JPH0688651A - Low temperature heat source utilizing absorption heat pump - Google Patents

Low temperature heat source utilizing absorption heat pump

Info

Publication number
JPH0688651A
JPH0688651A JP23861592A JP23861592A JPH0688651A JP H0688651 A JPH0688651 A JP H0688651A JP 23861592 A JP23861592 A JP 23861592A JP 23861592 A JP23861592 A JP 23861592A JP H0688651 A JPH0688651 A JP H0688651A
Authority
JP
Japan
Prior art keywords
generator
absorber
solution
heat exchanger
refrigerant vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23861592A
Other languages
Japanese (ja)
Other versions
JP3093471B2 (en
Inventor
Masahiro Oka
雅博 岡
Hiroshi Kojima
弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04238615A priority Critical patent/JP3093471B2/en
Publication of JPH0688651A publication Critical patent/JPH0688651A/en
Application granted granted Critical
Publication of JP3093471B2 publication Critical patent/JP3093471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To make C.O.P. higher upon heating operation by operating a low temperature heat source utilizing absorption heat pump in a new cycle. CONSTITUTION:The refrigerant vapor produced by a first generator 4 is absorbed into a solution in a second absorber 6 and the resulting dilute solution in the second absorber 6 is conducted therefrom through a third heat exchanger 10 into a third generator 7. Such a solution is heated by fossil fuel to be separated into a concentrated solution and the refrigerant vapor, the concentrated solution in the third generator 7 is sent through the third heat exchanger 10 back into the second absorber 6, the refrigerant vapor in the third generator 7 is conducted through a second generator 5 into a condenser 1 and warm water is passed through a first absorber 3 and a condenser 2 to obtain the warm water having a temp. of 45 deg.C from a warm water line 12. In this way a rise in the temp. of lithium bromide will not be caused by the operation of the heat pump in a new cycle upon heating operation. Therefore, a highly efficient heating operation in the C.O.P. of 1.6 is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、河川水又は下水処理水
等が保有する熱を駆動熱源として利用する低温熱源利用
吸収ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump using a low temperature heat source, which uses heat held by river water or treated sewage water as a driving heat source.

【0002】[0002]

【従来の技術】従来の河川水又は下水処理水を利用した
吸収ヒートポンプにおいては、冷房時は河川水又は下水
処理水を冷却水として使用することにより二重効用サイ
クルの冷房運転を行い、暖房時は河川水又は下水処理水
を熱源として使用し、効率的には低い単効用サイクルに
よるヒートポンプ運転を行っている。
2. Description of the Related Art In an absorption heat pump using conventional river water or treated sewage water, during cooling, the river water or sewage treated water is used as cooling water to perform a cooling operation in a double-effect cycle, and during heating. Uses river water or treated sewage water as a heat source, and operates a heat pump with a single-effect cycle that is low in efficiency.

【0003】このように、暖房時において単効用サイク
ルによるヒートポンプ運転を行う理由は、河川水とか下
水処理水が保有する約12℃の水温を熱源として利用
し、暖房用の45℃の温水を得るために二重効用サイク
ルを組むと、吸収溶液として利用している臭化リチウム
溶液の温度が高くなり、その物性により腐食、晶析等の
障害が発生すると共に機器内部の圧力が大気圧を超えて
しまうためである。
As described above, the reason why the heat pump is operated by the single-effect cycle during heating is to use the water temperature of about 12 ° C., which the river water or the sewage-treated water has, as a heat source to obtain warm water of 45 ° C. for heating. Therefore, if a double-effect cycle is set up, the temperature of the lithium bromide solution used as the absorption solution will rise, and physical properties will cause corrosion, crystallization, and other problems, and the internal pressure of the equipment will exceed atmospheric pressure. This is because it will end up.

【0004】[0004]

【発明が解決しようとする課題】このため、従来の低温
熱源利用ヒートポンプにおける暖房時のC.O.P.は
1.4程度と低い。
Therefore, in the conventional heat pump using a low temperature heat source, the C.I. O. P. Is as low as about 1.4.

【0005】本発明の目的は、暖房時においても新サイ
クルで運転を行うことにより効率の向上を計り、一方臭
化リチウムの高温化の問題を解消して、C.O.P.を
1.6程度にアップすることである。
The object of the present invention is to improve the efficiency by operating in a new cycle even during heating, while eliminating the problem of high temperature of lithium bromide, thereby improving the efficiency of C.I. O. P. Is about 1.6.

【0006】[0006]

【課題を解決するための手段】本発明に係る低温熱源利
用吸収ヒートポンプの構成は次のとおりである。
The structure of an absorption heat pump utilizing a low temperature heat source according to the present invention is as follows.

【0007】蒸発器、凝縮器、第1吸収器、第1発生
器、第2発生器、第2吸収器、第3発生器、第1熱交換
器、第2熱交換器、第3熱交換器、蒸発器の熱源となる
河川水、下水処理水取り入れライン、第1吸収器及び凝
縮器を経由する温水ラインから成ると共に蒸発器におい
て発生した冷媒蒸気を第1吸収器に導いて溶液に吸収さ
せ、第1吸収器の稀溶液を第1熱交換器を経由して第2
発生器に導き、この稀溶液を第3発生器により発生した
蒸気及び第2吸収器の冷却水により加熱して中間濃度溶
液と冷媒蒸気とに分離し、第2発生器において分離した
中間濃度溶液を第2熱交換器を経由して第1発生器に導
き、第1発生器において、中間溶液を加熱して濃溶液と
冷媒蒸気に分離し、第2熱交換器、第1熱交換器を経由
して第1吸収器に導き、第2発生器において発生した冷
媒蒸気を凝縮器に導いて温水ラインの温水にその潜熱を
与えて凝縮させ、凝縮した冷媒を蒸発器に導いて河川
水、下水処理水取り入れラインからの熱をくみ上げる。
第1発生器において発生した冷媒蒸気を第2吸収器に導
いて溶液に吸収させ、第2吸収器の稀溶液を第2熱交換
器を経由して第3発生器に導き、ここで加熱して濃溶液
と冷媒蒸気に分離し、第3発生器の濃溶液は第3熱交換
器を経由して第2吸収器にもどし、第3発生器の冷媒蒸
気を第2発生器に導いてこの第2発生器内の溶液を加熱
することにより凝縮するように構成した低温熱源利用吸
収ヒートポンプ。
Evaporator, condenser, first absorber, first generator, second generator, second absorber, third generator, first heat exchanger, second heat exchanger, third heat exchange It consists of a condenser, river water that serves as a heat source of the evaporator, a sewage treatment water intake line, a hot water line that passes through the first absorber and a condenser, and guides refrigerant vapor generated in the evaporator to the first absorber and absorbs it into a solution. The diluted solution in the first absorber through the first heat exchanger to the second
The diluted solution is introduced into a generator, and the diluted solution is heated by the steam generated by the third generator and the cooling water of the second absorber to separate into an intermediate concentration solution and a refrigerant vapor, and the intermediate concentration solution separated in the second generator. To a first generator via a second heat exchanger, and in the first generator, the intermediate solution is heated to separate it into a concentrated solution and a refrigerant vapor, and the second heat exchanger and the first heat exchanger are connected to each other. It is led to the 1st absorber via, and the refrigerant vapor generated in the 2nd generator is led to a condenser, the latent heat is given to the warm water of a warm water line, it condenses, and the condensed refrigerant is led to a river water, Pump up heat from the sewage treatment water intake line.
The refrigerant vapor generated in the first generator is guided to the second absorber to be absorbed by the solution, and the dilute solution of the second absorber is guided to the third generator via the second heat exchanger where it is heated. The concentrated solution of the third generator is returned to the second absorber via the third heat exchanger and the refrigerant vapor of the third generator is guided to the second generator. An absorption heat pump using a low temperature heat source configured to condense by heating the solution in the second generator.

【0008】[0008]

【作用】冷房サイクルは公知例と同一なので省略し、暖
房サイクルのみについて説明する。
Since the cooling cycle is the same as the known example, it is omitted and only the heating cycle will be described.

【0009】蒸発器において発した冷媒蒸気は第1吸収
器において溶液に吸収される。第1吸収器の稀溶液は、
溶液ポンプにより第1熱交換器を通り第2発生器に導か
れ、第3発生器により発生した蒸気及び第2吸収器の冷
却水により加熱され中間濃度溶液と冷媒蒸気とに分離さ
れる。第2発生器において分離された中間濃度溶液は溶
液ポンプにより第2熱発生器を通り、第1発生器に導か
れる。第1発生器において、中間溶液は都市ガス等化石
燃料により加熱され濃溶液と冷媒蒸気に分離され、第2
熱交換器、第1熱交換器を通って第1吸収器に導かれ
る。
The refrigerant vapor emitted from the evaporator is absorbed by the solution in the first absorber. The dilute solution of the first absorber is
The solution pump is guided to the second generator through the first heat exchanger, and is heated by the steam generated by the third generator and the cooling water of the second absorber to be separated into the intermediate concentration solution and the refrigerant steam. The intermediate-concentration solution separated in the second generator passes through the second heat generator by the solution pump and is guided to the first generator. In the first generator, the intermediate solution is heated by the fossil fuel such as city gas and separated into a concentrated solution and a refrigerant vapor.
It is guided to the first absorber through the heat exchanger and the first heat exchanger.

【0010】また、第2発生器において発生した冷媒蒸
気は凝縮器に導かれ温水ラインにその潜熱を与えて凝縮
する。凝縮した冷媒は蒸発器に導かれ低温熱源からの熱
をくみあげる。
Further, the refrigerant vapor generated in the second generator is guided to the condenser and gives its latent heat to the hot water line to be condensed. The condensed refrigerant is guided to the evaporator to draw up heat from the low temperature heat source.

【0011】また、第1発生器において発生した冷媒蒸
気は第2吸収器において溶液に吸収される。第2吸収器
の稀溶液は溶液ポンプにより第3熱交換器を通り、第3
発生器により化石燃料等により加熱され、濃溶液と冷媒
蒸気に分離される。第3発生器の濃溶液は、第3熱交換
器を通り第2吸収器にもどる。第3発生器の冷媒蒸気は
第2発生器に導かれ溶液を加熱して凝縮する。
Further, the refrigerant vapor generated in the first generator is absorbed by the solution in the second absorber. The dilute solution of the second absorber passes through the third heat exchanger by the solution pump,
It is heated by fossil fuel etc. by the generator and separated into concentrated solution and refrigerant vapor. The concentrated solution of the third generator passes through the third heat exchanger and returns to the second absorber. The refrigerant vapor of the third generator is guided to the second generator to heat and condense the solution.

【0012】以上のサイクルにより、蒸発器で低温熱源
をくみあげて第1吸収器、凝縮器を経由する温水ライン
内の40℃の温水を45℃まで上昇させる。
By the above-mentioned cycle, the low temperature heat source is pumped up by the evaporator to raise the 40 ° C. hot water in the hot water line passing through the first absorber and the condenser to 45 ° C.

【0013】[0013]

【実施例】図1に基づいて本発明の実施例を説明する。Embodiments of the present invention will be described with reference to FIG.

【0014】1は蒸発器、2は凝縮器、3は第1吸収
器、4は第1発生器、5は第2発生器、6は第2吸収
器、7は第3発生器、8は第1熱交換器、9は第2熱交
換器、10は第3熱交換器、11は蒸発器1の熱源とな
る河川水、下水処理水取り入れライン、12は第1吸収
器3及び凝縮器2を経由する温水ラインにして、この温
水ライン12の先は暖房用放熱器に連結されている。
1 is an evaporator, 2 is a condenser, 3 is a first absorber, 4 is a first generator, 5 is a second generator, 6 is a second absorber, 7 is a third generator, and 8 is 1st heat exchanger, 9 is a 2nd heat exchanger, 10 is a 3rd heat exchanger, 11 is river water used as a heat source of the evaporator 1, sewage treated water intake line, 12 is the 1st absorber 3 and a condenser. A hot water line passing through 2 is provided. The end of the hot water line 12 is connected to a heating radiator.

【0015】14は第2吸収器6で発生した吸収熱を第
2発生器5に搬送するための中間温度ブラインライン、
15は蒸発器1と第1吸収器3を結ぶ第1冷媒蒸気ライ
ン、16は第2発生器5と凝縮器2を結ぶ第2冷媒蒸気
ライン、17は第1発生器4と第2吸収器6を結ぶ第3
冷媒蒸気ライン、18は第3発生器7から第2発生器5
を経由して凝縮器2に結ばれている第4冷媒蒸気ライン
である。
Reference numeral 14 denotes an intermediate temperature brine line for transferring the absorbed heat generated in the second absorber 6 to the second generator 5,
Reference numeral 15 is a first refrigerant vapor line connecting the evaporator 1 and the first absorber 3, 16 is a second refrigerant vapor line connecting the second generator 5 and the condenser 2, and 17 is a first generator 4 and the second absorber. Third connecting 6
Refrigerant vapor line, 18 is from the third generator 7 to the second generator 5
It is a fourth refrigerant vapor line connected to the condenser 2 via.

【0016】上記装置に基づく暖房サイクルの運転例を
次に説明する。
An operation example of the heating cycle based on the above device will be described below.

【0017】蒸発器1において発した冷媒蒸気を第1吸
収器2に導いて溶液に吸収させ、第1吸収器3の稀溶液
を第1熱交換器8を経由して第2発生器5に導き、この
稀溶液を第3発生器7により発生した蒸気及び第2吸収
器6の冷却水により加熱して中間濃度溶液と冷媒蒸気と
に分離し、第2発生器5において分離した中間濃度溶液
を第2熱交換器9を経由して第1発生器4に導き、第1
発生器4において、中間溶液を加熱して濃溶液と冷媒蒸
気に分離し、第2熱交換器9、第1熱交換器8を経由し
て第1吸収器3に導き、第2発生器5において発生した
冷媒蒸気を凝縮器2に導いてライン12の温水にその潜
熱を与えて凝縮させ、凝縮した冷媒を蒸発器1に導いて
河川水、下水処理水取り入れライン11を経由してとり
入れた熱をくみあげ、第1発生器4において発生した冷
媒蒸気を第2吸収器6に導いて溶液に吸収させ、第2吸
収器6の稀溶液を第3熱交換器10を経由して第3発生
器7に導き、ここで加熱して濃溶液と冷媒蒸気に分離
し、第3発生器7の濃溶液は第3熱交換器10を経由し
て第2吸収器6にもどし、第3発生器7の冷媒蒸気を第
2発生器5に導いてこの第2発生器5内の溶液を加熱す
ることにより凝縮させる。
The refrigerant vapor generated in the evaporator 1 is guided to the first absorber 2 so as to be absorbed by the solution, and the dilute solution of the first absorber 3 is passed to the second generator 5 via the first heat exchanger 8. This dilute solution is heated by the steam generated by the third generator 7 and the cooling water of the second absorber 6 to separate into an intermediate concentration solution and a refrigerant vapor, and the intermediate concentration solution separated in the second generator 5 To the first generator 4 via the second heat exchanger 9,
In the generator 4, the intermediate solution is heated to separate it into a concentrated solution and a refrigerant vapor, which is led to the first absorber 3 via the second heat exchanger 9 and the first heat exchanger 8, and then the second generator 5 The refrigerant vapor generated in 1 is introduced to the condenser 2 to give its latent heat to the hot water in the line 12 to be condensed, and the condensed refrigerant is introduced to the evaporator 1 to be taken in via the river water / sewage treated water intake line 11. The heat is pumped up, the refrigerant vapor generated in the first generator 4 is guided to the second absorber 6 to be absorbed by the solution, and the dilute solution of the second absorber 6 is generated through the third heat exchanger 10 for the third generation. The concentrated solution of the third generator 7 is returned to the second absorber 6 via the third heat exchanger 10, and is then heated to separate into the concentrated solution and the refrigerant vapor. The refrigerant vapor of No. 7 is introduced into the second generator 5 and the solution in the second generator 5 is heated to be condensed. That.

【0018】次に、上記実施例を用いた下水処理水利用
吸収ヒートポンプの計算条件例を示す。
Next, an example of calculation conditions of the absorption heat pump using sewage treatment water using the above embodiment will be shown.

【0019】1.初期条件 (1)冷水温度 入口 12℃ 出口 9℃ (2)温水温度 入口 40℃ 出口 45℃ 2.計算に用いたサイクル条件 初期条件により決定したサイクル条件を以下に示す。1. Initial conditions (1) Cold water temperature inlet 12 ° C outlet 9 ° C (2) Hot water temperature inlet 40 ° C outlet 45 ° C 2. Cycle conditions used for calculation The cycle conditions determined by the initial conditions are shown below.

【0020】 2.1 新サイクル(本発明) (1)蒸発器 温度 tE 7.5℃ 圧力 PE 8 mmHg (2)吸収器 第1 圧力 PE 8 mmHg 出口溶液温度 tA1 44 ℃ 第2 圧力 PCE 40 mmHg 出口溶液温度 tA2 50 ℃ (3)凝縮器 温度 tC 47 ℃ 圧力 PC 80 mmHg (4)再生器 第1 温度 tG 138 ℃ 圧力 PCE 400 mmHg 第2 温度 tG 95 ℃ 圧力 PC 80 mmHg 第3 温度 tG 140 ℃ 圧力 PC 700 mmHg (5)溶液温度 低段側 稀溶液 ξL1 58.5% 中間溶液 ξL2 60.4% 濃溶液 ξL3 61.5% 高段側 稀溶液 ξH1 52.0% 濃溶液 ξH2 55.5% 次に、単効用サイクル条件(従来例)を以下に示す。2.1 New Cycle (Invention) (1) Evaporator temperature t E 7.5 ° C. Pressure P E 8 mmHg (2) Absorber 1st pressure P E 8 mmHg Outlet solution temperature t A1 44 ° C. 2nd the pressure P CE 40 mmHg outlet solution temperature t A2 50 ℃ (3) condenser temperature t C 47 ° C. the pressure P C 80 mmHg (4) regenerator first temperature t G 138 ° C. the pressure P CE 400 mmHg second temperature t G 95 ° C. the pressure P C 80 mmHg third temperature t G 140 ° C. the pressure P C 700 mmHg (5) the solution temperature low-stage diluted solution xi] L1 58.5% intermediate solutions xi] L2 60.4% concentrated solution xi] L3 61.5% High-stage side Dilute solution ξ H1 52.0% Concentrated solution ξ H2 55.5% Next, single-effect cycle conditions (conventional example) are shown below.

【0021】 (1)蒸発器 温度 tE 7.5℃ 圧力 PE 8 mmHg (2)吸収器 圧力 PE 8 mmHg 出口溶液温度 tA1 45 ℃ (3)凝縮器 温度 tC 47 ℃ 圧力 PC 80 mmHg (4)再生器 温度 tG 98 ℃ 圧力 PCE 80 mmHg (5)溶液温度 稀溶液 ξL1 58.5% 濃溶液 ξL2 61.5% 3.計算結果 以上のサイクル条件により行った結果を以下に示す。(1) Evaporator temperature t E 7.5 ° C. Pressure P E 8 mmHg (2) Absorber pressure P E 8 mmHg Outlet solution temperature t A1 45 ° C. (3) Condenser temperature t C 47 ° C. Pressure P C 80 mmHg (4) Regenerator temperature t G 98 ° C Pressure P CE 80 mmHg (5) Solution temperature Dilute solution ξ L1 58.5% Concentrated solution ξ L2 61.5% 3. Calculation Results The results of the above cycle conditions are shown below.

【0022】3.1 新サイクル ヒートポンプ効率 COPh=1.6 ボイラー効率を0.85とする。3.1 New Cycle Heat Pump Efficiency COPh = 1.6 Boiler efficiency is 0.85.

【0023】3.2 単効用サイクル ヒートポンプ効率 COPh=1.4 ボイラー効率を0.85とする。3.2 Single-effect cycle Heat pump efficiency COPh = 1.4 Boiler efficiency is 0.85.

【0024】図2に上記新サイクル運転時のデューリン
グ線図を示す。
FIG. 2 shows a Duhring diagram during the above new cycle operation.

【0025】[0025]

【発明の効果】本発明は低温熱源利用吸収ヒートポンプ
において、以上の如き構成を採用したことにより、次の
如き効果を奏する。
EFFECTS OF THE INVENTION The present invention has the following effects by adopting the above-mentioned structure in the absorption heat pump utilizing the low temperature heat source.

【0026】a.暖房時において、新サイクルを採用
し、第2吸収器と第2発生器間を中間温度ブラインライ
ンにて連結し、第3発生器で発生した冷媒蒸気を第2発
生器を経由して凝縮器に導き、第1発生器で発生した冷
媒蒸気を第2吸収器に導くようにしたことにより、冷媒
として使用している臭化リチウムの温度は高温化しな
い。よって、臭化リチウムの腐食、晶析が防止できる。
A. During heating, a new cycle is adopted, the second absorber and the second generator are connected by an intermediate temperature brine line, and the refrigerant vapor generated in the third generator is passed through the second generator to the condenser. By introducing the refrigerant vapor generated in the first generator to the second absorber, the temperature of lithium bromide used as the refrigerant does not rise. Therefore, corrosion and crystallization of lithium bromide can be prevented.

【0027】b.暖房時に新サイクルを採用することに
より、C.O.P.を1.6程度に高めることができ、
この数値は従来の低温熱源利用ヒートポンプであって、
単効用サイクルで運転したときのC.O.P.=1.4
程度に比較して、大きな効率の改善である。
B. By adopting a new cycle during heating, C.I. O. P. Can be increased to about 1.6,
This value is for a conventional low temperature heat source heat pump,
C. when operating in a single-effect cycle O. P. = 1.4
It is a great improvement in efficiency compared to the degree.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment according to the present invention.

【図2】デューリング線図の説明図。FIG. 2 is an explanatory diagram of a Duhring diagram.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 凝縮器 3 第1吸収器 4 第1発生器 5 第2発生器 6 第2吸収器 7 第3発生器 8 第1熱交換器 9 第2熱交換器 10 第3熱交換器 11 河川水又は下水処理水取り入れライン 12 温水ライン 14 中間温度ブラインライン 15 第1冷媒蒸気ライン 16 第2冷媒蒸気ライン 17 第3冷媒蒸気ライン 18 第4冷媒蒸気ライン 1 Evaporator 2 Condenser 3 1st absorber 4 1st generator 5 2nd generator 6 2nd absorber 7 3rd generator 8 1st heat exchanger 9 2nd heat exchanger 10 3rd heat exchanger 11 River water or sewage treated water intake line 12 Hot water line 14 Intermediate temperature brine line 15 First refrigerant vapor line 16 Second refrigerant vapor line 17 Third refrigerant vapor line 18 Fourth refrigerant vapor line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、凝縮器、第1吸収器、第1発生
器、第2発生器、第2吸収器、第3発生器、第1熱交換
器、第2熱交換器、第3熱交換器、蒸発器の熱源となる
河川水、下水処理水取り入れライン、第1吸収器及び凝
縮器を経由する温水ラインから成ると共に蒸発器におい
て発生した冷媒蒸気を第1吸収器に導いて溶液に吸収さ
せ、第1吸収器の稀溶液を第1熱交換器を経由して第2
発生器に導き、この稀溶液を第3発生器により発生した
蒸気及び第2吸収器の冷却水により加熱して中間濃度溶
液と冷媒蒸気とに分離し、第2発生器において分離した
中間濃度溶液を第2熱交換器を経由して第1発生器に導
き、第1発生器において、中間溶液を加熱して濃溶液と
冷媒蒸気に分離し、第2熱交換器、第1熱交換器を経由
して第1吸収器に導き、第2発生器において発生した冷
媒蒸気を凝縮器に導いて温水ラインの温水にその潜熱を
与えて凝縮させ、凝縮した冷媒を蒸発器に導いて河川
水、下水処理水取り入れラインからの熱をくみ上げ、第
1発生器において発生した冷媒蒸気を第2吸収器に導い
て溶液に吸収させ、第2吸収器の稀溶液を第3熱交換器
を経由して第3発生器に導き、ここで加熱して濃溶液と
冷媒蒸気に分離し、第3発生器の濃溶液は第3熱交換器
を経由して第2吸収器にもどし、第3発生器の冷媒蒸気
を第2発生器に導いてこの第2発生器内の溶液を加熱す
ることにより凝縮するように構成した低温熱源利用吸収
ヒートポンプ。
1. An evaporator, a condenser, a first absorber, a first generator, a second generator, a second absorber, a third generator, a first heat exchanger, a second heat exchanger, and a third heat exchanger. It consists of a heat exchanger, river water that serves as a heat source for the evaporator, a sewage treatment water intake line, a hot water line that passes through the first absorber and a condenser, and guides refrigerant vapor generated in the evaporator to the first absorber to form a solution. And the diluted solution in the first absorber is passed through the first heat exchanger to the second
The diluted solution is introduced into a generator, and the diluted solution is heated by the steam generated by the third generator and the cooling water of the second absorber to separate into an intermediate concentration solution and a refrigerant vapor, and the intermediate concentration solution separated in the second generator. To a first generator via a second heat exchanger, and in the first generator, the intermediate solution is heated to separate it into a concentrated solution and a refrigerant vapor, and the second heat exchanger and the first heat exchanger are connected to each other. It is led to the 1st absorber via, and the refrigerant vapor generated in the 2nd generator is led to a condenser, the latent heat is given to the warm water of a warm water line, it condenses, and the condensed refrigerant is led to a river water, The heat from the sewage treated water intake line is pumped up, the refrigerant vapor generated in the first generator is guided to the second absorber and absorbed in the solution, and the dilute solution in the second absorber is passed through the third heat exchanger. Leading to a third generator, where it is heated to separate it into a concentrated solution and refrigerant vapor, The concentrated solution of the 3 generator is returned to the 2nd absorber via the 3rd heat exchanger, and the refrigerant vapor of the 3rd generator is guided to the 2nd generator to heat the solution in this 2nd generator. An absorption heat pump that uses a low temperature heat source configured to be condensed by.
JP04238615A 1992-09-07 1992-09-07 Absorption heat pump using low-temperature heat source Expired - Fee Related JP3093471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04238615A JP3093471B2 (en) 1992-09-07 1992-09-07 Absorption heat pump using low-temperature heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04238615A JP3093471B2 (en) 1992-09-07 1992-09-07 Absorption heat pump using low-temperature heat source

Publications (2)

Publication Number Publication Date
JPH0688651A true JPH0688651A (en) 1994-03-29
JP3093471B2 JP3093471B2 (en) 2000-10-03

Family

ID=17032805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04238615A Expired - Fee Related JP3093471B2 (en) 1992-09-07 1992-09-07 Absorption heat pump using low-temperature heat source

Country Status (1)

Country Link
JP (1) JP3093471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635970A (en) * 2012-04-09 2012-08-15 李华玉 Grading condensation third-type absorption heat pump
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
CN110873478A (en) * 2019-12-13 2020-03-10 荏原冷热系统(中国)有限公司 Composite absorption refrigerating unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635970A (en) * 2012-04-09 2012-08-15 李华玉 Grading condensation third-type absorption heat pump
CN102635970B (en) * 2012-04-09 2015-02-04 李华玉 Grading condensation third-type absorption heat pump
JP2017048935A (en) * 2015-08-31 2017-03-09 日立ジョンソンコントロールズ空調株式会社 Absorption-type refrigerator
CN110873478A (en) * 2019-12-13 2020-03-10 荏原冷热系统(中国)有限公司 Composite absorption refrigerating unit

Also Published As

Publication number Publication date
JP3093471B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
WO2002018849A1 (en) Absorption refrigerating machine
JP3103225B2 (en) Absorption heat pump using low-temperature heat source
JPS5849781B2 (en) Absorption heat pump
JP3093471B2 (en) Absorption heat pump using low-temperature heat source
GB2167848A (en) Absorption type heat pump
JP2000257976A (en) Absorption refrigerating machine
JP3093472B2 (en) Absorption heat pump using low-temperature heat source
US3389573A (en) Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
JP2000205691A (en) Absorption refrigerating machine
JP2858908B2 (en) Absorption air conditioner
JP3297720B2 (en) Absorption refrigerator
US5216891A (en) Solution flows in direct expansion lithium bromide air conditioner/heater
JPH06185827A (en) Absorption heat pump using low temperature heat source
JPS5830515B2 (en) Hybrid heat pump
JP2004301345A (en) Ammonia absorption refrigerator
JPH0555787B2 (en)
JP2657703B2 (en) Absorption refrigerator
JPH06235558A (en) Absorption type heat pump
JP2554787B2 (en) Absorption heat pump device
JPH05332633A (en) Composite freezer device
JPH0833258B2 (en) Absorption refrigeration equipment
SU564493A1 (en) Absorbtion refrigerating unit
JPS6149590B2 (en)
JP3173057B2 (en) Absorption heat pump
JPH0694964B2 (en) Multi-effect absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees