JPH0688762A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH0688762A
JPH0688762A JP23813592A JP23813592A JPH0688762A JP H0688762 A JPH0688762 A JP H0688762A JP 23813592 A JP23813592 A JP 23813592A JP 23813592 A JP23813592 A JP 23813592A JP H0688762 A JPH0688762 A JP H0688762A
Authority
JP
Japan
Prior art keywords
pressure
semiconductor
epitaxial layer
diaphragm
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23813592A
Other languages
Japanese (ja)
Inventor
Satoru Ohata
覚 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23813592A priority Critical patent/JPH0688762A/en
Publication of JPH0688762A publication Critical patent/JPH0688762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a pressure resistance and high sensitivity, suppress the volumetric changes in pressure-transmitting medium due to temperature changes, and keep the back-up effect stable while excessive differential pressure is impressed in a peeling-off direction of semiconductor epitaxial layer by making one layer of diaphragm section thin. CONSTITUTION:The title is provided with an epitaxial layer 2 in an upper part of a semiconductor board 1 having a first pressure-transmitting passage 3 and a recessed pressure receiving part 4 which is larger than an inner diameter of the passage 3 on a face part of the layer facing the semiconductor board 1. A recessed pressure receiving part 5 is formed on a face part of the layer 2 on the opposite side of the board 1 to constitute a diaphragm part 6 between the part 4 and the part 5. A pressure-transmitting base 10 in which a second pressure-transmitting passage 9 has a smaller diameter than that of the part 5 is prepared on the face part of the layer 2 of the part 5 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差圧伝送器等に利用さ
れる半導体圧力センサに係わり、特に高耐圧性、超小型
化等を実現する上で有効な構造とする半導体圧力センサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor used in a differential pressure transmitter or the like, and more particularly to a semiconductor pressure sensor having a structure effective in realizing high pressure resistance and ultra-miniaturization.

【0002】[0002]

【従来の技術】従来、一般的に知られている半導体圧力
センサは、単結晶シリコン自身の有する優れた弾性特性
に着目し、その単結晶シリコンを用いて薄膜シリコンダ
イヤフラム(以下、ダイヤフラムと指称する)を形成す
る一方、当該ダイヤフラムの一方面部側の表面に、ダイ
ヤフラム両面にかかる圧力の差に応答して変化する応力
変化に応じてピエゾ抵抗特性の変化をもたらす応力セン
サが配置され、前記ダイヤフラムの他方面部側にはダイ
ヤフラム本来の機能を高めるべく薄膜化を実現するため
に円形状の凹部が形成され、全体として単結晶半導体チ
ップを構成している。
2. Description of the Related Art Conventionally known semiconductor pressure sensors have focused on the excellent elastic characteristics of single crystal silicon itself, and use the single crystal silicon to form a thin film silicon diaphragm (hereinafter referred to as a diaphragm). ) Is formed on the one surface side of the diaphragm, a stress sensor that causes a change in piezoresistive characteristics in response to a stress change that changes in response to a difference in pressure applied to both sides of the diaphragm is arranged. A circular concave portion is formed on the other surface side to realize a thin film in order to enhance the original function of the diaphragm, and constitutes a single crystal semiconductor chip as a whole.

【0003】ところで、単結晶半導体チップの大きさ
は、縮小化するにつれて、ダイヤフラムの柔軟性を高め
ること等から、耐圧力性に強いことが見い出されてい
る。従って、このセンサチップの縮小化を実現するため
にはダイヤフラムのより薄膜化する技術が必要となって
くる。以下、従来の半導体圧力センサの構造および薄膜
化製造工程について図3(a)〜(d)を参照しながら
説明する。
By the way, it has been found that the size of a single crystal semiconductor chip is high in pressure resistance because the flexibility of the diaphragm is increased as the size of the single crystal semiconductor chip is reduced. Therefore, in order to realize the downsizing of the sensor chip, a technique for making the diaphragm thinner is necessary. The structure of the conventional semiconductor pressure sensor and the thin film manufacturing process will be described below with reference to FIGS.

【0004】先ず、図3(a)に示す如く高抵抗のP型
シリコン基板101上に第1のN型エピタキシャル層1
02を成長し、さらに熱酸化膜103および低抵抗のN
++型エピタキシャル層104を形成する。その後、図3
(b)に示す如く第1のN型エピタキシャル層102上
および低抵抗のN++型エピタキシャル層104上に第2
のN型エピタキシャル層105を成長し、当該第2のN
型エピタキシャル層105の表面であってダイヤフラム
として機能する領域に応力センサとしてのピエゾ抵抗部
107を配置する一方、前記熱酸化膜103にエッチン
グ用の穴パターン108を形成する。
First, as shown in FIG. 3A, a first N type epitaxial layer 1 is formed on a high resistance P type silicon substrate 101.
02, a thermal oxide film 103 and a low resistance N
A ++ type epitaxial layer 104 is formed. After that, FIG.
A second layer is formed on the first N type epitaxial layer 102 and a low resistance N ++ type epitaxial layer 104 as shown in FIG.
Of the second N-type epitaxial layer 105
A piezoresistive portion 107 as a stress sensor is arranged on the surface of the mold epitaxial layer 105 that functions as a diaphragm, while a hole pattern 108 for etching is formed in the thermal oxide film 103.

【0005】さらに、図3(c)に示すように第2のN
型エピタキシャル層105の表面にワックス等を施して
保護した後、異方性エッチング液を用いてP型シリコン
基板101をエッチングし、N++型エピタキシャル層1
04に達するエッチング穴109を形成する。引き続
き、図3(d)に示す如く等方性エッチング液を用いて
++型エピタキシャル層104をエッチングし、凹状の
圧力受け部110を形成するとともに熱酸化膜103を
除去する。
Further, as shown in FIG. 3C, the second N
After the surface of the type epitaxial layer 105 is protected by applying wax or the like, the P type silicon substrate 101 is etched by using an anisotropic etching solution, and the N ++ type epitaxial layer 1 is formed.
Etching holes 109 reaching 04 are formed. Subsequently, as shown in FIG. 3D, the N ++ type epitaxial layer 104 is etched using an isotropic etching solution to form a concave pressure receiving portion 110 and remove the thermal oxide film 103.

【0006】しかる後、ピエゾ抵抗部107上に電極を
介してリード線を取り出し、一方、圧力受け部110と
隣り合う第2のN型エピタキシャル層105がダイヤフ
ラムとなっているので、このダイヤフラムの機能を十分
に生かすように台座に接合した後、測定圧力を適切に出
力する外囲器に設置される。従って、以上のような構造
および製造工程をとることにより、ダイヤフラム106
の薄膜化が可能になる。
Thereafter, the lead wire is taken out through the electrode on the piezoresistive portion 107, while the second N-type epitaxial layer 105 adjacent to the pressure receiving portion 110 serves as a diaphragm. Therefore, the function of this diaphragm is obtained. After joining to the pedestal so as to make the most of it, it is installed in an envelope that outputs the measured pressure appropriately. Therefore, by taking the structure and manufacturing process as described above, the diaphragm 106
Can be thinned.

【0007】[0007]

【発明が解決しようとする課題】しかし、以上のような
構造および製造工程をとる半導体圧力センサでは、電極
やリード線の全てが大きな容積の圧力媒体中に設置され
ることから少なからず圧力変動の影響を受け、また、た
とえダイヤフラム106の薄膜化が実現したとしても、
温度変化によって大きな容積の圧力伝達媒体の体積が変
化すると、その変化分がダイヤフラム圧力となって印加
されるので、それがそのまま測定誤差となって現れる問
題がある。このことは、センサの小型化にも自ずと限界
が生じてくる。
However, in the semiconductor pressure sensor having the above-described structure and manufacturing process, since all the electrodes and the lead wires are installed in the pressure medium having a large volume, pressure fluctuation is not a little involved. Affected, and even if the diaphragm 106 is made thinner,
When the volume of the pressure transmitting medium having a large volume changes due to the temperature change, the changed amount is applied as the diaphragm pressure, which causes a measurement error. This naturally limits the miniaturization of the sensor.

【0008】さらに、ダイヤフラムの薄膜化が進むにつ
れて差圧を高感度に測定することが可能となるが、逆に
過大差圧を受けた時にはダイヤフラムが破壊する危険度
が益々増大する傾向にあり、その意味からも耐圧性を高
めるべくダイヤフラムの中央変位量を制限するためのバ
ックアッププレートが必要となってくる。
Furthermore, as the diaphragm becomes thinner, it becomes possible to measure the differential pressure with high sensitivity. On the contrary, when the differential pressure is excessive, the risk of the diaphragm breaking tends to increase more and more. In that sense as well, a backup plate for limiting the central displacement of the diaphragm is required to improve the pressure resistance.

【0009】そこで、従来技術においては、ピエゾ抵抗
部側からセンサチップ側へ印加される過大差圧に対して
はP型シリコン基板101自体がバックアッププレート
としての役割を果たすものの、それとは逆のN++型エピ
タキシャル層を剥離する方向への過大圧力に対してはバ
ックアッププレートの機能をもっていない。
Therefore, in the prior art, although the P-type silicon substrate 101 itself functions as a backup plate against the excessive differential pressure applied from the piezoresistive portion side to the sensor chip side, the opposite N It does not have a backup plate function against excessive pressure in the direction of peeling the ++ type epitaxial layer.

【0010】本発明は上記実情に鑑みてなされたもの
で、ダイヤフラムの一層の薄膜化を実現して耐圧力性お
よび高感度化を図り、かつ、温度変化に対する圧力伝達
媒体の体積変化を極力低減化し、半導体エピタキシャル
層剥離方向の過大差圧印加時のバックアップ効果を安定
に保持する半導体圧力センサを提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and realizes further thinning of the diaphragm to achieve pressure resistance and high sensitivity, and to minimize the volume change of the pressure transmission medium with respect to the temperature change. It is an object of the present invention to provide a semiconductor pressure sensor that stably maintains a backup effect when an excessive differential pressure is applied in the semiconductor epitaxial layer peeling direction.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、単結晶半導体基板の一
方面部に半導体エピタキシャル層を形成するとともに、
前記半導体基板に第1の導圧路を貫通し、かつ、前記半
導体基板と対面する前記半導体エピタキシャル層の面部
に第1の導圧路の口径よりも大なる径の凹状の第1の圧
力受け部を有する半導体圧力センサにおいて、前記半導
体基板とは反対側の前記半導体エピタキシャル層の面部
に、前記第1の圧力受け部との間でダイヤフラム部を構
成する凹状の第2の圧力受け部を形成するとともに、こ
の第2の圧力受け部側のダイヤフラム部の所定位置に応
力センサを配置し、前記第2の圧力受け部側の前記半導
体エピタキシャル層の面部に前記第2の圧力受け部の径
よりも小さな口径の第2の導圧路をもった導圧台を設け
た半導体圧力センサである。
In order to solve the above problems, the invention according to claim 1 forms a semiconductor epitaxial layer on one surface portion of a single crystal semiconductor substrate, and
A first pressure receiver having a diameter larger than the diameter of the first pressure guiding path, which penetrates through the semiconductor substrate through the first pressure guiding path and which faces the semiconductor substrate. In a semiconductor pressure sensor having a portion, a concave second pressure receiving portion that forms a diaphragm portion with the first pressure receiving portion is formed on a surface portion of the semiconductor epitaxial layer opposite to the semiconductor substrate. In addition, a stress sensor is arranged at a predetermined position of the diaphragm portion on the side of the second pressure receiving portion, and the stress sensor is arranged on the surface portion of the semiconductor epitaxial layer on the side of the second pressure receiving portion from the diameter of the second pressure receiving portion. Is a semiconductor pressure sensor provided with a pressure guiding base having a second pressure guiding path having a small diameter.

【0012】なお、半導体エピタキシャル層の両面部に
設けた第1および第2の圧力受け部としては、測定感
度,温度変化による圧力伝達媒体の体積変化および過大
差圧時の耐圧性等に基づいて、前記圧力受け部の凹状部
分の径、凹状部分の段差および前記ダイヤフラム部の厚
さを適宜に選定するものとする。
The first and second pressure receiving portions provided on both sides of the semiconductor epitaxial layer are based on the measurement sensitivity, the volume change of the pressure transmission medium due to temperature change, and the pressure resistance at the time of excessive differential pressure. The diameter of the concave portion of the pressure receiving portion, the step of the concave portion and the thickness of the diaphragm portion are appropriately selected.

【0013】[0013]

【作用】従って、請求項1,2に対応する発明は以上の
ような手段を講じたことにより、半導体エピタキシャル
層の両面に凹状の圧力受け部を形成したことにより、ダ
イヤフラム部のより一層の薄膜化を実現でき、圧力セン
サの小型化およびダイヤフラム部の測定感度を大幅に向
上させることができる。しかも、半導体基板と対面する
半導体エピタキシャル層の面部に第1の導圧路の口径よ
りも大なる径の凹状の第1の圧力受け部を設け、これに
加えて更に半導体基板とは反対側の半導体エピタキシャ
ル層の面部に第2の導圧路の口径よりも大なる径の凹状
の第2の圧力受け部を設けたので、圧力伝達媒体の体積
はこれら導圧路と圧力受け部との合計体積だけとなり、
従来に比べて圧力伝達媒体の体積が大幅に削減化でき、
温度変化による影響量を低減化できる。
Therefore, according to the inventions corresponding to claims 1 and 2, by taking the above-mentioned means, the concave pressure receiving portions are formed on both surfaces of the semiconductor epitaxial layer, so that a further thin film of the diaphragm portion is formed. The pressure sensor can be downsized and the measurement sensitivity of the diaphragm can be significantly improved. Moreover, a concave first pressure receiving portion having a diameter larger than the diameter of the first pressure guiding path is provided on the surface portion of the semiconductor epitaxial layer facing the semiconductor substrate, and in addition to this, the concave first pressure receiving portion is further provided on the side opposite to the semiconductor substrate. Since the concave second pressure receiving portion having a diameter larger than the diameter of the second pressure guiding passage is provided on the surface portion of the semiconductor epitaxial layer, the volume of the pressure transmitting medium is the sum of these pressure guiding passages and the pressure receiving portion. Only volume,
The volume of the pressure transmission medium can be greatly reduced compared to the past,
The amount of influence due to temperature change can be reduced.

【0014】さらに、ピエゾ抵抗部側からセンサチップ
に印加される過大差圧は半導体基板自体がバックアップ
プレートの役割を果たすが、さらに半導体エピタキシャ
ル層剥離方向の過大差圧については第2の導圧路をもっ
た導圧台がバックアップ効果を発揮し、耐圧性能を大き
く向上でき、しかも正圧・負圧両方向の導圧管の接続を
可能とすることができる。
Further, the excessive differential pressure applied from the piezoresistive portion side to the sensor chip is such that the semiconductor substrate itself serves as a backup plate, but the excessive differential pressure in the semiconductor epitaxial layer peeling direction is further influenced by the second pressure guiding path. The pressure guiding table with the above structure exerts a backup effect and can greatly improve the pressure resistance performance, and moreover, it is possible to connect the pressure guiding pipes in both positive pressure and negative pressure directions.

【0015】[0015]

【実施例】以下、本発明の一実施例について図1および
図2を参照して説明する。図1は台座を含んだ半導体圧
力センサの構造例を示す断面図、図2は結線パタンニン
グを望むような位置関係をもって切断した斜め方向から
見た断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view showing a structural example of a semiconductor pressure sensor including a pedestal, and FIG. 2 is a cross-sectional view as seen from an oblique direction cut in a positional relationship in which connection patterning is desired.

【0016】これらの図において1は高抵抗のP型シリ
コン基板であって、このシリコン基板1の上面部には所
要とする厚さをもった低抵抗のN型エピタキシャル層2
が形成され、さらにシリコン基板1の下部面の例えばほ
ぼ中央部分から真上の上面部方向に向かって徐々に縮小
する口径の第1の導圧路3が設けられている。この第1
の導圧路3は異方性エッチング液によるエッチング工程
の下に形成される。
In these figures, reference numeral 1 denotes a high resistance P-type silicon substrate, and a low resistance N-type epitaxial layer 2 having a required thickness is provided on the upper surface of the silicon substrate 1.
Further, a first pressure guide path 3 having a diameter that gradually decreases from, for example, a substantially central portion of the lower surface of the silicon substrate 1 to an upper surface portion directly above is provided. This first
The pressure guiding path 3 is formed under the etching process using an anisotropic etching solution.

【0017】そして、P型シリコン基板1と対面する側
のN型エピタキシャル層2の面部側に等方エッチング液
を用いてエッチングを行うことにより、前記第1の導圧
路3の上部側口径よりも十分に大きな径をもつ凹状の第
1の圧力受け部4が形成され、さらに当該第1の圧力受
け部4とは反対側面であるN型エピタキシャル層2の上
部面側にも同様に等方エッチング液を用いて前記第1の
圧力受け部4と同程度の大きさをもった凹状の第2の圧
力受け部5が形成され、これら2つの圧力受け部4,5
によって挟まれたシリコン薄膜部分が薄膜シリコンのダ
イヤフラム部6を構成する。
Then, the surface of the N-type epitaxial layer 2 facing the P-type silicon substrate 1 is etched by using an isotropic etching solution so that the diameter of the upper side of the first pressure guiding path 3 becomes smaller than that of the first pressure guiding path 3. Also has a concave first pressure receiving portion 4 having a sufficiently large diameter, and isotropic similarly on the upper surface side of the N-type epitaxial layer 2 which is a side surface opposite to the first pressure receiving portion 4. A concave second pressure receiving portion 5 having the same size as the first pressure receiving portion 4 is formed by using an etching solution, and these two pressure receiving portions 4, 5 are formed.
The silicon thin film portion sandwiched between the two constitutes a diaphragm portion 6 of thin film silicon.

【0018】さらに、前記N型エピタキシャル層2の上
面部に位置する第2の圧力受け部5の面部であって、比
較的周縁部に近い個所には応力センサとしてのピエゾ抵
抗部7が形成され、かつ、これらピエゾ抵抗部7からN
型エピタキシャル層2上を通って外方に導出するように
結線用パタンニング8が形成されている。
Further, a piezoresistive portion 7 as a stress sensor is formed on the surface portion of the second pressure receiving portion 5 located on the upper surface portion of the N-type epitaxial layer 2 and relatively near the peripheral portion. , And these piezoresistive parts 7 to N
A wiring patterning 8 is formed so as to extend outward through the die epitaxial layer 2.

【0019】また、前記N型エピタキシャル層2の上面
部には、P型シリコン基板1とでダイヤフラム部6を挟
むような位置関係で、かつ、第1の導圧路3と同程度の
圧力導入形状をもった第2の導圧路9を有する導圧台1
0が接合されている。この導圧台10の材料としては、
センサチップとの陽極接合が容易なパイレックスガラス
等のシリコン化合物を用いるとよい。
On the upper surface of the N-type epitaxial layer 2, a pressure is introduced so that the diaphragm 6 is sandwiched between the P-type silicon substrate 1 and the first pressure guide path 3. Pressure guide 1 having a second pressure guide path 9 having a shape
0 is joined. As a material of the pressure guide table 10,
It is preferable to use a silicon compound such as Pyrex glass, which is easily anodically bonded to the sensor chip.

【0020】なお、前記N型エピタキシャル層2の上下
面部に形成される凹状の圧力受け部4、5の径、凹状部
分の段差およびダイヤフラム部6の厚さの比率は任意に
選定できるものであるが、特に所望とする測定感度を得
ること、温度変化による圧力伝達媒体の体積変化等を低
減化すること等の観点から選定され、さらに過大差圧の
印加時にダイヤフラム部6の変形量が凹状部分の段差で
制限されるような大きさ、つまりダイヤフラム部6の変
形によって導圧路3,9の小口径部分を閉塞することに
より高耐圧性を確保する点も考慮して適宜に選定され
る。
The ratio of the diameter of the concave pressure receiving portions 4 and 5 formed on the upper and lower surfaces of the N-type epitaxial layer 2, the step of the concave portion and the thickness of the diaphragm portion 6 can be arbitrarily selected. Is selected from the standpoint of obtaining a desired measurement sensitivity, reducing the volume change of the pressure transmission medium due to temperature change, and the like, and further, when the excessive differential pressure is applied, the deformation amount of the diaphragm portion 6 is a concave portion. The size is appropriately selected in consideration of the size that is restricted by the step, that is, the high pressure resistance is secured by closing the small diameter portions of the pressure guiding paths 3 and 9 by the deformation of the diaphragm portion 6.

【0021】そして、P型シリコン基板1側からは絶縁
台座11を、導圧台10側からは絶縁台座12を被せる
ようにして突き合わせ接合し、半導体圧力センサ本体を
図示するごとくパッケージングする。
Then, the P type silicon substrate 1 side is butt-joined so as to cover the insulating pedestal 11 from the pressure guiding table 10 side so as to cover the insulating pedestal 12, and the semiconductor pressure sensor main body is packaged as shown in the figure.

【0022】従って、以上のような実施例の半導体圧力
センサによれば、N型エピタキシャル層2の両面に凹状
の圧力受け部4,5を形成することにより、膜厚数ミク
ロンのダイヤフラム部6が実現でき、従来に比べて更な
る薄膜化が可能となり、ひいてはダイヤフラム部6の小
型化に伴って半導体圧力センサの小型化およびダイヤフ
ラム部6の測定感度を大幅に向上させることができる。
Therefore, according to the semiconductor pressure sensor of the above embodiment, by forming the concave pressure receiving portions 4 and 5 on both surfaces of the N-type epitaxial layer 2, the diaphragm portion 6 having a film thickness of several microns is formed. This can be realized, and further thinning can be achieved as compared with the conventional case. As a result, the semiconductor pressure sensor can be downsized and the measurement sensitivity of the diaphragm part 6 can be significantly improved with the downsizing of the diaphragm part 6.

【0023】しかも、従来の圧力センサにおいては、ダ
イヤフラム部6の径に比べて膜厚の比率が大きく、不必
要な自己耐圧性能を有するだけであり、ダイヤフラム部
6の測定感度が大きく制約を受けていることになる。こ
れに対して、本発明圧力センサは、ダイヤフラム部6の
径と膜厚の比率とから所望とする測定感度が得られ、種
々の構造上の改良,つまり絞り形式をもった小口径の導
圧路3,9やその口径に比して大きな径のダイヤフラム
部6とすることにより、自己耐圧性能を十分に高めるこ
とができる。
Moreover, in the conventional pressure sensor, the ratio of the film thickness is larger than the diameter of the diaphragm portion 6, and only the unnecessary self-pressure resistance is provided, and the measurement sensitivity of the diaphragm portion 6 is greatly restricted. Will be. On the other hand, in the pressure sensor of the present invention, a desired measurement sensitivity can be obtained from the diameter of the diaphragm portion 6 and the ratio of the film thickness, and various structural improvements, that is, a small-diameter pressure guiding type having a diaphragm type. By using the diaphragm portion 6 having a diameter larger than the diameters of the passages 3 and 9 and their diameters, the self-pressure resistance performance can be sufficiently enhanced.

【0024】一方、ダイヤフラム部6の薄膜化の進行に
伴い、過大差圧の印加時にセンサチップの破壊が益々増
大する可能性が生じてくるが、そのためにもバックアッ
ププレートが必要不可欠なものとなる。この点、従来技
術では、片方にのみバッアッププレートが形成されてい
るのみであり、過大差圧に十分に対処できるものでない
が、本発明圧力センサの場合には、小口径の導圧路3,
9とそれよりも大きな径のダイヤフラム部6との関係か
ら過大圧力を抑制する一方、特に導圧台10がN型エピ
タキシャル層2の剥離方向の過大差圧に対してバックア
ッププレートとなり得、これによって耐圧性能を大きく
向上でき、しかも正圧・負圧両方向の導圧管の接続が可
能となるために絶対圧計の半導体圧力センサにおいて柔
軟性を有する。
On the other hand, with the progress of thinning of the diaphragm portion 6, there is a possibility that the destruction of the sensor chip will increase more and more when the excessive differential pressure is applied. For that purpose, the backup plate becomes indispensable. . In this respect, in the conventional technique, the back-up plate is formed only on one side, and it is not possible to sufficiently deal with the excessive differential pressure. However, in the case of the pressure sensor of the present invention, the pressure guiding paths 3, 3 of small diameter are provided.
9 and the diaphragm portion 6 having a larger diameter than that, while suppressing the excessive pressure, the pressure guide table 10 can serve as a backup plate especially against the excessive differential pressure in the peeling direction of the N-type epitaxial layer 2. The pressure resistance performance can be greatly improved, and moreover, the pressure guiding tubes can be connected in both positive and negative pressure directions, so that the semiconductor pressure sensor of the absolute pressure gauge has flexibility.

【0025】さらに、圧力伝達媒体の全体体積が両導圧
路3,9およびダイヤフラム部6の圧力受け部4,5の
体積合計に限定されることから、従来に比して著しく媒
体体積を削減化でき、これによって温度変化に対する媒
体体積の変化を大幅に少なくでき、測定誤差を低減化、
ひいては測定精度の向上に大きく寄与する。
Further, since the total volume of the pressure transmitting medium is limited to the total volume of both pressure guiding paths 3 and 9 and the pressure receiving portions 4 and 5 of the diaphragm portion 6, the medium volume is remarkably reduced as compared with the conventional case. This can significantly reduce the change in medium volume due to temperature changes and reduce measurement errors.
As a result, it greatly contributes to the improvement of measurement accuracy.

【0026】さらに、ダイヤフラム部6の比較的周縁部
に近い個所にピエゾ抵抗部7を形成する一方、このピエ
ゾ抵抗部7からN型エピタキシャル層2上に形成した結
線用パタニング8により外部電極に結線するので、圧力
伝達媒体の体積変化等の影響を受けることがなく、しか
もセンサチップと導圧台10との接合時の気密性を保持
することができる。なお、本発明はその要旨を逸脱しな
い範囲で種々変形して実施できる。
Further, while the piezoresistive portion 7 is formed at a portion relatively close to the peripheral edge of the diaphragm portion 6, the piezoresistive portion 7 is connected to the external electrode by the connection patterning 8 formed on the N-type epitaxial layer 2. Therefore, it is possible to maintain the airtightness at the time of joining the sensor chip and the pressure guiding table 10 without being affected by the volume change of the pressure transmitting medium. The present invention can be variously modified and implemented without departing from the scope of the invention.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、ダ
イヤフラムの一層の薄膜化を実現でき、これにより耐圧
力性および高感度化を図ることができ、しかも温度変化
による圧力伝達媒体の体積変化を極力低減化でき、か
つ、半導体エピタキシャル層剥離方向の過大差圧印加時
のバックアップ効果を安定に保持できる半導体圧力セン
サを提供できる。
As described above, according to the present invention, it is possible to realize a further thin film of the diaphragm, thereby achieving pressure resistance and high sensitivity, and further, the volume of the pressure transmission medium due to temperature change. It is possible to provide a semiconductor pressure sensor that can minimize the change and can stably maintain the backup effect when an excessive differential pressure is applied in the semiconductor epitaxial layer peeling direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる半導体圧力センサの一実施例を
示す構造断面図。
FIG. 1 is a structural sectional view showing an embodiment of a semiconductor pressure sensor according to the present invention.

【図2】図1に示す半導体圧力センサを、結線パタンニ
ングを望むような位置関係をもって切断した斜め方向か
ら見た断面図。
FIG. 2 is a cross-sectional view of the semiconductor pressure sensor shown in FIG. 1 as seen from an oblique direction cut in a positional relationship such that connection patterning is desired.

【図3】従来の半導体圧力センサの構造および製造工程
を説明する図。
FIG. 3 is a diagram illustrating a structure and a manufacturing process of a conventional semiconductor pressure sensor.

【符号の説明】[Explanation of symbols]

1…P型シリコン基板、2…N型エピタキシャル層、3
…第1の導圧路、4…第1の圧力受け部、5…第2の圧
力受け部、6…ダイヤフラム部、7…ピエゾ抵抗部、9
…第2の導圧路、10…導圧台。
1 ... P-type silicon substrate, 2 ... N-type epitaxial layer, 3
... 1st pressure guide path, 4 ... 1st pressure receiving part, 5 ... 2nd pressure receiving part, 6 ... Diaphragm part, 7 ... Piezoresistive part, 9
... second pressure guiding path, 10 ... pressure guiding base.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単結晶半導体基板の一方面部に半導体エ
ピタキシャル層を形成するとともに、前記半導体基板に
第1の導圧路を貫通し、かつ、前記半導体基板と対面す
る前記半導体エピタキシャル層の面部に第1の導圧路の
口径よりも大なる径の凹状の第1の圧力受け部を有する
半導体圧力センサにおいて、 前記半導体基板とは反対側の前記半導体エピタキシャル
層の面部に、前記第1の圧力受け部との間でダイヤフラ
ム部を構成する凹状の第2の圧力受け部を形成するとと
もに、この第2の圧力受け部側のダイヤフラム部の所定
位置に応力センサを配置し、前記第2の圧力受け部側の
前記半導体エピタキシャル層の面部に前記第2の圧力受
け部の径よりも小さな口径の第2の導圧路をもった導圧
台を設けたことを特徴とする半導体圧力センサ。
1. A surface portion of the semiconductor epitaxial layer, which has a semiconductor epitaxial layer formed on one surface portion of the single crystal semiconductor substrate, penetrates the first pressure guiding path in the semiconductor substrate, and faces the semiconductor substrate. In the semiconductor pressure sensor having a concave first pressure receiving portion having a diameter larger than the diameter of the first pressure guiding path, the first portion is formed on the surface portion of the semiconductor epitaxial layer opposite to the semiconductor substrate. A concave second pressure receiving portion that forms a diaphragm portion is formed between the pressure receiving portion and a stress sensor at a predetermined position of the diaphragm portion on the side of the second pressure receiving portion. A semiconductor pressure sensor characterized in that a pressure guiding base having a second pressure guiding passage having a diameter smaller than that of the second pressure receiving portion is provided on a surface portion of the semiconductor epitaxial layer on the pressure receiving portion side. .
【請求項2】 半導体エピタキシャル層の両面部に設け
た第1および第2の圧力受け部は、測定感度,温度変化
による圧力伝達媒体の体積変化および過大差圧時の耐圧
性等に基づいて、当該圧力受け部の凹状部分の径、当該
凹状部分の段差および前記ダイヤフラム部の厚さを適宜
に選定するものである請求項1記載の半導体圧力セン
サ。
2. The first and second pressure receiving portions provided on both sides of the semiconductor epitaxial layer are based on the measurement sensitivity, the volume change of the pressure transmission medium due to temperature change, the pressure resistance at the time of excessive differential pressure, and the like. The semiconductor pressure sensor according to claim 1, wherein the diameter of the concave portion of the pressure receiving portion, the step of the concave portion, and the thickness of the diaphragm portion are appropriately selected.
JP23813592A 1992-09-07 1992-09-07 Semiconductor pressure sensor Pending JPH0688762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23813592A JPH0688762A (en) 1992-09-07 1992-09-07 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23813592A JPH0688762A (en) 1992-09-07 1992-09-07 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH0688762A true JPH0688762A (en) 1994-03-29

Family

ID=17025715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23813592A Pending JPH0688762A (en) 1992-09-07 1992-09-07 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH0688762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692295A (en) * 2011-03-23 2012-09-26 株式会社电装 Pressure sensor
JP2015219095A (en) * 2014-05-16 2015-12-07 アズビル株式会社 Differential pressure sensor and method for manufacturing differential pressure sensor
JP2017506750A (en) * 2014-02-28 2017-03-09 メジャメント スペシャリティーズ, インコーポレイテッド Package for differential pressure sensing die
CN106840508A (en) * 2017-03-30 2017-06-13 上海洛丁森工业自动化设备有限公司 A kind of little differential pressure sensor of silicon differential pressure chip and the built-in silicon differential pressure chip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692295A (en) * 2011-03-23 2012-09-26 株式会社电装 Pressure sensor
CN102692295B (en) * 2011-03-23 2014-09-24 株式会社电装 Pressure sensor
JP2017506750A (en) * 2014-02-28 2017-03-09 メジャメント スペシャリティーズ, インコーポレイテッド Package for differential pressure sensing die
JP2015219095A (en) * 2014-05-16 2015-12-07 アズビル株式会社 Differential pressure sensor and method for manufacturing differential pressure sensor
CN106840508A (en) * 2017-03-30 2017-06-13 上海洛丁森工业自动化设备有限公司 A kind of little differential pressure sensor of silicon differential pressure chip and the built-in silicon differential pressure chip

Similar Documents

Publication Publication Date Title
EP1860417B1 (en) A pressure sensor having a chamber and a method for fabricating the same
US6997058B2 (en) Pressure sensor
JP2005210131A (en) Packaging method and structure of semiconductor chip
JPH04320938A (en) Differential pressure sensor and composite function type differential pressure sensor
JPS61247933A (en) Pressure transducer and manufacture thereof
US6550339B1 (en) Pressure sensor for detecting differential pressure between two spaces
WO2020248466A1 (en) Back hole lead type pressure sensor and manufacturing method therefor
US20080099861A1 (en) Sensor device package having thermally compliant die pad
US6591686B1 (en) Oil filled pressure transducer
JP2638813B2 (en) Semiconductor pressure sensor
JPH0688762A (en) Semiconductor pressure sensor
JP2005055313A (en) Semiconductor pressure sensor apparatus
JP2009265012A (en) Semiconductor sensor
JP2008082952A (en) Semiconductor strain sensor
JP2022145017A (en) Package for far infrared sensor and manufacturing method thereof, and far infrared sensor and manufacturing method thereof
JPS5983023A (en) Semiconductor pressure difference detector
JP2007057348A (en) Pressure sensor and method of manufacturing same
JP2021060336A (en) Sensor element
JP2004279090A (en) Method of manufacturing semiconductor pressure sensor
JPS59217126A (en) Absolute-pressure type semiconductor pressure transducer element
JP2512220B2 (en) Multi-function sensor
JPH1168120A (en) Semiconductor pressure sensor and its production
JPH11201845A (en) Semiconductor type pressure sensor
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JP5949573B2 (en) Manufacturing method of physical quantity sensor