JPS63138516A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS63138516A
JPS63138516A JP28478586A JP28478586A JPS63138516A JP S63138516 A JPS63138516 A JP S63138516A JP 28478586 A JP28478586 A JP 28478586A JP 28478586 A JP28478586 A JP 28478586A JP S63138516 A JPS63138516 A JP S63138516A
Authority
JP
Japan
Prior art keywords
thin film
return path
yoke
magnetic head
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28478586A
Other languages
Japanese (ja)
Other versions
JPH065572B2 (en
Inventor
Kazuhiko Yamada
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28478586A priority Critical patent/JPH065572B2/en
Priority to EP87117664A priority patent/EP0269129B1/en
Priority to DE87117664T priority patent/DE3787509T2/en
Priority to US07/126,577 priority patent/US4954920A/en
Publication of JPS63138516A publication Critical patent/JPS63138516A/en
Publication of JPH065572B2 publication Critical patent/JPH065572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a working time in a manufacture process and to improve the yield of products by laminating a yoke previously smoothed by means of nonmagnetic and non electric conductive materials, a ferromagnetic magnetoresistance effect element and a return path in this order. CONSTITUTION:The soft magnetic thin film pattern of the same film thickness as the prescribed track width is formed on the same planar surface of a pair of yokes 2 in a thin film magnetic head. One ferromagnetic magnetoresistance effect MR element 4 and the return path 3 consisting of the soft magnetic thin film pattern magnetically connecting the elements 4 are provided on each end part of the yoke 2 without deteriorating the electrical continuity. A coil part by an upper coil 7 made of the electric conductive thin film is formed on the return path 3. The MR element 4 and the return path 3 are laminated in that order on the plane made of the nonmagnetic and non electric conductive materials through respective insulating films whereby the manufacturing process of the magnetic head is shortened and its yield is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ディスク装置、磁気テープ装置等に使用さ
れる、集積化薄膜技術を用いて作製される薄膜磁気ヘッ
ドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film magnetic head manufactured using integrated thin film technology and used in magnetic disk devices, magnetic tape devices, etc.

(従来の技術) 近年磁気記録の分野においては、高記録密度化が増々進
み記録媒体と共に磁気記録を支える薄膜磁気ヘッドにお
いても前述の高配録密度化に対応することが強く求めら
れている。
(Prior Art) In recent years, in the field of magnetic recording, recording densities have been increasing rapidly, and there is a strong demand for thin film magnetic heads that support magnetic recording as well as recording media to be compatible with the above-mentioned higher recording densities.

この様な高記録密度化、特に狭トラツク幅化に対応した
薄膜磁気ヘッドとしてイよ、例えば第2図に示した如き
構造を有するヘッドがある。
An example of a thin film magnetic head adapted to such high recording densities, particularly narrow track widths, is a head having a structure as shown in FIG. 2, for example.

すなわち、第2図(a) l:お’v’ テAl2O3
TiC等ノモノセラミックス成る基板(図示せず)上に
軟磁性薄膜より成る一対のヨーク2が集積化薄膜技術を
用いて形成されている。ここでヨーク2はその媒体対向
面側で絞り込まれ、所定のギャップ長(GL)に相当す
る間隙が形成されている。
That is, Fig. 2(a) l:O'v'TeAl2O3
A pair of yokes 2 made of a soft magnetic thin film are formed on a substrate (not shown) made of monoceramics such as TiC using integrated thin film technology. Here, the yoke 2 is narrowed on its medium facing surface side, and a gap corresponding to a predetermined gap length (GL) is formed.

更に、ヨーク2の他端側には一方のヨークから他のヨー
クへ磁束を還流させる機能を有する、軟磁性薄膜(例え
ば、CoZr膜)からなるリターン・パス3が形成され
ている。このリターン・パス3にはCu、Au等の導電
性薄膜からなる下コイル(図示せず)と上コイル7が形
成され、記録媒体に情報を書き込む電磁誘導型のエレメ
ント部が構成されている。
Furthermore, a return path 3 made of a soft magnetic thin film (for example, a CoZr film) is formed on the other end side of the yoke 2, and has the function of circulating magnetic flux from one yoke to the other yoke. A lower coil (not shown) and an upper coil 7 made of a conductive thin film of Cu, Au, etc. are formed in the return path 3, and constitute an electromagnetic induction type element section for writing information on a recording medium.

更に、ヨーク2とリターン・パス3との間が酸化硅素等
の非磁性、非導電性材料で埋め込まれ、その後平坦化さ
れ、NiFe合金あるいはNiCo合金よりなる磁気抵
抗効果素子(MR素子)4が、前記ヨーク2及びリター
ン・パス3との間に配置され、情報を読み出す磁気抵抗
効果型のエレメント部が構成されている。
Furthermore, the space between the yoke 2 and the return path 3 is filled with a non-magnetic, non-conductive material such as silicon oxide, which is then flattened to form a magnetoresistive element (MR element) 4 made of NiFe alloy or NiCo alloy. , a magnetoresistive element section is disposed between the yoke 2 and the return path 3 and reads out information.

この様にして、電磁誘導型と磁気抵抗効果型との両エレ
メントを複合化した薄膜磁気ヘッドが形成されている。
In this way, a thin film magnetic head is formed that combines both electromagnetic induction type and magnetoresistive type elements.

尚、前述したように下コイルは図の煩雑さを避けるため
図示していないが、下コイルは予めリターン・パス3の
下側にリターン・パス3とは絶縁されて形成されており
、ヨーク2やリターン・パス3等を形成後、前述したよ
うにヨーク2とリターン・パス3との間が酸化硅素等の
非磁性、非導電性材料で埋め込み平坦化されたあと、上
コイル7と電気的連続性を損なうことなく結合・一体化
して、リターン・パス3に巻線されるコイルとなる。
As mentioned above, the lower coil is not shown in order to avoid complication of the figure, but the lower coil is previously formed below the return path 3 and insulated from the return path 3, and the lower coil is insulated from the return path 3. After forming the yoke 2 and the return path 3, etc., the space between the yoke 2 and the return path 3 is filled and flattened with a non-magnetic, non-conductive material such as silicon oxide, and then electrically connected to the upper coil 7. The coils are combined and integrated without impairing continuity to form a coil wound on the return path 3.

又、第2図において、6はMR素子4ないしはコイル部
(下コイルと上コイル7)を回路系と接続する端子であ
り、5はMR素子4を差動構成とするための中間端子で
ある。
Further, in FIG. 2, 6 is a terminal for connecting the MR element 4 or the coil section (lower coil and upper coil 7) to the circuit system, and 5 is an intermediate terminal for making the MR element 4 into a differential configuration. .

第2図(b)は、第2図(a)のA−A部の概略断面図
である。ここで、ヨーク2およびリターン・パス3の間
の間隙は、前述したように酸化硅素膜8で埋め込まれて
平坦化され、それらの各端部上に、MR素子4が絶縁層
(例えば酸化硅素膜。図示せず。)を介して、ヨーク2
およびリターン・パス3と磁気的連続性を損なうことな
く積層・配置された構造となっている。
FIG. 2(b) is a schematic sectional view taken along the line AA in FIG. 2(a). Here, the gap between the yoke 2 and the return path 3 is filled and planarized with the silicon oxide film 8 as described above, and the MR element 4 is covered with an insulating layer (for example, a silicon oxide film) on each end thereof. membrane (not shown), the yoke 2
and the return path 3, the structure is such that they are stacked and arranged without impairing magnetic continuity.

以上の様な第2図に示した薄膜磁気ヘッドにおいては、
トラック幅Twはヨーク2の膜厚で規定される。従って
、狭トラツク幅化はコーク2を成す軟磁性薄膜の膜厚を
薄(することにより成され、エツチングにより軟磁性薄
膜パターンのパターン幅を狭めて狭トラツク幅化を実現
する必然がないため、本質的に狭トラツク幅化が簡便且
つ容易であるという利点がある。又、磁気回路を成すヨ
ーク2とリターン・パス3の間に、再生効率の優れたM
R素子4を配置し、しかもこのMR素子4を差動構成と
しているため、狭トラツク幅化しても大きな再生出力を
得られるという利点がある。更に、MR素子4がヨーク
2を介して記録媒体と接するため、接触。
In the thin film magnetic head shown in FIG. 2 as described above,
The track width Tw is defined by the film thickness of the yoke 2. Therefore, the narrowing of the track width is achieved by reducing the thickness of the soft magnetic thin film forming the cork 2, and there is no necessity to reduce the pattern width of the soft magnetic thin film pattern by etching to realize narrowing of the track width. Essentially, it has the advantage that narrowing the track width is simple and easy.Also, between the yoke 2 and the return path 3, which form the magnetic circuit, there is an M
Since the R element 4 is arranged and the MR element 4 has a differential configuration, there is an advantage that a large reproduction output can be obtained even if the track width is narrowed. Furthermore, since the MR element 4 comes into contact with the recording medium via the yoke 2, contact occurs.

摺動にともなうMR素子4のノイズ発生が抑制されると
いう利点もある。
There is also the advantage that noise generation in the MR element 4 due to sliding is suppressed.

(発明が解決しようとする問題点) しかしながら第2図に示した如き薄膜磁気ヘッドにおい
ては、以下に述べる如き重大な欠点があった。
(Problems to be Solved by the Invention) However, the thin film magnetic head shown in FIG. 2 has serious drawbacks as described below.

すなわち、前述したように下コイルは、ヨーク2あるい
はリターン・パス3の形成過程に先立ちCu、Au等の
導電性薄膜より形成される。その後、該下コイル上に酸
化硅素などの絶縁層を成膜後、ヨーク2及びリターン・
パス3が形成される。更に、ヨーク2とリターン・パス
3との間が酸化硅素等の非磁性、絶縁性材料、例えば酸
化硅素で埋め込まれて平坦化され、NiFe合金等より
なるMR素子4が、前記ヨーク2及びリターン・パス3
との間に各々1個配置された構造となっている。
That is, as described above, the lower coil is formed from a conductive thin film such as Cu or Au prior to the process of forming the yoke 2 or the return path 3. After that, after forming an insulating layer such as silicon oxide on the lower coil, the yoke 2 and the return
Path 3 is formed. Furthermore, the space between the yoke 2 and the return path 3 is filled with a non-magnetic, insulating material such as silicon oxide, and is flattened, and an MR element 4 made of NiFe alloy or the like is placed between the yoke 2 and the return path.・Pass 3
It has a structure in which one of each is placed between.

この様な製造プロセスを経ることにより、前記下コイル
は絶縁層1例えば酸化硅素により完全に被覆されている
。この時、下コイル上に成膜される絶縁層の膜厚(1)
は、少なくとも下コイルとリターンパス3との層間絶縁
層の膜厚(tl)とヨーク2及びリターンパス3を埋め
込み平坦化するのに要する絶縁層の膜厚(t2)との膜
厚の和以上である。ここで、tlは通常0.5pm程度
であり、一方t2はヨーク2あるいはリターン・パス3
の膜厚と等しく、これは又、所定のトラック幅に等しく
例えばトラック幅2pmの薄膜磁気ヘッドの場合、t2
は2pmとなる。従って、下コイル上に成膜された絶縁
層のJli厚tは少なくとも2.5pmと厚いものとな
る。更に、上コイル7とリターン・パス3との間の絶縁
層の膜厚t3がこれに加算されるため、下コイル上の絶
縁層の膜厚は、より大きなものとなる。
By going through such a manufacturing process, the lower coil is completely covered with the insulating layer 1, for example, silicon oxide. At this time, the thickness of the insulating layer formed on the lower coil (1)
is at least the sum of the thickness (tl) of the interlayer insulating layer between the lower coil and return path 3 and the thickness (t2) of the insulating layer required to embed and flatten the yoke 2 and return path 3. It is. Here, tl is usually about 0.5 pm, while t2 is the yoke 2 or return path 3.
This is also equal to the predetermined track width, for example, in the case of a thin film magnetic head with a track width of 2 pm, t2
becomes 2pm. Therefore, the Jli thickness t of the insulating layer formed on the lower coil is as thick as at least 2.5 pm. Furthermore, since the film thickness t3 of the insulating layer between the upper coil 7 and the return path 3 is added to this, the film thickness of the insulating layer on the lower coil becomes larger.

以上のような状態にある下コイルは、以後の薄膜磁気ヘ
ッド製造プロセスにおいて上コイル7と電気的に接続さ
れ、薄膜磁気ヘッドに記録媒体への書き込み動作を付与
する一連のコイル部となる。
The lower coil in the above state will be electrically connected to the upper coil 7 in the subsequent thin film magnetic head manufacturing process, and will become a series of coil parts that provide the thin film magnetic head with a write operation on a recording medium.

第3図(a)に、この様な状態にあるコイル部の概略断
面図を示す。尚、この断面図は、第2図(a)において
B−B部所面に相当する箇所である。ここで、下コイル
9上に堆積した不要な酸化硅素膜(膜厚が各々t1.t
2.t3の3層の酸化硅素膜)をイオンエツチング法等
により除去したのち、上コイル7が形成されて下コイル
9と接続され、リターン・パス3を取巻く一連のコイル
を成している。
FIG. 3(a) shows a schematic cross-sectional view of the coil portion in such a state. Incidentally, this sectional view corresponds to the plane BB in FIG. 2(a). Here, unnecessary silicon oxide films deposited on the lower coil 9 (thicknesses of t1 and t
2. After removing the three-layer silicon oxide film t3 by ion etching or the like, an upper coil 7 is formed and connected to the lower coil 9, forming a series of coils surrounding the return path 3.

しかし、この下コイルと上コイル7の接続プロセスは、
前述したように少なくとも2.5pmの厚みを待つ絶縁
層をエツチングにより除去して、下コイルの一部を露出
した後、上コイル7を接続することにより行われるため
、加工性及び歩留りの低下を招き、薄膜磁気ヘッドの製
造プロセス上極めて大きな問題となっていた。
However, the connection process between the lower coil and upper coil 7 is
As mentioned above, etching is performed by removing the insulating layer to a thickness of at least 2.5 pm to expose a part of the lower coil, and then connecting the upper coil 7, which reduces workability and yield. This has caused an extremely serious problem in the manufacturing process of thin-film magnetic heads.

つまり、絶縁層のエツチング工程は通常ドライエツチン
グ法を用いて行われるが、そのエツチング速度は、フォ
トレジストパターンに損傷を与えない程度の条件下では
、高々200〜500オングストロ一ム毎分(酸化硅素
の場合)程度であり、2.5pmの厚みを持つ絶縁層を
力a工するのに50−120分もの時間を必要としてい
た。
In other words, the etching process of the insulating layer is usually performed using a dry etching method, but the etching rate is at most 200 to 500 angstroms per minute (silicon oxide) under conditions that do not damage the photoresist pattern. ), and it took as much as 50 to 120 minutes to machine an insulating layer with a thickness of 2.5 pm.

又、ヨークの平坦化と同時に下コイルも絶縁層に埋め込
まれ、しかも下コイルは幅5〜10pmのパターンが、
間隔3〜5pmで形成された微細なものであるため、上
コイル7どの接続に必要な、絶縁層のエツチング用のフ
ォトレジストパターンの露光時に、目合わせ誤差が生じ
昌く歩留りが低下していた。
In addition, at the same time as the yoke was flattened, the lower coil was also embedded in the insulating layer, and the lower coil had a pattern with a width of 5 to 10 pm.
Because they are minute, formed at intervals of 3 to 5 pm, alignment errors occur during exposure of the photoresist pattern for etching the insulating layer, which is necessary for connecting the upper coil 7, etc., resulting in a significant decrease in yield. .

更に、第3図(b)に示したように、下コイル9上の酸
化硅素膜8からなる絶縁層を除去して形成され凹部には
、上コイル7の形成用のフォトレジスト10が厚く溜り
、前記凹部でのフォトレジスト10の膜厚P1は、所定
膜厚Pφに比較して極めて大きくなる。
Further, as shown in FIG. 3(b), a thick layer of photoresist 10 for forming the upper coil 7 is deposited in the recess formed by removing the insulating layer made of the silicon oxide film 8 on the lower coil 9. , the film thickness P1 of the photoresist 10 at the recessed portion is extremely large compared to the predetermined film thickness Pφ.

この為、上コイル7の7オトレシストパターンを露光す
る際に、7オトレジスト10の一部が前述の凹部に残存
するという問題があった。
For this reason, when exposing the 7-oto-resist pattern of the upper coil 7, there was a problem in that part of the 7-oto-resist 10 remained in the above-mentioned recess.

このことは現在薄膜磁気ヘッドのコイル形成方法として
一般的な銅メツキ法を用いて上コイル7を形成するとき
に、メッキ膜が下コイルとの接続部に析出しないことを
意味しており、下コイルと上コイル7の電気的連続性が
阻害され、歩留りが低下する。
This means that when the upper coil 7 is formed using the copper plating method, which is currently a common coil forming method for thin-film magnetic heads, the plating film will not be deposited at the connection part with the lower coil. Electrical continuity between the coil and the upper coil 7 is disrupted, resulting in a decrease in yield.

本発明は以上述べてきたような従来の薄膜磁気ヘッドの
諸欠点を除去せしめて、製造プロセスにおいて高い加工
性と歩留りを有する高記録密度の薄膜磁気ヘッドを提供
することを目的とするものである。
It is an object of the present invention to eliminate the various drawbacks of the conventional thin film magnetic head as described above, and to provide a thin film magnetic head with high recording density and high workability and yield in the manufacturing process. .

(問題を解決するための手段) 所定のトラック幅と等しい膜厚を有する同一平面上に形
成された軟磁性薄膜パターンよりなる一対のヨークと、
該ヨークの各端部に磁気的連続性を損なうことなく配置
された各々1個の強磁性磁気抵抗効果素子と、該強磁性
磁気抵抗効果素子を互いに磁気的に結合する軟磁性薄膜
パターンよりなるリターン・パスとを具備し、しかも該
リターン・パスに導電性薄膜を用いた上下両フィルより
なるコイル部が形成されてなる薄膜磁気ヘッドにおいて
、予め非磁性、非導電性材料で平坦化された前記ヨーク
、強磁性磁気抵抗効果素子及びリターン・パスが、この
順序に積層された構造を有することを特徴とする薄膜磁
気ヘッドが得られ、これにより従前の問題点は解決され
る。
(Means for Solving the Problem) A pair of yokes made of a soft magnetic thin film pattern formed on the same plane and having a film thickness equal to a predetermined track width;
A ferromagnetic magnetoresistive element arranged at each end of the yoke without impairing magnetic continuity, and a soft magnetic thin film pattern that magnetically couples the ferromagnetic magnetoresistive elements to each other. A thin-film magnetic head is provided with a return path, and the return path is formed with a coil portion consisting of both upper and lower fills using a conductive thin film. A thin film magnetic head is obtained which has a structure in which the yoke, the ferromagnetic magnetoresistive element and the return path are laminated in this order, thereby solving the conventional problems.

(作用) 本発明は上述の構成をとることにより従来の問題点を改
善した薄膜磁気ヘッドの提供を可能とした。すなわち、
予め非磁性、非導電性材料によって平坦化されたヨーク
の端部に、強磁性磁気抵抗効果素子、リターン・パスを
この順序に、かつ磁気的連続性を損なうことなく配置・
積層する構造とすることにより、前記リターン・パスの
下部に形成される下コイル上に成膜される絶縁層のうち
、その大部分を占めるヨークを埋め込み平坦化するのに
要する絶縁層の、下コイル上への堆積が行われないため
、下コイル上の絶縁層の膜厚が大幅に小さくなる。
(Function) By employing the above-described structure, the present invention has made it possible to provide a thin film magnetic head that has improved the conventional problems. That is,
A ferromagnetic magnetoresistive element and a return path are arranged in this order at the end of the yoke, which has been flattened with a non-magnetic, non-conductive material, without compromising magnetic continuity.
By adopting a laminated structure, the lower part of the insulating layer required to embed and flatten the yoke, which occupies most of the insulating layer formed on the lower coil formed at the bottom of the return path, is Since no deposition occurs on the coil, the thickness of the insulating layer on the lower coil is significantly reduced.

従って、下コイルと上コイルを接続するための絶縁層除
去工程に要する時間が激減する。本発明によれば、例え
ば前述した従来ヘッドと同じトラック幅2μmの薄膜磁
気ヘッドの場合、下コイル上の絶縁層の膜厚は約0.5
pmとなり、絶縁層除去工程に要する時間は、従来に比
較して約115の10〜25分程度に減少する。
Therefore, the time required for the step of removing the insulating layer for connecting the lower coil and the upper coil is drastically reduced. According to the present invention, for example, in the case of a thin film magnetic head with a track width of 2 μm, which is the same as the conventional head described above, the thickness of the insulating layer on the lower coil is approximately 0.5 μm.
pm, and the time required for the insulating layer removal process is reduced to approximately 115, 10 to 25 minutes, compared to the conventional method.

又、同時に下コイル上の絶縁層を除去して出来る凹部の
深さも、従来の比較して115程度に浅くなるため、上
コイル形成用のフォトレジストの前述した凹部への溜り
も抑制され、凹部でのフォトレジスト残存の問題も解決
される。
At the same time, the depth of the recess formed by removing the insulating layer on the lower coil is also shallower, to about 115 mm compared to the conventional method, so the accumulation of the photoresist for forming the upper coil in the recess is suppressed, and the recess is reduced. This also solves the problem of photoresist remaining.

しかも、下コイルは構造上ヨークの平坦化工程を経験し
ないため、絶縁層に埋め込まれる必然がなく、絶縁層除
去工程での目合わせ誤差の発生も抑制され歩留りが大幅
に向上する。
Furthermore, since the lower coil does not undergo the yoke flattening process due to its structure, it is not necessarily embedded in the insulating layer, and the occurrence of alignment errors in the insulating layer removal process is also suppressed, significantly improving the yield.

(実施例) 第1図(a)は本発明の一実施例を示す概略図である。(Example) FIG. 1(a) is a schematic diagram showing an embodiment of the present invention.

第1図(a)においてAl2O3−TiC等のセラミッ
クスより成る基板(図示せず)上に、スパッチ法により
CoZr(Zr:10at、%)膜を2pm成膜し、フ
ォトリソグラフィー技術を用いて一対のヨーク2を形成
した。ここで、前記ヨーク2の媒体対向面側は絞り込ま
れ、所定のギャップ長(GL)に相当する間隙を儲ける
ようにパターン化した。本実施例では、GL=0.4p
mである。尚、トラック幅はヨーク2の膜厚と等しく、
本実施例では2pmである。
In FIG. 1(a), a 2 pm CoZr (Zr: 10at, %) film is formed on a substrate (not shown) made of ceramics such as Al2O3-TiC by the spatch method, and a pair of Yoke 2 was formed. Here, the medium facing surface side of the yoke 2 was narrowed down and patterned to provide a gap corresponding to a predetermined gap length (GL). In this example, GL=0.4p
It is m. Note that the track width is equal to the film thickness of the yoke 2,
In this example, it is 2 pm.

その後、約2pmの酸化硅素膜をスパッタ法により成膜
し、エッチバック法を用いて前記ヨーク2を埋め込み羊
坦化した。この平坦化工程は、酸化硅素膜を形成後、ノ
ボラック系の7オトレジスを約2.5pm回転塗布した
のち、紫外光を基板全面に照射し、iFEイて250°
Cで1時間熱処理することにより、ヨーク2の段差を吸
収して平面となし、Arガス雰囲気中でイオンエツチン
グを行うことにより行った。尚、イオンエツチングの条
件は、Arガス圧カニ2X10 ’Torr、加速電圧
:500Volt、入射角:θ=45°である。
Thereafter, a silicon oxide film with a thickness of about 2 pm was formed by sputtering, and the yoke 2 was buried and planarized using an etch-back method. In this planarization process, after forming a silicon oxide film, a novolak-based 7-OtoResist is spin-coated to a thickness of about 2.5 pm.
Heat treatment was performed with C for 1 hour to absorb the step difference in the yoke 2 and make it flat, and ion etching was performed in an Ar gas atmosphere. The conditions for ion etching are: Ar gas pressure 2×10' Torr, acceleration voltage: 500 Volt, and incident angle: θ=45°.

ついで、N1Fe(Fe:18at、%)合金を蒸着に
より成膜し、フォトリソグラフィー技術を用いて強磁性
磁気抵抗効果(MR)素子4を、ヨーク2のギャップ側
とは反対側の端部上に、磁気的連続性を損なわないよう
にして各々−偏積層・配置した。尚、MR素子4の膜厚
は400オングストロームである。又、NiFe合金の
蒸着に先立って、ヨーク2とMR素子4を電気的に絶縁
するために、酸化硅素膜(図示せず。
Next, a film of N1Fe (Fe: 18at, %) alloy is formed by vapor deposition, and a ferromagnetic magnetoresistive (MR) element 4 is formed on the end of the yoke 2 opposite to the gap side using photolithography. , and were unevenly laminated and arranged so as not to impair magnetic continuity. Note that the film thickness of the MR element 4 is 400 angstroms. Furthermore, prior to the deposition of the NiFe alloy, a silicon oxide film (not shown) is formed to electrically insulate the yoke 2 and the MR element 4.

膜厚:0.2pm)をスパッタ法を用いて成膜した。A film having a thickness of 0.2 pm) was formed using a sputtering method.

その後、再度酸化硅素膜(図示せず。膜厚0.2pm)
をスパッタ法で成膜し、ついでフォトレジストパターン
を用いたスルーホールめっき法により、Cuよりなる下
コイル(図示せず)を形成した。
After that, silicon oxide film again (not shown, film thickness 0.2 pm)
was formed by sputtering, and then a lower coil (not shown) made of Cu was formed by through-hole plating using a photoresist pattern.

Cuめっき膜の厚みは2pmとした。The thickness of the Cu plating film was 2 pm.

しかるのち、下コイルとリターン・パス3を電気的に絶
縁する、酸化硅素膜(図示せず。膜厚0.5pm)をス
パッタした。
Thereafter, a silicon oxide film (not shown, 0.5 pm thick) was sputtered to electrically insulate the lower coil and the return path 3.

その後、膜厚211mのCoZr(Zr:10at、%
)膜をスパッタし、公知のフォトリソグラフィーを用い
て、リターン・パス3を形成した。ここで、リターン・
パス3は、MR素子4との磁気的連続性が損なわれぬよ
うに、MRX子4の各端部上に僅かにオーバーラツプす
るように積層・配置されている。
After that, CoZr (Zr: 10at, %
) The film was sputtered and a return path 3 was formed using known photolithography. Here, return
The paths 3 are laminated and arranged so as to slightly overlap each end of the MRX element 4 so that magnetic continuity with the MR element 4 is not impaired.

ついで、0.5pmの酸化硅素膜(図示せず)をスパッ
タ法により成膜し、ついで下コイル上の不要な酸化硅素
膜をイオンエツチング法で除去したのち、下コイルと同
様の方法を用いて、Cuよりなる上コイル7を下コイル
と電気的連続性を保つ様に形成した。
Next, a 0.5 pm silicon oxide film (not shown) was formed by sputtering, and the unnecessary silicon oxide film on the lower coil was removed by ion etching. , an upper coil 7 made of Cu was formed so as to maintain electrical continuity with the lower coil.

最後に、MR素子4およびコイル部(下コイルと上コイ
ル7)を回路系と接続する導電性薄膜からなる端子6、
中間端子5を形成して薄膜磁気ヘッドを作製した。尚、
端子6および中間端子5は、具体的には、膜厚2pmの
Cu薄膜パターンで形成した。
Finally, a terminal 6 made of a conductive thin film connects the MR element 4 and the coil section (lower coil and upper coil 7) to the circuit system;
Intermediate terminals 5 were formed to produce a thin film magnetic head. still,
Specifically, the terminal 6 and the intermediate terminal 5 were formed of a Cu thin film pattern with a film thickness of 2 pm.

第1図(b)は第1図(a)のA−A部断面を示す概略
図であるが、酸化硅素膜8により埋め込まれ平坦化され
たヨーク2の端部上に、MR素子4およびリターン・パ
ス3がこの順序で、磁気的連続性を損なうことなく、酸
化硅素膜(図示せず)を介して、積層・配置された構造
となっている。
FIG. 1(b) is a schematic cross-sectional view taken along the line A-A in FIG. 1(a), in which the MR element 4 and The structure is such that the return paths 3 are stacked and arranged in this order with a silicon oxide film (not shown) interposed therebetween without impairing magnetic continuity.

本発明による薄膜磁気ヘッドでは、その製造工程、特に
下コイル上の不要絶縁層(本実施例では酸化硅素膜)除
去工程での作業時間が、従来の薄膜磁気ヘッドの場合に
比較して約115に短縮され、しかも歩留りも大幅に向
上した。
In the thin film magnetic head according to the present invention, the manufacturing process, particularly the process of removing the unnecessary insulating layer (silicon oxide film in this example) on the lower coil, takes about 115 hours compared to the conventional thin film magnetic head. , and the yield was significantly improved.

尚、本実施例の薄膜磁気ヘッドの磁気ヘッドとしての性
能、つまり磁気記録媒体への情報の書き込みおよび読み
出しの能力は、従来の薄膜磁気ヘッドと全く遜色がなく
、本実施例による薄膜磁気ヘッドが磁気ヘッドとして優
れた性能を具備することが確認された。
Note that the performance of the thin film magnetic head of this example as a magnetic head, that is, the ability to write and read information to a magnetic recording medium, is completely comparable to that of a conventional thin film magnetic head, and the thin film magnetic head of this example has no inferiority to that of a conventional thin film magnetic head. It was confirmed that it has excellent performance as a magnetic head.

(発明の効果) 以上述べてきたように、本発明による薄膜磁気ヘッドで
は、ヨーク2を酸化硅素膜8で埋め込み平坦化したのち
、下コイルを形成することが可能であるため、下コイル
上に堆積する絶縁層(本実施例では酸化硅素膜)の膜厚
が激減する。
(Effects of the Invention) As described above, in the thin film magnetic head according to the present invention, it is possible to form the lower coil after burying the yoke 2 with the silicon oxide film 8 and flattening it. The thickness of the deposited insulating layer (silicon oxide film in this example) is drastically reduced.

従って、下コイル上の不要な絶縁層を除去する工程の作
業時間が大幅に短縮される。しかも下コイルは、ヨーク
2と異なり絶縁層により埋め込まれる必然がないため、
この工程におけるフォトレジストパターン形成時の目合
わせ誤差の発生が抑制され歩留りが向上する。
Therefore, the working time for the process of removing unnecessary insulating layers on the lower coil is significantly shortened. Moreover, unlike yoke 2, the lower coil does not necessarily have to be embedded in an insulating layer.
The occurrence of alignment errors during photoresist pattern formation in this step is suppressed, and the yield is improved.

更に、絶縁層除去により生じる凹部の深さは、従来の約
20%と浅くなるため、上コイル7用の7オトレジスト
がこの凹部へ溜ることが抑制され、上コイル7の7オト
レジストパターンを露光する際に、フォトレジストパタ
ーンが前述の凹部に残存することがなくなり、この工程
においても歩留りが向上する。
Furthermore, the depth of the recess created by removing the insulating layer is about 20% shallower than the conventional one, so the 7-photoresist for the upper coil 7 is prevented from accumulating in this recess, and the 7-photoresist pattern for the upper coil 7 can be exposed. At this time, the photoresist pattern does not remain in the above-mentioned recesses, and the yield is improved in this process as well.

この様に本発明による薄膜磁気ヘッドにおいては、製造
工程の作業時間が短縮され且つ歩留りが大幅に改善され
、本発明の持つ工業的価値は大きいと言える。
As described above, in the thin film magnetic head according to the present invention, the working time of the manufacturing process is shortened and the yield is significantly improved, and it can be said that the present invention has great industrial value.

尚、以上の説明においては、絶縁層として酸化硅素膜の
みについて言及したが、酸化アルミニウム膜等他の絶縁
性物質を用いても良いことは勿論である。
In the above description, only a silicon oxide film was mentioned as the insulating layer, but it goes without saying that other insulating materials such as an aluminum oxide film may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明による薄膜磁気ヘッドの
一実施例を示す概略図であり、第2図(a)、(b)は
従来の薄膜磁気ヘッドを示す概略図である。第3図(a
)、(b)は従来ヘッドの問題点を説明するための概略
断面図である。 図において、 2・・・ヨーク、  3・・・リターン・パス、4・・
・MR素子、5・、・中間端子、   6・・・端子、
   7・・・上コイル、8・0.酸化硅素膜、  9
・・・下コイル、10・・・フォトレジスト
FIGS. 1(a) and (b) are schematic diagrams showing an embodiment of a thin film magnetic head according to the present invention, and FIGS. 2(a) and (b) are schematic diagrams showing a conventional thin film magnetic head. . Figure 3 (a
) and (b) are schematic sectional views for explaining the problems of the conventional head. In the figure, 2...Yoke, 3...Return path, 4...
・MR element, 5... intermediate terminal, 6... terminal,
7... Upper coil, 8.0. Silicon oxide film, 9
...Lower coil, 10...Photoresist

Claims (2)

【特許請求の範囲】[Claims] (1)所定のトラック幅と等しい膜厚を有し同一平面上
に形成された軟磁性薄膜パターンよりなる一対のヨーク
と、該ヨークの各端部に磁気的連続性を損なうことなく
配置された各々1個の強磁性磁気抵抗効果素子と、該強
磁性磁気抵抗効果素子を互いに磁気的に結合する軟磁性
薄膜パターンよりなるリターン・パスとを具備し、しか
も該リターン・パスに導電性薄膜を用いたコイル部が形
成されてなる薄膜磁気ヘッドにおいて、非磁性、非導電
性材料と前記ヨークからなる平面上に、それぞれ絶縁膜
を介して強磁性磁気抵抗効果素子及びリターン・パスが
、この順序に積層された構造を有することを特徴とする
薄膜磁気ヘッド。
(1) A pair of yokes made of a soft magnetic thin film pattern formed on the same plane with a film thickness equal to a predetermined track width, and a pair of yokes arranged at each end of the yokes without impairing magnetic continuity. Each of them includes one ferromagnetic magnetoresistive element and a return path made of a soft magnetic thin film pattern that magnetically couples the ferromagnetic magnetoresistive elements to each other, and furthermore, the return path is provided with a conductive thin film. In the thin-film magnetic head in which the coil portion used is formed, a ferromagnetic magnetoresistive element and a return path are arranged in this order on a plane consisting of a non-magnetic, non-conductive material and the yoke, respectively, via an insulating film. 1. A thin film magnetic head characterized by having a structure in which layers are laminated.
(2)ヨークの各端部に配置された各々1個の強磁性磁
気抵抗効果素子が互いに差動構成であることを特徴とす
る特許請求の範囲第1項記載の薄膜磁気ヘッド。
(2) The thin film magnetic head according to claim 1, wherein each of the ferromagnetic magnetoresistive elements disposed at each end of the yoke has a differential configuration.
JP28478586A 1986-11-28 1986-11-28 Thin film magnetic head Expired - Fee Related JPH065572B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28478586A JPH065572B2 (en) 1986-11-28 1986-11-28 Thin film magnetic head
EP87117664A EP0269129B1 (en) 1986-11-28 1987-11-30 Thin film magnetic head
DE87117664T DE3787509T2 (en) 1986-11-28 1987-11-30 Thin film magnetic head.
US07/126,577 US4954920A (en) 1986-11-28 1987-11-30 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28478586A JPH065572B2 (en) 1986-11-28 1986-11-28 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS63138516A true JPS63138516A (en) 1988-06-10
JPH065572B2 JPH065572B2 (en) 1994-01-19

Family

ID=17682985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28478586A Expired - Fee Related JPH065572B2 (en) 1986-11-28 1986-11-28 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH065572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388846B1 (en) * 1997-04-01 2002-05-14 Commissariat A L'energie Atomique Magnetic field sensor with magnetoresistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365708B2 (en) 2012-01-17 2013-12-11 住友金属鉱山株式会社 Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388846B1 (en) * 1997-04-01 2002-05-14 Commissariat A L'energie Atomique Magnetic field sensor with magnetoresistor

Also Published As

Publication number Publication date
JPH065572B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US5703740A (en) Toroidal thin film head
JPH0668422A (en) Magnetic pole structure of high densidy thin film recording head
US20020017018A1 (en) Manufacturing method of magneto-resistive effect type head
EP0344278A1 (en) Laminated poles for recording heads.
JP2000113425A (en) Thin film magnetic head and manufacture thereof
JPS63138516A (en) Thin film magnetic head
JP2000155914A (en) Manufacture of thin film magnetic head
EP0585930A2 (en) Thin film magnetic head
JP2002208114A (en) Thin film magnetic head and manufacturing method therefor
JP3297760B2 (en) Magnetoresistive magnetic head and method of manufacturing the same
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPS62164203A (en) Production of thin film magnetic head
JPS626421A (en) Thin film magnetic head
JP2813036B2 (en) Thin film magnetic head
JPH0524563B2 (en)
JP3452306B2 (en) Thin film magnetic head and method of manufacturing the same
JP3231510B2 (en) Magnetic head
JP4010702B2 (en) Manufacturing method of thin film magnetic head
JP2005085443A (en) Thin film magnetic head and its manufacturing method
JPS61194618A (en) Magnetic head and its manufacture
JPH0765326A (en) Production of magnetoresistance effect type thin-film magnetic head
JPH08329420A (en) Thin film magnetic head and its manufacture
JP2000123321A (en) Production of thin-film magnetic head
JPH0817022A (en) Production of combined thin-film magnetic head
JPH06131627A (en) Thin film magnetic head and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees