necessary to set the gap depth 4 in the initial stage to at least about 15 μm. To cope with such a problem, if the thickness 3a of the yoke portions 3 and 3'is set to 15 μm or more, not only is there a lot of difficulty in the manufacturing process, but even if it is possible to realize it, the yoke portion will not be realized. Due to the eddy current loss of 3 and 3 ', the magnetic permeability in the high frequency region becomes very low, and the reproduction efficiency is lowered. Further, if the yoke portions 3 and 3'are formed of a multi-layer magnetic film in order to prevent the eddy current loss, there is a problem that the insulating film between the magnetic films acts as a magnetic gap, and a pseudo signal overlaps the reproduced waveform. is there. In other words, the conventional yoke type magnetic head having the above configuration is
It was practically impossible to use for the reproduction of TR.

【0005】本発明はこのような事情に対処してなされ
たもので、耐久性を有するとともに、高効率に VTRの再
生が可能な、ヨーク型MR磁気ヘットを提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a yoke type MR magnetic head having durability and capable of reproducing a VTR with high efficiency.

【0006】[0006]

【課題を解決するための手段】本発明に係る磁気ヘッド
は、軟磁性薄膜および絶縁薄膜の積層体を非磁性体で挟
持した構成を備え、かつ磁気記録媒体からの磁界を取り
込むための第1の磁気ギャップを具備し略リング状のコ
ア磁路を形成する磁気ヘッド本体と、前記磁気ヘッド本
体の磁気記録媒体に接しない領域の一部に、第1の磁気
ギャップより大きいギャップで設けられた第2の磁気ギ
ャップと、前記第2の磁気ギャップの近傍に一体的に配
置された磁気抵抗効果を有する薄膜素子とを具備して成
ることを特徴とする。
A magnetic head according to the present invention has a structure in which a laminated body of a soft magnetic thin film and an insulating thin film is sandwiched by non-magnetic materials, and is a first magnetic field for taking in a magnetic field from a magnetic recording medium. A magnetic head main body which has a magnetic gap and forms a substantially ring-shaped core magnetic path, and a portion of a region of the magnetic head main body which is not in contact with the magnetic recording medium is provided with a gap larger than the first magnetic gap. It is characterized by comprising a second magnetic gap and a thin film element having a magnetoresistive effect integrally arranged in the vicinity of the second magnetic gap.

【0007】本発明はヨーク部(コア)の厚さ、換言す
ると、軟磁性薄膜−絶縁薄膜の積層体(積層磁性膜)の
厚さを 0.1〜 1mm程度と比較的厚く設定し、ギャップの
深さを大きく採り得るようにして、記録媒体との摺動に
よるヘッド面の磨耗に対応するとともに、記録媒体に対
して摺動しない領域に第2の磁気ギャップを設け、この
近傍にMR素子を配置したことを骨子とするヨーク型の磁
気ヘッドである。なお、ここで軟磁性薄膜−絶縁薄膜の
積層体(積層磁性膜)の厚さを、いわゆるトラック幅と
合わせることが好ましく、また、積層磁性膜の厚さを全
体的に一様にする必要はなく、記録媒体から磁界を取り
込むための第1の磁気ギャップに近接する領域のみをト
ラック幅と合わせた構成としてもよい。
According to the present invention, the thickness of the yoke portion (core), in other words, the thickness of the laminated body of soft magnetic thin film-insulating thin film (laminated magnetic film) is set to a relatively large thickness of about 0.1 to 1 mm, and the depth of the gap is set. In order to cope with the wear of the head surface due to sliding with the recording medium, a second magnetic gap is provided in a region that does not slide with respect to the recording medium, and an MR element is arranged in the vicinity of this. This is a yoke-type magnetic head whose main point is what is done. Here, it is preferable to match the thickness of the laminated body of the soft magnetic thin film-insulating thin film (laminated magnetic film) with the so-called track width, and it is not necessary to make the thickness of the laminated magnetic film uniform throughout. Alternatively, only the region close to the first magnetic gap for taking in the magnetic field from the recording medium may be combined with the track width.

【0008】[0008]

【作用】本発明に係る磁気ヘッドにおいては、ヨーク部
の一部を成す積層磁性膜の端面を磁気ギャップ面とし、
また積層磁性膜の膜厚をトラック幅として機能させるこ
とにより、記録媒体から磁界を取り込むためのギャップ
の深さを大きく採り得ることになり、これによって記録
媒体面との摺動に対する耐久性も付与される。また、前
記積層磁性膜は、軟磁性薄膜および絶縁薄膜が交互に積
層された構成を成しているで、渦電流損失も低減され、
さらに高周波特性もよく、良好な S/N性と相俟って VTR
の再生効率の上昇に大きく寄与するものといえる。
In the magnetic head according to the present invention, the end surface of the laminated magnetic film forming a part of the yoke portion is used as the magnetic gap surface,
Further, by making the film thickness of the laminated magnetic film function as the track width, it is possible to increase the depth of the gap for taking in the magnetic field from the recording medium, which also provides durability against sliding on the recording medium surface. To be done. Moreover, since the laminated magnetic film has a configuration in which soft magnetic thin films and insulating thin films are alternately laminated, eddy current loss is also reduced,
Furthermore, the high frequency characteristics are good, and in combination with the good S / N property, the VTR
It can be said that it greatly contributes to the increase of the regeneration efficiency of the.

【0009】[0009]

【実施例】以下図1〜図3を参照して本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0010】図1および図2は、本発明に係るヨーク型
磁気ヘッドの要部構成例について、互いに異なる方向か
ら斜視的に示したものである。図1および図2におい
て、5,5′は軟磁性薄膜および絶縁薄膜の積層体(積
層磁性膜…ヨーク)6,6′をそれぞれ非磁性体7a,7
a′、7b,7b′で挟持した構成を成す部材である。そし
て、この両部材5,5′は、前記積層体(ヨーク)6,
6′によって、図示されてない磁気記録媒体からの磁界
を取り込むための第1の磁気ギャップ8および後述する
第2の磁気ギャップ9を形成具備する形、つまり略リン
グ状のコア磁路を形成しながら磁気ヘッド本体10を構成
している。さらに、前記第2の磁気ギャップ9は、磁気
ヘッド本体10の磁気記録媒体に接しない領域の一部に、
第1の磁気ギャップ8より大きいギャップで設けられて
おり、また、前記第2の磁気ギャップ9の近傍には、磁
気抵抗効果を有する薄膜素子(MR素子)11が絶縁膜12を
介して(ヨーク部6,6′と電気的に絶縁して)一体的
に配置されている。図3は前記MR素子11が絶縁膜12を介
して(ヨーク部6,6′と電気的に絶縁して)一体的に
配置された状態を拡大して模式的に示したもので、MR素
子11は絶縁膜 12aを介して磁気シールド膜14でシールド
された構成を成している。
FIG. 1 and FIG. 2 are perspective views showing an example of a main part configuration of a yoke type magnetic head according to the present invention from different directions. In FIGS. 1 and 2, reference numerals 5 and 5'denominate a laminated body (laminated magnetic film ... Yoke) 6 and 6'of a soft magnetic thin film and an insulating thin film, respectively.
It is a member that is sandwiched by a ', 7b, and 7b'. The two members 5 and 5'are formed of the laminated body (yoke) 6,
6'forms a core magnetic path having a first magnetic gap 8 for taking in a magnetic field from a magnetic recording medium (not shown) and a second magnetic gap 9 described later, that is, a substantially ring-shaped core magnetic path. While constituting the magnetic head body 10. Further, the second magnetic gap 9 is formed in a part of a region of the magnetic head body 10 which is not in contact with the magnetic recording medium,
A thin film element (MR element) 11 having a magnetoresistive effect is provided in the vicinity of the second magnetic gap 9 with a gap larger than that of the first magnetic gap 8. They are integrally arranged (electrically insulated from the parts 6 and 6 '). FIG. 3 is an enlarged schematic view showing a state in which the MR element 11 is integrally arranged via the insulating film 12 (electrically insulated from the yoke portions 6 and 6 '). Reference numeral 11 has a structure shielded by a magnetic shield film 14 via an insulating film 12a.

【0011】前記構成例では、第2の磁気ギャップ9が
第1の磁気ギャップ8の反対側に設けられ、またMR素子
11はこの第2の磁気ギャップ9に跨がって、換言すると
前記積層体(ヨーク)6,6′を橋渡しする形に配置さ
れている。なお、図1および図2において 11a, 11bは
MR素子11の出力検出用リード、13は部材5,5′が略リ
ング状のコア磁路を形成するギャップである。
In the above configuration example, the second magnetic gap 9 is provided on the opposite side of the first magnetic gap 8, and the MR element is also provided.
The reference numeral 11 is arranged so as to straddle the second magnetic gap 9, in other words, to bridge the laminated bodies (yokes) 6 and 6 '. In addition, in FIGS. 1 and 2, 11a and 11b are
The output detecting lead of the MR element 11 and 13 are gaps where the members 5 and 5'form a substantially ring-shaped core magnetic path.

【0012】なお、前記MR素子11は、一般的に、たとえ
ばNiFeなどの強磁性体から成り、電流の方向と磁化の方
向が成す角θによって、 cos2 θで変化する抵抗部分を
利用するものであるが、最近では磁性2層膜において、
2つの層の磁化の方向が成す角φにより、 cosφで電気
抵抗が変化するスピンバルブ現象をりようするもの、あ
るいは磁性多層膜において、隣り合う層の磁化の成す角
に依存して電気抵抗が大きく変化する現象を利用するも
のなどが挙げられ、本発明においては、上記例示の現象
を含むいずれの現象に基づくものであってもよい。
The MR element 11 is generally made of a ferromagnetic material such as NiFe, and utilizes a resistance portion that changes with cos 2 θ depending on the angle θ formed by the direction of current and the direction of magnetization. However, recently, in the magnetic two-layer film,
Depending on the angle φ formed by the magnetization directions of the two layers, a spin valve phenomenon in which the electric resistance changes with cosφ or in a magnetic multilayer film, the electric resistance depends on the angle formed by the magnetizations of adjacent layers. Examples thereof include those utilizing a phenomenon that greatly changes, and the present invention may be based on any phenomenon including the phenomena exemplified above.

【0013】次に前記構成のヨーク型磁気ヘッドの動作
原理について説明する。
Next, the operation principle of the yoke type magnetic head having the above structure will be described.

【0014】磁気ヘッドがその磁気ヘッドの Rに沿って
走行する記録媒体面に接触すると、記録媒体から発生し
た磁束は第1の磁気ギャップ8を介して取り込まれ、ヨ
ーク(コア)6から入って第2の磁気ギャップ9側で絶
縁膜12を通り抜け、MR素子11を通り再び絶縁膜12を通り
抜け、ヨーク(コア)7を通過して記録媒体に戻る。こ
のとき、MR素子11を通らずに、ヨーク(コア)6からヨ
ーク(コア)7に通り抜ける磁束は、再生出力に寄与し
ないので、ここでショートする磁束の割合を可及的に低
減させるため、ヨーク(コア)6とヨーク(コア)7と
の距離(ギャップ)13を、前記第1の磁気ギャップ8お
よび第2の磁気ギャップ9を大きく設定している。
When the magnetic head comes into contact with the surface of the recording medium running along R of the magnetic head, the magnetic flux generated from the recording medium is taken in through the first magnetic gap 8 and enters from the yoke (core) 6. It passes through the insulating film 12 on the side of the second magnetic gap 9, passes through the MR element 11, passes through the insulating film 12 again, passes through the yoke (core) 7, and returns to the recording medium. At this time, since the magnetic flux passing from the yoke (core) 6 to the yoke (core) 7 without passing through the MR element 11 does not contribute to the reproduction output, the ratio of the magnetic flux short-circuited here is reduced as much as possible. The distance (gap) 13 between the yoke (core) 6 and the yoke (core) 7 is set to be large for the first magnetic gap 8 and the second magnetic gap 9.

【0015】図4および図5は、本発明の他の異なる実
施例を斜視的に示したものである。先ず、図4に図示し
た構成の場合は、磁気ヘッド本体10が軟磁性薄膜および
絶縁薄膜の積層体(ヨーク)6,6′をそれぞれ非磁性
体7a,7a′、7b,7b′で挟持した構成を成す部材5,
5′だけでなく、たとえばNiZnフェライトのような絶縁
性の軟磁性膜 15a, 15bをそれぞれ非磁性絶縁体 16a,
16a′、 16b, 16b′で挟持した構成を成す部材5a,5
a′とで構成されている。そして、これらの部材5,
5′,5a,5a′は、前記積層体(ヨーク)6,6′,お
よび軟磁性膜 15a,15bによって、図示されてない磁気
記録媒体からの磁界を取り込むための第1の磁気ギャッ
プ8および第2の磁気ギャップ9を形成具備する形、つ
まり略リング状のコア磁路を形成しながら磁気ヘッド本
体10を構成している。なお、前記第2の磁気ギャップ9
は、磁気ヘッド本体10の磁気記録媒体に接しない領域の
一部に、第1の磁気ギャップ8より大きいギャップで設
けられており、また、前記第2の磁気ギャップ9の近傍
には、磁気抵抗効果を有する薄膜素子(MR素子)11が一
体的に配置されており、この構成においては、前記図
1,2の場合と異なり絶縁膜12の介在を要しない。
4 and 5 are perspective views showing another different embodiment of the present invention. First, in the case of the structure shown in FIG. 4, the magnetic head body 10 sandwiches the laminated body (yoke) 6, 6'of the soft magnetic thin film and the insulating thin film by the non-magnetic bodies 7a, 7a ', 7b, 7b', respectively. Members 5 that make up the structure
In addition to 5 ′, insulating soft magnetic films 15a and 15b such as NiZn ferrite are provided on the non-magnetic insulators 16a and 16a, respectively.
Members 5a, 5 which are configured to be sandwiched by 16a ', 16b, 16b'
It consists of a '. Then, these members 5,
Reference numerals 5 ', 5a, 5a' denote a first magnetic gap 8 for taking in a magnetic field from a magnetic recording medium (not shown), and a first magnetic gap 8 by the laminated bodies (yokes) 6, 6'and the soft magnetic films 15a, 15b. The magnetic head main body 10 is formed while forming the second magnetic gap 9 and forming a core magnetic path having a substantially ring shape. The second magnetic gap 9
Is provided with a gap larger than the first magnetic gap 8 in a part of a region of the magnetic head body 10 which is not in contact with the magnetic recording medium, and a magnetic resistance is provided in the vicinity of the second magnetic gap 9. A thin film element (MR element) 11 having an effect is integrally arranged, and in this configuration, unlike the case of FIGS. 1 and 2, the insulating film 12 does not need to be interposed.

【0016】一方、図5に図示した構成の場合は、前記
図1,図2に図示した場合が、第2の磁気ギャップ9を
第1の磁気ギャップ8の反対側に設置したのに対し、側
面側に第2の磁気ギャップ9を設け、この第2の磁気ギ
ャップ9を跨いでMR素子11を配置し、ヨーク部(コア)
6,6′と磁路を形成する構成としてある。なお、この
構成においては、前記MR素子11およびそのリード 11a,
11bはヨーク部(コア)6,6′面の絶縁層(図示せ
ず)上に配置されている。
On the other hand, in the case of the structure shown in FIG. 5, the second magnetic gap 9 is arranged on the opposite side of the first magnetic gap 8 in the case shown in FIGS. The second magnetic gap 9 is provided on the side surface side, and the MR element 11 is arranged so as to straddle the second magnetic gap 9, and the yoke portion (core) is formed.
6, 6'and the magnetic path are formed. In this configuration, the MR element 11 and its leads 11a,
11b is arranged on an insulating layer (not shown) on the surfaces of the yoke portions (cores) 6 and 6 '.

【0017】このような構成を採る本発明の磁気ヘッド
は、誘導型磁気ヘッドの場合と同様に、 VTRの再生に使
用する場合、図6(a) ,(b) に示すごとく、いわゆるベ
ース板17に装着して使用する。ここで、図6(a) ,(b)
は表裏の構造を示したもので、 18a, 18bはシリンダを
介して信号を取り出すリード端子、 18cは磁気ヘッドと
リード端子 18a, 18bとを接続するリードワイヤであ
る。
When the magnetic head of the present invention having such a structure is used for reproducing a VTR, as in the case of the induction type magnetic head, as shown in FIGS. 6 (a) and 6 (b), the so-called base plate is used. Attach to 17 and use. Here, FIGS. 6 (a) and 6 (b)
Shows the front and back structures, 18a and 18b are lead terminals for taking out signals through the cylinder, and 18c is a lead wire for connecting the magnetic head and the lead terminals 18a and 18b.

【0018】次に、実施態様を斜視的に示す図7〜図15
を参照して、上記構成のヨーク型磁気ヘッドの製造方法
例を説明する。
Next, FIGS. 7 to 15 showing a perspective view of the embodiment.
An example of a method for manufacturing the yoke-type magnetic head having the above-described structure will be described with reference to FIG.

【0019】先ず、非磁性基板7を用意し、その非磁性
基板7面に蒸着法もしくはスパッタリングにより、たと
えばセンダストなどの磁性薄膜15を厚さ 1〜 4μm 程度
堆積させる。その後、磁性薄膜15上に同様な方法で、た
とえば SiO2 などの非磁性絶縁膜16を厚さ 0.2〜 0.5m
程度堆積させ、引き続きセンダストなどの磁性薄膜15を
厚さ 1〜 4μm 程度堆積させる。ここで磁性薄膜15と非
磁性絶縁膜16との積層は、所要のトラック幅に対応した
厚さとなるように繰り返して行われる。このようにし
て、所要の厚さに形成した磁性薄膜15−非磁性絶縁膜16
の積層体(膜)上に、接合用のガラス層19をたとえばス
パッタリングによって被着・形成した後(図7)、これ
らの積層膜を設けた非磁性基板7複数枚を重ね合わせ、
前記ガラス層19の融着作用により接合ブロック20を構成
する(図8)。次に、前記接合ブロック20を破線に沿っ
て切断・分離して、図9に示すようなブロック片21にす
る。このブロック片21への切断・分離に当たっては、磁
性薄膜15−非磁性絶縁膜16の積層体(膜)の切断・分離
面に対する角θが、アジマス角と一致するように選択・
設定する。その後、このブロック片212個を対にそれぞ
れ選択し、図10に示すように、一方のブロック片21に巻
線溝 21aおよび磁気ギャップ 21bを形成した後、前記巻
線溝 21aおよび磁気ギャップ 21b形成面と対向する他の
ブロック片21面を所定の面精度に研磨する。上記のごと
く、それぞれ所要の研磨加工を行ったブロック片21に、
ギャップスペーサ用の非磁性膜をそれぞれ被着形成した
後、図11に示すごとく、積層配置してガラスなどの融着
作用により一体化する。ここでは、巻線溝 21aおよび磁
気ギャップ 21bなど2列形成された構成の例示であり、
点線22に沿って切断・分離することにより、図12に示す
ような巻線溝 および磁気ギャップ 21bなど1列形成さ
れた構成のブロックが得られる。
First, a non-magnetic substrate 7 is prepared, and a magnetic thin film 15 such as sendust is deposited on the surface of the non-magnetic substrate 7 by evaporation or sputtering to a thickness of about 1 to 4 μm. After that, a non-magnetic insulating film 16 such as SiO 2 having a thickness of 0.2 to 0.5 m is formed on the magnetic thin film 15 in the same manner.
Then, a magnetic thin film 15 such as sendust is deposited to a thickness of 1 to 4 μm. Here, the lamination of the magnetic thin film 15 and the non-magnetic insulating film 16 is repeated so as to have a thickness corresponding to the required track width. In this way, the magnetic thin film 15-nonmagnetic insulating film 16 having a required thickness is formed.
After the glass layer 19 for bonding is deposited / formed on the laminated body (film) of, for example, by sputtering (FIG. 7), a plurality of non-magnetic substrates 7 provided with these laminated films are superposed.
The bonding block 20 is formed by the fusion action of the glass layer 19 (FIG. 8). Next, the joining block 20 is cut and separated along the broken line to form a block piece 21 as shown in FIG. In cutting / separating into the block pieces 21, the angle θ with respect to the cutting / separating surface of the laminated body (film) of the magnetic thin film 15-nonmagnetic insulating film 16 is selected so as to match the azimuth angle.
Set. Then, the block pieces 212 are individually selected as a pair, and as shown in FIG. 10, after forming the winding groove 21a and the magnetic gap 21b on one block piece 21, the winding groove 21a and the magnetic gap 21b are formed. The surface of the other block piece 21 facing the surface is polished to a predetermined surface accuracy. As mentioned above, on the block piece 21 that has undergone the required polishing process,
After the non-magnetic films for the gap spacers have been formed by adhesion, as shown in FIG. 11, they are laminated and integrated by a fusion action of glass or the like. Here, the winding groove 21a and the magnetic gap 21b are exemplified as two rows,
By cutting and separating along the dotted line 22, a block having a configuration in which one row such as the winding groove and the magnetic gap 21b is formed can be obtained.

【0020】こうして、得た巻線溝 21aおよび磁気ギャ
ップ 21bなどが1列形成された構成のブロック複数個
を、各ブロックのコア位置が一直線に並ぶように、後部
磁気ギャップ側を上面として再配列し、各ブロック間を
低融点ガラスなどで接合一体化してウェハーとする(図
13)。その後、図14に示すごとく、前記接合一体化した
ウェハー表面を鏡面研磨して、前記後部磁気ギャップ形
成側の上面に、薄い絶縁膜12をたとえばスパッタや蒸着
などの方法で形成し、さらにその薄い絶縁膜12上に、各
磁性薄膜15−非磁性絶縁膜16積層体領域を跨がせて、磁
気抵抗効果を有するNiFe膜や多層膜をスパッタや蒸着な
どの方法で形成してから、リソグラフィ技術などによっ
て、感磁部(MR素子)11およびリード線 11a, 11bを形
成して、MR素子11を一体的に配置する。ここで要すれ
ば、MR素子11形成面にシールド膜や保護膜を形成する。
次に、前記ウェハーを線 23aに沿って切断・分離してか
ら、MR素子11形成面と反対側の面を、テープ状記録ばい
たい面に良好な接触を呈するように円筒研削して、図15
に示すようなブロックを作成した後、線 23bに沿ってス
ライスすることによって、前記図1に図示したようなヨ
ーク型の磁気ヘッドが得られる。
In this way, a plurality of blocks each having the winding groove 21a and the magnetic gap 21b formed in one row are rearranged with the rear magnetic gap side as the upper surface so that the core positions of the blocks are aligned. Then, each block is bonded and integrated with a low melting point glass to form a wafer (Fig.
13). Then, as shown in FIG. 14, the wafer surface integrally bonded is mirror-polished, and a thin insulating film 12 is formed on the upper surface of the rear magnetic gap formation side by a method such as sputtering or vapor deposition. After forming a NiFe film or a multilayer film having a magnetoresistive effect on the insulating film 12 by straddling each magnetic thin film 15-nonmagnetic insulating film 16 laminated body region by a method such as sputtering or vapor deposition, a lithographic technique The MR element 11 is integrally arranged by forming the magnetic sensing section (MR element) 11 and the lead wires 11a and 11b. Here, if necessary, a shield film or a protective film is formed on the MR element 11 formation surface.
Next, after cutting and separating the wafer along the line 23a, the surface opposite to the MR element 11 forming surface is cylindrically ground so as to make a good contact with the tape-like recording surface. 15
After the block as shown in FIG. 1 is created and then sliced along the line 23b, the yoke type magnetic head as shown in FIG. 1 is obtained.

【0021】さらに、図16は本発明の他の実施例を斜視
的に示したものである。基本的な構造は上記例示の場合
と同様であるが、この例ではトラック幅より厚く積層し
た磁性膜をヨーク6,6′とし、第1の磁性ギャップ8
部分の磁性膜の厚さをトラック幅としている。トラック
幅が狭くなった場合には、ヨーク6,6′部分の磁気抵
抗をできるだけ小さくすることにより、効率低下を防止
する必要があり、この構成例のごとく、第1の磁性ギャ
ップ8部以外の積層数を増加した構成が望ましい。
Further, FIG. 16 is a perspective view showing another embodiment of the present invention. The basic structure is similar to that of the above example, but in this example, the magnetic films stacked to have a thickness larger than the track width are used as the yokes 6 and 6'and the first magnetic gap 8 is formed.
The thickness of the portion of the magnetic film is used as the track width. When the track width becomes narrow, it is necessary to prevent the efficiency from decreasing by reducing the magnetic resistance of the yokes 6 and 6'as much as possible. A configuration in which the number of laminated layers is increased is desirable.

【0022】[0022]

【発明の効果】上記説明したように、本発明に係るヨー
ク型MR磁気ヘッドにおいては、いわゆるヨーク部ないし
コアを形成する磁性薄膜−非磁性絶縁膜の積層体端面を
磁気ギャップ面とし、かつ積層体の膜厚をトラック幅と
する構造を容易に採り得るため、従来のバルクの誘電型
VTRヘッドのポール長さである 0.1〜 1mm(走行するテ
ープ状記録媒体に接触するコアないしヨーク面の厚さ)
と同程度とすることが可能であり、このためギャップ深
さを大きく設定し得ることになるので、テープ記録媒体
面との摺動による磨耗にによる機能低下(劣化)も長期
間化する(耐久性化する)。
As described above, in the yoke type MR magnetic head according to the present invention, the end face of the magnetic thin film-nonmagnetic insulating film forming the so-called yoke portion or core is used as the magnetic gap surface, and the magnetic layer is laminated. Since the structure in which the body width is the track width can be easily adopted, the conventional bulk dielectric type is used.
0.1 to 1 mm, which is the pole length of the VTR head (thickness of the core or yoke surface that contacts the running tape-shaped recording medium)
Since the gap depth can be set to a large value, the functional deterioration (deterioration) due to abrasion due to sliding on the tape recording medium surface is prolonged (durability). Sexualize).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気ヘッドの構成例をMR素子を配
置した面側から示す斜視図。
FIG. 1 is a perspective view showing a structural example of a magnetic head according to the present invention from the surface side on which an MR element is arranged.

【図2】本発明に係る磁気ヘッドの構成例を第1の磁気
ギャップ形成面側から示す斜視図。
FIG. 2 is a perspective view showing a configuration example of a magnetic head according to the present invention from the first magnetic gap formation surface side.

【図3】本発明に係る磁気ヘッドの構成例におけるMR素
子を配置状態を拡大して示す斜視図。
FIG. 3 is an enlarged perspective view showing an arrangement state of MR elements in a configuration example of a magnetic head according to the present invention.

【図4】本発明に係る磁気ヘッドの他の構成例をMR素子
を配置した面側から示す斜視図。
FIG. 4 is a perspective view showing another configuration example of the magnetic head according to the present invention from the surface side on which the MR element is arranged.

【図5】本発明に係る磁気ヘッドのさらに他の構成例を
MR素子を配置した面側から示す斜視図。
FIG. 5 is a further example of the configuration of the magnetic head according to the present invention.
The perspective view shown from the surface side which has arrange | positioned MR element.

【図6】本発明に係る磁気ヘッドの装着例を示したもの
で、(a) は上面斜視図、(b) は下面斜視図。
6A and 6B show an example of mounting a magnetic head according to the present invention, in which FIG. 6A is a top perspective view and FIG. 6B is a bottom perspective view.

【図7】本発明に係る磁気ヘッドの製造実施態様例にお
いて非磁性基板(体)面に積層磁性膜など形成した素材
を示す斜視図。
FIG. 7 is a perspective view showing a material in which a laminated magnetic film or the like is formed on the surface of a non-magnetic substrate (body) in a manufacturing embodiment example of a magnetic head according to the present invention.

【図8】本発明に係る磁気ヘッドの製造実施態様例にお
い、図7に図示した素材を積層一体化した接合ブロック
を示す斜視図。
8 is a perspective view showing a joining block in which the materials shown in FIG. 7 are laminated and integrated in an example of a manufacturing embodiment of a magnetic head according to the present invention.

【図9】本発明に係る磁気ヘッドの製造実施態様例にお
いて図8に図示した接合ブロックを切断分離したブロッ
ク片を示す斜視図。
9 is a perspective view showing a block piece obtained by cutting and separating the joining block shown in FIG. 8 in a manufacturing embodiment example of a magnetic head according to the present invention.

【図10】本発明に係る磁気ヘッドの製造実施態様例に
おい、ブロック片の一主面に巻線溝およびギャップ溝を
設けた状態を示す斜視図。
FIG. 10 is a perspective view showing a state in which a winding groove and a gap groove are provided on one main surface of a block piece in a manufacturing embodiment example of a magnetic head according to the present invention.

【図11】本発明に係る磁気ヘッドの製造実施態様例に
おいて図10に図示した接合ブロック片を一方の対片と
して接合構成したブロックを示す斜視図。
FIG. 11 is a perspective view showing a block in which the joining block piece shown in FIG. 10 is joined as one of the pair pieces in the manufacturing embodiment example of the magnetic head according to the invention.

【図12】本発明に係る磁気ヘッドの製造実施態様例に
おい、接合構成したブロックを切断・分離した状態を示
す斜視図。
FIG. 12 is a perspective view showing a state in which the joined blocks are cut and separated in the magnetic head manufacturing embodiment according to the present invention.

【図13】本発明に係る磁気ヘッドの製造実施態様例に
おいて、図12に図示したブロックを一定方向に積層配
置し、接合一体化したウェハーを示す斜視図。
FIG. 13 is a perspective view showing a wafer in which the blocks shown in FIG. 12 are laminated and arranged in a fixed direction and bonded and integrated in the embodiment of the magnetic head manufacturing embodiment according to the invention.

【図14】本発明に係る磁気ヘッドの製造実施態様例に
おい、ウェハーの所定面にMR素子を配置した状態を拡大
して示す斜視図。
FIG. 14 is an enlarged perspective view showing a state in which MR elements are arranged on a predetermined surface of a wafer in a manufacturing embodiment example of a magnetic head according to the present invention.

【図15】本発明に係る磁気ヘッドの製造実施態様例に
おい、所定面にMR素子を配置したウェハーを切断分離し
た状態を示す斜視図。
FIG. 15 is a perspective view showing a state in which a wafer, on which a MR element is arranged on a predetermined surface, is cut and separated in the magnetic head manufacturing embodiment according to the present invention.

【図16】本発明に係る磁気ヘッドのさらに他の構成例
を示す斜視図。
FIG. 16 is a perspective view showing still another configuration example of the magnetic head according to the present invention.

【図17】MR素子の基本構成を示す斜視図。FIG. 17 is a perspective view showing the basic configuration of an MR element.

【図18】従来のヨーク型MR磁気ヘッドの要部構成を示
す斜視図。
FIG. 18 is a perspective view showing a configuration of a main part of a conventional yoke type MR magnetic head.

【符号の説明】[Explanation of symbols]

1,11…MR素子 1a,1b, 11a, 11b…リード部
2…絶縁基板 3,3′…フラックスガイド(ヨーク
部) 3a…ヨーク部の厚さ 4…磁気ギャップの深
さ 5,5′,5a,5a′…部材 6,6′…磁性積
層体(ヨーク部) 7,7a,7a′,7b,7b′…非磁性
体 8…第1の磁気ギャップ 9…第2の磁気ギャ
ップ 10…磁気ヘッド本体 12,12a…絶縁膜 13
…ギャップ 14…磁気シールド 15, 15a, 15b…
絶縁性軟磁性膜 16, 16a, 16b…非磁性絶縁体
17…ベース板 18a,18b …リード端子 18c…リー
ドワイヤ 19…接合用ガラス層 20…接合ブロック
21…ブロック片 21a…巻線溝 21b…磁気ギ
ャップ 22…点線 23a, 23b…切断線
1, 11 ... MR element 1a, 1b, 11a, 11b ... Lead section
2 ... Insulating substrate 3, 3 '... Flux guide (yoke portion) 3a ... Yoke portion thickness 4 ... Magnetic gap depth 5, 5', 5a, 5a '... Member 6,6' ... Magnetic laminate (yoke) Part) 7, 7a, 7a ', 7b, 7b' ... non-magnetic material 8 ... first magnetic gap 9 ... second magnetic gap 10 ... magnetic head body 12, 12a ... insulating film 13
… Gap 14… Magnetic shield 15, 15a, 15b…
Insulating soft magnetic film 16, 16a, 16b ... Non-magnetic insulator
17 ... Base plate 18a, 18b ... Lead terminal 18c ... Lead wire 19 ... Bonding glass layer 20 ... Bonding block
21 ... Block piece 21a ... Winding groove 21b ... Magnetic gap 22 ... Dotted line 23a, 23b ... Cutting line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性薄膜および絶縁薄膜の積層体を非
磁性体で挟持した構成を備え、かつ磁気記録媒体からの
磁界を取り込むための第1の磁気ギャップを具備し略リ
ング状のコア磁路を形成する磁気ヘッド本体と、前記磁
気ヘッド本体の磁気記録媒体に接しない領域の一部に、
第1の磁気ギャップより大きいギャップで設けた第2の
磁気ギャップと、前記第2の磁気ギャップの近傍に一体
的に配置された磁気抵抗効果を有する薄膜素子とを具備
して成ることを特徴とする磁気ヘッド。
1. A substantially ring-shaped core magnet having a structure in which a laminated body of a soft magnetic thin film and an insulating thin film is sandwiched between nonmagnetic materials, and having a first magnetic gap for taking in a magnetic field from a magnetic recording medium. A magnetic head body forming a path, and a part of a region of the magnetic head body that is not in contact with the magnetic recording medium,
A second magnetic gap provided with a gap larger than the first magnetic gap, and a thin film element having a magnetoresistive effect integrally disposed in the vicinity of the second magnetic gap. Magnetic head.
JP24164592A 1992-09-10 1992-09-10 Magnetic head Withdrawn JPH0689410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24164592A JPH0689410A (en) 1992-09-10 1992-09-10 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24164592A JPH0689410A (en) 1992-09-10 1992-09-10 Magnetic head

Publications (1)

Publication Number Publication Date
JPH0689410A true JPH0689410A (en) 1994-03-29

Family

ID=17077402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24164592A Withdrawn JPH0689410A (en) 1992-09-10 1992-09-10 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0689410A (en)

Similar Documents

Publication Publication Date Title
US5296993A (en) Magnetic head with magnetic substrate and an enhanced poletip thereon
US5270895A (en) Combined read/write thin-film magnetic head with composite shared flux guide
US5394285A (en) Multi-track longitudinal, metal-in-gap head
KR930001145B1 (en) Magnetic head and manufacturing method thereof
EP0521552A2 (en) Thin-film magnetic head
JPH0459685B2 (en)
JP2505465B2 (en) Yoke type thin film magnetic head
JPH064832A (en) Combine thin film magnetic head
JPS6275924A (en) Unified thin film magnetic head
JPH0689410A (en) Magnetic head
EP0482642B1 (en) Composite magnetoresistive thin-film magnetic head
JP2973850B2 (en) Method of manufacturing magnetoresistive thin film magnetic head
JPH0346884B2 (en)
US5933298A (en) System comprising a magnetic head, measuring device and a current device
JP2677704B2 (en) Thin film magnetic head
JPH0916912A (en) Thin-film magnetic head
JPS626420A (en) Thin film magnetic head
JPS63138516A (en) Thin film magnetic head
JPS60136018A (en) Magneto-resistance effect type magnetic head
JPS60115014A (en) Magnetic head for vertical magnetization
JPH1049833A (en) Magnetic head
JPH08235537A (en) Composite type thin-film magnetic head
JPH0376535B2 (en)
JPH0991632A (en) Inductive/mr type composite magnetic head and its manufacture
JPH05234021A (en) Magnetic head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130