JPH0688297A - Method for descaling stainless steel by neutral salt electrolysis - Google Patents

Method for descaling stainless steel by neutral salt electrolysis

Info

Publication number
JPH0688297A
JPH0688297A JP24223492A JP24223492A JPH0688297A JP H0688297 A JPH0688297 A JP H0688297A JP 24223492 A JP24223492 A JP 24223492A JP 24223492 A JP24223492 A JP 24223492A JP H0688297 A JPH0688297 A JP H0688297A
Authority
JP
Japan
Prior art keywords
electrolysis
stainless steel
neutral salt
sodium sulfate
cathodic electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24223492A
Other languages
Japanese (ja)
Inventor
Shigeru Kitani
滋 木谷
Yoshio Hayashi
美生 林
Toshio Kojima
寿男 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24223492A priority Critical patent/JPH0688297A/en
Publication of JPH0688297A publication Critical patent/JPH0688297A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To increase the dissolving speed of scales at the time of descaling stainless steel which an anodic electrolysis and cathodic electrolysis in an sodium sulfate soln. by specifying the pH of soln. and current density at the time of a cathodic electrolysis. CONSTITUTION:A stainless steel with an oxide scale formed on its surface is passed through an aq. sodium sulfate soln., anodic electrolysis for eluting Cr2O3 and cathodic electrolysis for eluting Fe2O3 are repeated at least once, and the stainless steel is descaled by neutral salt electrolysis. The aq. sodium sulfate soln. is controlled to <=pH 3.5 by adding sulfuric acid, and the current density is kept at >=150mA/cm<2> in the cathodic electrolysis. Consequently, the dissolving rate of the oxide scale is almost doubled compared with a conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼の中性塩
電解脱スケール法、特に陽極電解と陰極電解の両方を少
なくとも1回以上行うことで効率的な脱スケールを行う
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a neutral salt electrolytic descaling method for stainless steel, and more particularly to a method for efficient descaling by performing both anodic electrolysis and cathodic electrolysis at least once.

【0002】[0002]

【従来の技術】ステンレス鋼、例えばステンレス鋼帯
は、その製造加工段階で圧延前の加熱、焼鈍など各種目
的でもって加熱される機会があり、光輝焼鈍などのよう
な特別な場合を除いて、表面に酸化スケールの生成は避
けられない。製品として出荷するには、このようにステ
ンレス鋼の製造工程の中で、例えば焼鈍によって生じた
酸化スケールを除去する工程が必要であり、通常は酸洗
によって酸化スケールの除去を行っている。
2. Description of the Related Art Stainless steel, for example, stainless steel strip, has the opportunity to be heated for various purposes such as heating before rolling and annealing during the manufacturing and processing stage thereof, except for special cases such as bright annealing. The formation of oxide scale on the surface is unavoidable. In order to ship the product as a product, in the manufacturing process of stainless steel as described above, for example, a step of removing oxide scale generated by annealing is required, and the oxide scale is usually removed by pickling.

【0003】酸洗法としては硝酸とフッ化水素酸の混酸
の中に浸漬する方法が最も慣用的なものであり、酸によ
ってステンレス鋼の表面が溶解して酸化スケールが除去
される。しかし、酸化スケールそのものは、本来、硝酸
とフッ化水素酸の混酸 (硝フッ酸) などの酸には溶け難
いものであるため、酸化スケールの付いたステンレス鋼
を硝フッ酸に浸漬しても、酸洗が速やかに進まない。こ
れは、酸化スケールによって酸がステンレス鋼の素地に
まで浸透するのが妨げられるためである。
As the pickling method, the most conventional method is to immerse it in a mixed acid of nitric acid and hydrofluoric acid, and the acid dissolves the surface of stainless steel to remove oxide scale. However, since the oxide scale itself is essentially insoluble in acids such as a mixed acid of nitric acid and hydrofluoric acid (hydrofluoric acid nitric acid), even if stainless steel with an oxide scale is immersed in hydrofluoric acid. , Pickling does not proceed quickly. This is because the oxide scale prevents the acid from penetrating into the stainless steel matrix.

【0004】そこで、何らかの方法で酸化スケールを改
質して、酸が浸透しやすくできれば酸洗速度を速めるこ
とができる。
Therefore, if the oxide scale is modified by some method so that the acid can easily permeate, the pickling rate can be increased.

【0005】このような目的のために、硫酸ナトリウム
などの中性塩水溶液中で電解する方法が知られている。
この方法による脱スケールのメカニズムは、下記の(1)
、(2) 式の反応によって酸化スケールの主成分である
クロム酸化物 (Cr2O3)がクロム酸や重クロム酸イオンと
して溶出し、酸化スケールがポーラスになるため、硝フ
ッ酸が浸透しやすくなるものと考えられる。
For this purpose, a method of electrolyzing in a neutral salt aqueous solution such as sodium sulfate is known.
The mechanism of descaling by this method is described in (1) below.
By the reaction of Eq. (2), chromium oxide (Cr 2 O 3 ), which is the main component of the oxide scale, is eluted as chromic acid and dichromate ions, and the oxide scale becomes porous. It is thought to be easier.

【0006】 Cr2O3+5H2O → 2CrO4 --+ 10H+ +6e ・・・(1) Cr2O3+4H2O → Cr2O7 --+ 8H+ +6e ・・・(2) 上記の反応式からも判るように、Cr2O3 の溶解は陽極電
解時 (正の電気を与えた時) に進行する。
[0006] Cr 2 O 3 + 5H 2 O → 2CrO 4 - + 10H + + 6e ··· (1) Cr 2 O 3 + 4H 2 O → Cr 2 O 7 - + 8H + + 6e ··· (2) above As can be seen from the reaction equation of, the dissolution of Cr 2 O 3 proceeds during anodic electrolysis (when positive electricity is applied).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、かかる
従来法にあっても酸化スケールの溶解速度は十分ではな
く、特に近年のように処理コストの低減を狙って高速処
理を行うようになると、溶解速度の更なる向上が求めら
れる。ここに、本発明の目的は、中性塩電解による酸化
スケールの溶解速度を可及的速やかにしたステンレス鋼
の中性塩電解脱スケール法を提供することである。
However, even with such a conventional method, the dissolution rate of oxide scale is not sufficient, and particularly when high-speed processing is performed aiming at reduction of the processing cost as in recent years, the dissolution rate is high. Further improvement is required. It is an object of the present invention to provide a neutral salt electrolytic descaling method for stainless steel in which the dissolution rate of oxide scale by neutral salt electrolysis is made as rapid as possible.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
中性塩電解法によるステンレス鋼の酸化スケールの溶解
速度を速めるための条件を種々研究した結果、下記のこ
とが有効であることを知り、本発明を完成した。
Therefore, the present inventors have
As a result of various studies on the conditions for increasing the dissolution rate of the oxide scale of stainless steel by the neutral salt electrolysis method, the inventors have found that the following is effective and completed the present invention.

【0009】陽極電解と陰極電解の両方を少なくとも
1回以上行い、かつ陰極電解の電流密度を150 mA/cm2
上とする。 中性塩電解液のpHを低目にする (例えば3.5 以下) 。
Both the anodic electrolysis and the cathodic electrolysis are performed at least once, and the current density of the cathodic electrolysis is 150 mA / cm 2 or more. Lower the pH of the neutral salt electrolyte (eg 3.5 or less).

【0010】よって、本発明の要旨とするところは、硫
酸ナトリウム水溶液の中で、陽極電解と陰極電解の両方
を少なくとも1回以上行い、かつ陰極電解時の電流密度
を150 mA/cm2以上とすることを特徴とする、ステンレス
鋼の中性塩電解脱スケール法である。
Therefore, the gist of the present invention is that both anodic electrolysis and cathodic electrolysis are performed at least once in an aqueous sodium sulfate solution, and the current density during cathodic electrolysis is 150 mA / cm 2 or more. This is a neutral salt electrolytic descaling method for stainless steel.

【0011】また、別の面からは、本発明は、硫酸を添
加することによりpHを3.5 以下に調節した硫酸ナトリウ
ム水溶液の中で、陽極電解と陰極電解の両方を少なくと
も1回以上行うことを特徴とするステンレス鋼の中性塩
電解脱スケール法である。
From another aspect, the present invention is to perform both anodic electrolysis and cathodic electrolysis at least once in an aqueous sodium sulfate solution whose pH is adjusted to 3.5 or less by adding sulfuric acid. It is characterized by the neutral salt electrolytic descaling method of stainless steel.

【0012】さらに別の面からは、本発明は、硫酸を添
加することによりpHを3.5 以下に調節した硫酸ナトリウ
ム水溶液の中で、陽極電解と陰極電解の両方を少なくと
も1回以上行い、かつ陰極電解時の電流密度を150 mA/c
m2以上とすることを特徴とする、ステンレス鋼の中性塩
電解脱スケール法である。
[0012] From still another aspect, the present invention is to carry out both anodic electrolysis and cathodic electrolysis at least once in an aqueous solution of sodium sulfate whose pH is adjusted to 3.5 or lower by adding sulfuric acid, and Current density during electrolysis is 150 mA / c
It is a neutral salt electrolytic descaling method of stainless steel, which is characterized in that it is at least m 2 .

【0013】[0013]

【作用】次に、本発明において脱スケール処理条件を上
述のように限定した理由およびそれによってステンレス
鋼の酸化スケールの溶解を速める効果を示す機構は次の
ように考えられる。
Next, the reason why the descaling conditions are limited as described above in the present invention and the mechanism showing the effect of accelerating the dissolution of the oxidized scale of the stainless steel are considered as follows.

【0014】すなわち、ステンレス鋼の酸化スケールの
主成分は確かにクロム酸化物(Cr2O3等) であるが、通常
は鉄の酸化物も多く含まれている。特に、3価の鉄の酸
化物(Fe2O3) は酸に溶け難いため、Cr2O3 が陽極電解に
よって溶出してもFe2O3 がそのまま残存すると硝フッ酸
による酸洗速度が遅くなる。
That is, the main component of the oxide scale of stainless steel is chromium oxide (Cr 2 O 3 etc.), but usually contains a large amount of iron oxide. In particular, trivalent iron oxide (Fe 2 O 3 ) is difficult to dissolve in acid, so even if Cr 2 O 3 is eluted by anodic electrolysis, if Fe 2 O 3 remains as it is, the pickling rate with nitric hydrofluoric acid will increase. Become slow.

【0015】ところが、電流密度を150 mA/cm2以上にし
て陰極電解を行うことにより、3価の鉄が2価の鉄に還
元されて溶けやすくなると同時に共存する水素イオン(H
+)の作用により、下記の(3) 式の反応が起きて鉄の酸化
物が溶解するものと推測される。
However, by carrying out cathodic electrolysis at a current density of 150 mA / cm 2 or more, trivalent iron is reduced to divalent iron and easily dissolved, and at the same time coexisting hydrogen ions (H
It is presumed that the action of ( + ) causes the reaction of the following formula (3) to occur and the iron oxide is dissolved.

【0016】 Fe2O3 +6H+ +2e → 2Fe+++3H2O ・・・(3) 一方、上記3価の鉄の酸化物の溶解反応はH+ イオン濃
度が高いほど進行しやすいので、電流密度を高める代わ
りに電解液のpHを低めにすることによっても酸化スケー
ルの溶解が速まったものと推測される。もちろん、これ
らの両手段を併用することで、その効果はさらに一層高
められる。
Fe 2 O 3 + 6H + + 2e → 2Fe ++ + 3H 2 O (3) On the other hand, the dissolution reaction of the trivalent iron oxide is more likely to proceed as the H + ion concentration is higher, so It is speculated that the dissolution of the oxide scale was accelerated by lowering the pH of the electrolytic solution instead of increasing the density. Of course, by using both of these means together, the effect is further enhanced.

【0017】したがって、本発明によれば、上述の条件
下で陽極電解と陰極電解とを交互に行うことによって、
陽極電解に際してCr2O3 の溶出を図り、陰極電解でFe2O
3 の溶出を図るのであって、その際の具体的条件は酸化
スケールの量などによって適宜決定すればよい。
Therefore, according to the present invention, by alternately performing anodic electrolysis and cathodic electrolysis under the above-mentioned conditions,
Elute Cr 2 O 3 during anodic electrolysis, and Fe 2 O 3
The elution of 3 is aimed at, and the specific conditions at that time may be appropriately determined depending on the amount of oxide scale and the like.

【0018】ステンレス鋼帯およびステンレス鋼線材を
例にとってその具体的な好適操作態様を説明すると、ま
ず、陽極電解槽、陰極電解槽を複数交互に並べ、それぞ
れの処理条件に保持した状態で一方の側から他方の側へ
連続的にステンレス鋼帯または線材を送給する。なお、
この場合、好ましくは、最初と最後の電解を処理材表面
が陽極になるようにすることで、酸化スケールの除去効
率は一層改善される。次に、実施例によって本発明の作
用効果をさらに詳しく説明する。
A concrete preferred operation mode will be described by taking a stainless steel strip and a stainless steel wire as an example. First, a plurality of anode electrolysis cells and cathode electrolysis cells are alternately arranged, and one of them is maintained under respective processing conditions. Continuously feed stainless steel strip or wire from one side to the other. In addition,
In this case, preferably, the efficiency of oxide scale removal is further improved by performing the first and last electrolysis with the treated material surface serving as an anode. Next, the working effects of the present invention will be described in more detail with reference to examples.

【0019】[0019]

【実施例】【Example】

(実施例1)SUS304ステンレス鋼の冷延鋼板 (厚さ0.5 m
m) をプロパンガスの燃焼雰囲気で1120℃、60秒間焼鈍
したものを供試材とし、これを80℃、20% Na2SO4 水溶
液中で陽極、陰極電解処理した後、溶液中のCrおよびFe
をICP(誘導結合プラズマ) 発光分光分析法で分析して溶
出量を調べた。なお、電解液のpHは、硫酸を添加するこ
とによって調整した。電解条件とともに結果を表1に示
す。
(Example 1) Cold rolled steel plate of SUS304 stainless steel (thickness 0.5 m
m) was annealed in a combustion atmosphere of propane gas at 1120 ° C for 60 seconds as a test material, and this was subjected to anode and cathodic electrolytic treatment in a 20% Na 2 SO 4 aqueous solution at 80 ° C. Fe
Was analyzed by ICP (inductively coupled plasma) emission spectroscopy to examine the elution amount. The pH of the electrolytic solution was adjusted by adding sulfuric acid. The results are shown in Table 1 together with the electrolysis conditions.

【0020】なお、表1に示した実施例は陽極電解と陰
極電解を交互に3回または6回くり返して電解したもの
であり、いずれも陽極電解時間と陰極電解時間に比率が
2:1、総電解時間が9秒間の例である。
The examples shown in Table 1 are ones in which anodic electrolysis and cathodic electrolysis were repeated alternately 3 or 6 times for electrolysis, and in both cases, the ratio of anodic electrolysis time to cathodic electrolysis time was 2: 1. In this example, the total electrolysis time is 9 seconds.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示す結果から判るように、電解液の
pHは5.0 と従来通りであっても、電流密度を150 mA/cm2
以上にすることでCrおよびFeの溶出は増大する(No.1参
照)。また、陰極電流密度は80mA/cm2であるが、電解液
のpHを低め (pH 3.0〜1.7)にしたもの (No.9〜11) もCr
溶出量 2.5〜3.4 mg/dm2、Fe溶出量0.8 〜1.4 mg/dm2
ある。
As can be seen from the results shown in Table 1, the electrolyte solution
Even if the pH is 5.0 as before, the current density is 150 mA / cm 2
By the above, the elution of Cr and Fe is increased (see No. 1). The cathode current density is 80 mA / cm 2 , but the electrolyte with a lower pH (pH 3.0 to 1.7) (No. 9 to 11) also contains Cr.
The elution amount is 2.5 to 3.4 mg / dm 2 , and the Fe elution amount is 0.8 to 1.4 mg / dm 2 .

【0023】一方、陰極電解の電流密度が180 mA/cm2
上の場合 (No.2〜8)には、供試材面積1dm2 当たりから
のCr溶出量はいずれも3.2 mg以上、Fe溶出量は1.5 mg以
上であった。これらの3つの場合はいずれも比較法(No.
12、13) のCr、Fe溶出量に比べて明らかに多く、ほぼ倍
以上となっており、酸化スケールの溶解速度が速いこと
が判った。
On the other hand, when the current density of the cathodic electrolysis is 180 mA / cm 2 or more (No. 2 to 8), the Cr elution amount per sample area of 1 dm 2 is 3.2 mg or more and Fe elution is all. The amount was more than 1.5 mg. In all three cases, the comparison method (No.
It was found that the dissolution rate of oxide scale was fast, which was clearly higher than that of Cr and Fe (12, 13) and almost doubled.

【0024】なお、陽極電解と陰極電解の時間やその比
率、くり返し回数を種々に変えた実験も行ったが、いず
れの場合においても陰極電流密度が150 mA/cm2以上であ
るとと、および/ またはpHを3.5 以下と低目にすること
がスケールの溶解を速める上で最も有効であることを確
認した。
Experiments were also conducted in which the time and ratio of anodic electrolysis and cathodic electrolysis, and the number of repetitions were variously changed. In any case, it was found that the cathode current density was 150 mA / cm 2 or more. It was confirmed that / or lowering the pH to 3.5 or lower is the most effective in accelerating the dissolution of the scale.

【0025】(実施例2)SUS430の冷延鋼板 (厚さ0.5 m
m) をプロパンガスの燃焼雰囲気中で 830℃、60秒間焼
鈍したものを供試材とし、これを80℃、20% Na2SO4
溶液中で電解処理した後、溶液中のCrおよびFeをICP(誘
導結合プラズマ) 発光分光分析法で分析して溶出量を調
べた。なお、電解液のpHは、硫酸を添加することによっ
て調整した。結果を表2に示す。
(Example 2) Cold rolled steel plate of SUS430 (thickness 0.5 m
m) was annealed at 830 ° C for 60 seconds in a combustion atmosphere of propane gas as a test material, and this was electrolyzed in a 20% Na 2 SO 4 aqueous solution at 80 ° C, and then Cr and Fe in the solution were removed. The amount of elution was examined by analysis by ICP (inductively coupled plasma) emission spectroscopy. The pH of the electrolytic solution was adjusted by adding sulfuric acid. The results are shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から判るように、陰極電解の電流密度
は180 mA/cm2以上の場合 (No.1〜8) には、Feの溶出量
が2.5 〜3.0 mg/dm2、Crの溶出量が0.7 〜1.0 mg/dm2
あり、比較例(No.12、13) の溶出量に比べて明らかに多
い。なお、FeとCrの溶出量の割合が、実施例1のSUS304
の場合に比べて逆になっているのは、SUS430の酸化スケ
ール中のFeがCrの数倍あるためである。また、陰極電流
密度が−60mA/cm2で、電解液のpHが低目 (3.0 〜1.7)の
もの (No.9〜11) も溶出量 (特にFeの) が比較例より多
いことを確認した。
As can be seen from Table 2, when the current density of the cathodic electrolysis is 180 mA / cm 2 or more (No. 1 to 8), the elution amount of Fe is 2.5 to 3.0 mg / dm 2 , and the elution of Cr is The amount is 0.7 to 1.0 mg / dm 2, which is clearly higher than the elution amount of the comparative examples (No. 12, 13). In addition, the ratio of the elution amount of Fe and Cr is SUS304 of Example 1.
The reason for the reverse of the case is that the Fe content in the oxide scale of SUS430 is several times that of Cr. It was also confirmed that those with a cathode current density of -60 mA / cm 2 and a low electrolyte pH (3.0 to 1.7) (No. 9 to 11) also had a higher elution amount (especially Fe) than the comparative example. did.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
酸化スケールの溶解速度は従来法と比較してほぼ倍近く
増大しており、それだけ処理速度を高めることができ、
今日の技術的要求を満足させることができる。
As described above, according to the present invention,
The dissolution rate of oxide scale is almost doubled compared with the conventional method, and the processing speed can be increased accordingly.
It can meet today's technical requirements.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫酸ナトリウム水溶液の中で、陽極電解
と陰極電解の両方を少なくとも1回以上行い、かつ陰極
電解時の電流密度を150 mA/cm2以上とすることを特徴と
する、ステンレス鋼の中性塩電解脱スケール法。
1. A stainless steel characterized in that both anodic electrolysis and cathodic electrolysis are performed at least once in an aqueous sodium sulfate solution, and the current density during cathodic electrolysis is 150 mA / cm 2 or more. Neutral salt electrolytic descaling method.
【請求項2】 硫酸を添加することによりpHを3.5 以下
に調節した硫酸ナトリウム水溶液の中で、陽極電解と陰
極電解の両方を少なくとも1回以上行うことを特徴とす
るステンレス鋼の中性塩電解脱スケール法。
2. Neutral salt electrolysis of stainless steel, characterized in that both anodic electrolysis and cathodic electrolysis are performed at least once in an aqueous sodium sulfate solution whose pH is adjusted to 3.5 or lower by adding sulfuric acid. Liberation scale method.
【請求項3】 硫酸を添加することによりpHを3.5 以下
に調節した硫酸ナトリウム水溶液の中で、陽極電解と陰
極電解の両方を少なくとも1回以上行い、かつ陰極電解
時の電流密度を150 mA/cm2以上とすることを特徴とす
る、ステンレス鋼の中性塩電解脱スケール法。
3. Both anodic electrolysis and cathodic electrolysis are performed at least once in an aqueous solution of sodium sulfate whose pH is adjusted to 3.5 or less by adding sulfuric acid, and the current density during cathodic electrolysis is 150 mA / The neutral salt electrolytic descaling method of stainless steel, which is characterized by making it cm 2 or more.
JP24223492A 1992-09-10 1992-09-10 Method for descaling stainless steel by neutral salt electrolysis Withdrawn JPH0688297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24223492A JPH0688297A (en) 1992-09-10 1992-09-10 Method for descaling stainless steel by neutral salt electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24223492A JPH0688297A (en) 1992-09-10 1992-09-10 Method for descaling stainless steel by neutral salt electrolysis

Publications (1)

Publication Number Publication Date
JPH0688297A true JPH0688297A (en) 1994-03-29

Family

ID=17086233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24223492A Withdrawn JPH0688297A (en) 1992-09-10 1992-09-10 Method for descaling stainless steel by neutral salt electrolysis

Country Status (1)

Country Link
JP (1) JPH0688297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976282A (en) * 1996-03-22 1999-11-02 Kawasaki Steel Corporation Method for producing austenitic steel plate with excellent surface brightness and corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976282A (en) * 1996-03-22 1999-11-02 Kawasaki Steel Corporation Method for producing austenitic steel plate with excellent surface brightness and corrosion resistance

Similar Documents

Publication Publication Date Title
JP2588646B2 (en) High speed pickling method for steel metal
AU2012316187B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
US6149744A (en) Method of making austenitic stainless steel sheet
US3429792A (en) Method of electrolytically descaling and pickling steel
US6391187B1 (en) Method for treating a metal product
DE19931820C2 (en) Process for descaling titanium material and descaled titanium material
US3632490A (en) Method of electrolytic descaling and pickling
JPH0688297A (en) Method for descaling stainless steel by neutral salt electrolysis
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP2966188B2 (en) Descaling method for ferritic stainless steel annealed steel strip
JP2517353B2 (en) Descaling method for stainless steel strip
JP7217901B2 (en) Stainless steel descaling liquid and stainless steel descaling method
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
US20230059039A1 (en) Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same
JPH0196398A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JPH02173300A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
JP3873335B2 (en) Electrolytic descaling method for steel strip
JPH0196399A (en) Method for descaling cold-rolled band stainless steel by neutral salt electrolysis
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate
JPH0688300A (en) Production of stainless steel excellent in corrosion resistance and surface property
JPH01312100A (en) Method for descaling stainless steel
JP2005126751A (en) Stainless steel sheet having reduced rusting, and its production method
JPH05295599A (en) High speed pickling method for steel metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130