JPH01312100A - Method for descaling stainless steel - Google Patents

Method for descaling stainless steel

Info

Publication number
JPH01312100A
JPH01312100A JP14358088A JP14358088A JPH01312100A JP H01312100 A JPH01312100 A JP H01312100A JP 14358088 A JP14358088 A JP 14358088A JP 14358088 A JP14358088 A JP 14358088A JP H01312100 A JPH01312100 A JP H01312100A
Authority
JP
Japan
Prior art keywords
stainless steel
acid
treatment
corrosion resistance
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14358088A
Other languages
Japanese (ja)
Inventor
Satoru Owada
哲 大和田
Tatsuo Kawasaki
川崎 龍夫
Hideko Yasuhara
英子 安原
Kanji I
井 莞爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14358088A priority Critical patent/JPH01312100A/en
Publication of JPH01312100A publication Critical patent/JPH01312100A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To remove oxide scales in a short time and to improve the resistance to initial rusting by applying electrolysis with the use of a processing soln. added with MoClx under specified conditions at the time of removing oxide scales on the surface of stainless steel. CONSTITUTION:A stainless steel cold-rolled, then annealed, and having oxide scales on the surface is passed through the processing soln. obtained by adding MoClx (x is 3-5) to an aq. soln. of an acid such as nitric acid, a nitric and hydrochloric acid mixture, sulfuric acid, and phosphoric acid or the neutral-salt electrolyte such as Na2SO4 to control the C concn. to 0.1-3.6wt.%, a current is applied to the stainless steel alternately used as the anode and cathode at least once at intervals of 5 sec, for example, and an electrolytic current is applied so that the final polarity on the electrolytic cell outlet side is made negative. The oxide scales are removed when the stainless steel is used as the anode, and the resistance to initial rusting is improved by the surface treatment with Mo when the stainless steel is used as the cathode.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、ステンレス鋼のスケール除去方法に関し、さ
らに詳しくはステンレス鋼冷延焼鈍板の表面酸化スケー
ルを除去し、かつ同時に当該ステンレス鋼の耐食性を向
上させるための極めて効果的かつ全く新規な方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing scale from stainless steel, and more specifically, for removing surface oxidation scale from a cold-rolled and annealed stainless steel plate, and at the same time improving the corrosion resistance of the stainless steel. It relates to a highly effective and completely novel method for improving.

[従来の技術] 従来、ステンレス鋼の冷延焼鈍後に表面酸化スケールを
除去する方法としては、アルカリ溶融塩(いわゆるソル
ト)浸漬処理、中性塩(Na2SO4等)電解質水溶液
(いわゆるルスナー)中電解処理あるいは硫酸、塩酸、
硝酸、リン酸、硝弗酸等の酸中ての浸漬もしくは電解処
理を、対象鋼種に応して、適宜組合せて用いるのが一般
的であった。
[Prior Art] Conventionally, methods for removing surface oxidation scale after cold rolling annealing of stainless steel include immersion treatment in alkali molten salt (so-called salt), electrolytic treatment in neutral salt (Na2SO4, etc.) electrolyte aqueous solution (so-called Lusner). Or sulfuric acid, hydrochloric acid,
Generally, immersion in an acid such as nitric acid, phosphoric acid, nitric-fluoric acid, or electrolytic treatment was used in an appropriate combination depending on the steel type.

最近では生産ラインの増速化による生産性向上に対処す
べく、これらの処理液中に塩化物(塩酸も含む)として
塩素イオン源を添加し、塩素イオンの著しいスケール侵
食機能を積極的に活用した短時間のスケール除去方法の
利用の機運が高まってきている。例えば、硝酸−塩酸一
塩化第2鉄からなる処理液中で浸漬する方法(特公昭5
8−42777、特公昭6O−54391)、さらには
中性電解質水溶液−NaC!またはKCρかうなる処理
液中で電解する方法(特開昭53−23245)が開示
されている。
Recently, in order to improve productivity due to increased speed of production lines, chloride ion sources have been added in the form of chloride (including hydrochloric acid) to these processing solutions, and the remarkable scale erosion function of chlorine ions has been actively utilized. The use of short-time descaling methods is gaining momentum. For example, a method of immersion in a treatment solution consisting of nitric acid-hydrochloric acid monochloride (ferric
8-42777, Japanese Patent Publication No. 6O-54391), and even neutral electrolyte aqueous solution - NaC! Alternatively, a method of electrolyzing in a treatment solution such as KCρ (Japanese Unexamined Patent Publication No. 53-23245) has been disclosed.

しかしながら、これら従来技術では、次のような問題点
があった。すなわち、 (1)第1として、従来技術では酸洗ライン通板速度は
数十m7分からせいぜい60〜70m/分であり、これ
以上のライン堺度とするには長大な酸洗槽とすべき必要
があった。このような機能では例えば連続焼鈍−酸洗設
備のような100m/分を超える高速高効率生産設備で
は実用化できないままであった。
However, these conventional techniques have the following problems. That is, (1) First, in the conventional technology, the pickling line running speed is from several tens of meters to 60 to 70 m/min at most, and a long pickling tank is required to achieve higher line roughness. There was a need. Such a function has not been able to be put to practical use in high-speed, high-efficiency production equipment, such as continuous annealing-pickling equipment, which operates at speeds exceeding 100 m/min.

またさらには、 (2)近年座高に客先より求められている耐初期錆性の
向上という面ではこれら従来技術は対処できるものでは
ない。
Furthermore, (2) These conventional techniques cannot meet the requirements of improved initial rust resistance, which has been recently demanded by customers for seat heights.

[発明が解決しようとする課題] ところで、」二連の(2)の耐食性の問題の解決策とし
て、スケール除去処理後に別工程としてモリブデンを用
いた表面処理を行う方法がある。例えば、モリブデン酸
塩を含むリン酸中でステンレス鋼を陰極処理する方法(
特開昭57−26196)あるいはリン酸中で金属モリ
ブデンを陽極としてステンレス鋼を陰極処理する方法(
特開昭57−41398)等が開示されている。これら
は何れもステンレス鋼表面にモリブデンを含も皮膜を形
成させて、耐食性を向上さゼるものであるが、次のよう
な問題が残されていた1、すなわち、前記の従来技術に
よる表面処理法はあ(まてスケール除去済みのステンレ
ス鋼を対象とするもので、当該処理にはスケール除去用
の槽とは別の専用の槽が必要となり、新たな設fjfi
を設けなければならない。また、当該処理をスケール除
去と同時に一工程で実施できないため、生産工程的に工
程が増えること、並びに処理速度が遅いことから生産性
が低下し、生産コス1〜の大幅なアップを引き起こして
いる。
[Problems to be Solved by the Invention] By the way, as a solution to the two problems of corrosion resistance (2), there is a method of performing surface treatment using molybdenum as a separate process after scale removal treatment. For example, cathodic treatment of stainless steel in phosphoric acid containing molybdate (
JP-A-57-26196) or a method of cathodic treatment of stainless steel using metallic molybdenum as an anode in phosphoric acid (
JP-A-57-41398) and the like are disclosed. All of these methods improve corrosion resistance by forming a molybdenum-containing film on the surface of stainless steel, but the following problems remain:1. The law is applicable to stainless steel that has already been descaled, and the treatment requires a dedicated tank separate from the descaling tank, requiring new equipment.
must be established. In addition, because this treatment cannot be carried out simultaneously with scale removal in one step, the number of steps in the production process increases, and the slow processing speed reduces productivity, causing a significant increase in production cost by 1. .

[発明が解決しようとする課題1 以上述べたように、処理液中に塩化物を含む系    
゛てのステンレス鋼のスケール除去)j法に関する従来
技術では、生産性を損なうことなく、かつ同時に対象材
表面の耐食性を向上させることはできないという大きな
問題が残されたままとなっていたのである。
[Problem to be Solved by the Invention 1] As mentioned above, in systems containing chlorides in the processing liquid,
With the conventional technology related to the ``scale removal of stainless steel'' method, the major problem remained that it was not possible to improve the corrosion resistance of the surface of the target material at the same time without impairing productivity. .

本発明はこのような現状に鑑みて開発されたもので、公
知従来技術に残されていた問題点を解決し、ステンレス
鋼の表面酸化スケールを極めて短時間て除去すると共に
、同時に同一処理槽内で耐食性の向上をも達成できる迅
速−工程の画期的なスケール除去方法を提供することを
1」的とするものである。
The present invention was developed in view of the current situation, and solves the problems remaining in the known prior art, and removes surface oxidation scale from stainless steel in an extremely short time. The object of the present invention is to provide a rapid and innovative scale removal method that can also improve corrosion resistance.

[課題を解決するための手段] 本発明者らは塩素源を含有させた処理液中での電解スケ
ール除去処理法、並びにモリブデンを用いた耐食性向上
化表面処理法について鋭意、詳細に実験、検討を屯ねた
結果、塩化モリブデンを添加させた処理液を用いてステ
ンレス鋼を電解スケール除去することにより、短時間で
スケール除去を完了し、かつ耐食性向上の問題をも解決
できることを見出した。
[Means for Solving the Problems] The present inventors conducted intensive and detailed experiments and studies on an electrolytic scale removal treatment method in a treatment solution containing a chlorine source and a surface treatment method for improving corrosion resistance using molybdenum. As a result of research, we discovered that by electrolytically descaling stainless steel using a treatment solution to which molybdenum chloride was added, scale removal could be completed in a short period of time, and the problem of improving corrosion resistance could also be solved.

すなわち、さらに詳しく言えば本発明は、■ 処理液と
して硝酸、硝塩酸、硫酸、あるいはリン酸等の酸または
硫酸ナトリウム、硝酸ナトリウム等の中性塩電解質水溶
液に塩化モリブデンを添加した液を用い、 ■ このような処理液中でステンレス鋼が陽、陰両極・
姓を採り、電解槽出側での最終極性が陰極性となるよう
に電解処理することを特徴とするステンレス鋼のスケー
ル除去方法である。
That is, to be more specific, the present invention includes: (1) using a solution prepared by adding molybdenum chloride to an acid such as nitric acid, nitric hydrochloric acid, sulfuric acid, or phosphoric acid or a neutral salt electrolyte solution such as sodium sulfate or sodium nitrate; ■ Stainless steel has positive and negative polarity in such a treatment solution.
This is a method for removing scale from stainless steel, which is characterized by electrolytic treatment so that the final polarity at the exit side of the electrolytic cell is negative.

[作用] 以下に本発明の作用について具体的に説明する。本発明
においては、塩化物すなわち塩素源として塩化モリブデ
ンを用いる。塩化モリブデンはスケール除去に必要な塩
素を含み、かつ耐食性向上化の表面処理に必要なモリブ
デンを共に含む化合物として適するものなのである。
[Function] The function of the present invention will be specifically explained below. In the present invention, molybdenum chloride is used as the chloride or chlorine source. Molybdenum chloride is suitable as a compound that contains chlorine, which is necessary for scale removal, and also contains molybdenum, which is necessary for surface treatment to improve corrosion resistance.

塩化モリブデンの組成としてはM o CQ 3、M 
o Cg 4、Mo(125等いずれの構造のものでも
本発明の目的達成を撰なうものとならないので構わない
が、各構造ごとに水溶液、酸等への溶解度に差があるの
で、スケール除去処理液に応じて、塩化モリブデンの添
加濃度やコストを勘案して使い分Gづずれば良いもので
ある。
The composition of molybdenum chloride is M o CQ 3, M
o Cg 4, Mo (125, etc.) Any structure may be used as it does not affect the achievement of the purpose of the present invention, but each structure has a difference in solubility in aqueous solution, acid, etc., so it is necessary to remove scale. Depending on the treatment liquid, the amount of G to be used may be adjusted by taking into consideration the concentration of molybdenum chloride added and cost.

なお、塩化モリブデンの添加濃度はスケール除去に必要
な塩素濃度を確保すること、および耐食性向上化表面処
理に必要なモリブデン濃度を確保することの2点から決
定されるものである。
The concentration of molybdenum chloride added is determined from two points: securing the chlorine concentration necessary for scale removal and securing the molybdenum concentration necessary for surface treatment to improve corrosion resistance.

先ず、スケール除去に対する塩素濃度は硝酸、硝塩酸、
硫酸、リン酸等の酸あるいは中性塩電解質水溶液よりな
る処理液ごとにそれぞれ、少しずつ変化する。
First, the chlorine concentration for scale removal is nitric acid, nitric acid,
It changes little by little depending on the treatment solution made of an acid such as sulfuric acid or phosphoric acid or a neutral salt electrolyte aqueous solution.

すなわち、硝酸水溶液を処理液とする場合には、硝酸濃
度と適正塩素濃度との関係は第1図に示すものとなる。
That is, when a nitric acid aqueous solution is used as the treatment liquid, the relationship between the nitric acid concentration and the appropriate chlorine concentration is as shown in FIG.

硝塩酸水溶液を処理液とする場合には、第1図の関係が
そのまま適用することができる。
When a nitric acid aqueous solution is used as the treatment liquid, the relationship shown in FIG. 1 can be applied as is.

硫酸水溶液を処理液とする場合には、硫酸濃度と適正塩
素濃度の関係は、第2図に示す通りとなる。
When a sulfuric acid aqueous solution is used as the treatment liquid, the relationship between the sulfuric acid concentration and the appropriate chlorine concentration is as shown in FIG.

またリン酸水溶液を処理液とする場合には第3図の関係
が得られる。
Further, when a phosphoric acid aqueous solution is used as the processing liquid, the relationship shown in FIG. 3 is obtained.

さらに、中性塩電解質(硫酸ナトリウム)水溶液を処理
液として用いる場合の中性塩電解性濃度と適正塩素濃度
の関係は第4図に示すようになる。
Further, when a neutral salt electrolyte (sodium sulfate) aqueous solution is used as the treatment liquid, the relationship between the neutral salt electrolyte concentration and the appropriate chlorine concentration is shown in FIG.

このように処理液に応して、良好なスケール除去性を得
ることのできる適正塩素濃度は異なってくるものである
が、これら酸あるいは中性塩電解質の塩素濃度範囲とし
ては0.1〜3.6重量%が望ましい。0.1重量%未
満てはスケール残りが生じると共に、3.6重量%を超
えると過酸洗状態の肌となるなどステンレス鋼の表面状
況が悪化するようになるからである。
As described above, the appropriate chlorine concentration for obtaining good scale removal properties differs depending on the treatment solution, but the chlorine concentration range for these acid or neutral salt electrolytes is 0.1 to 3. .6% by weight is desirable. If it is less than 0.1% by weight, scale remains, and if it exceeds 3.6% by weight, the surface condition of the stainless steel will deteriorate, such as an over-pickled skin.

一方、耐食性向上化の表面処理に対する必要なモリブデ
ン濃度も酸あるいは中性塩電解質水溶液処理液ごとにそ
れぞれ変化するものであるが、例えば、硝酸水溶液を処
理液とする場合では、上記のスケール除去可能塩素濃度
範囲に基づ<M。
On the other hand, the necessary molybdenum concentration for surface treatment to improve corrosion resistance varies depending on the acid or neutral salt electrolyte aqueous solution treatment solution, but for example, when using a nitric acid aqueous solution as the treatment solution, the above scale removal is possible Based on chlorine concentration range <M.

Cf25添加濃度では、高い濃度はど第1表に示すよう
にステンレス鋼の耐食性の向上度の大なることが明らか
であるが、最低のM o Cβ5添加量でも塩酸添加系
によるスケール除去ステンレス鋼よりも耐食性が大幅に
向上されることが分る。
Regarding Cf25 addition concentration, as shown in Table 1, it is clear that the higher the concentration, the greater the improvement in the corrosion resistance of stainless steel, but even the lowest addition amount of M o Cβ5 is more effective than descaling stainless steel using hydrochloric acid addition system. It can be seen that the corrosion resistance is also significantly improved.

一方、スケール除去性とは別に陰極電解処理によるMo
量度と耐食性の関係を調べた結果(第2表)を見ると、
第1表と同様にMo濃度の増加につれて耐食性は良くな
ることが分るが、Mo添加量が2g/ff未満では耐食
性は大幅に向上するものの十分とは言えない状況であり
、また、Moが10g/8を超えて添加すると完全に十
分な耐食性向上を得ることができ、その結果は飽和状態
になると考えられる。
On the other hand, apart from scale removal properties, Mo
Looking at the results of investigating the relationship between weight and corrosion resistance (Table 2), we find that
As shown in Table 1, it can be seen that the corrosion resistance improves as the Mo concentration increases, but if the amount of Mo added is less than 2 g/ff, the corrosion resistance improves significantly, but it is not sufficient. It is believed that adding more than 10 g/8 will give a completely sufficient improvement in corrosion resistance and the result will be saturated.

このようなMo量と耐食性向上の関係は他の酸あるいは
中性塩電解質でも全く同様の結果が得られた。
Exactly the same results were obtained with other acid or neutral salt electrolytes as to the relationship between the amount of Mo and the improvement in corrosion resistance.

このような検討結果から考慮すると、本発明において塩
化モリブデンの形態で処理液中に添加せられるMoの量
は少量でも効果が認められるのでその量を規定する必要
はないが、望ましくは2g/j2以上Log/、9以下
とすることで耐食性向上、経済性などの面からメリット
が大となる。
Considering these study results, it is not necessary to specify the amount of Mo added to the treatment liquid in the form of molybdenum chloride in the present invention, since the effect is recognized even in a small amount, but it is preferably 2 g/j2. By setting Log/ to 9 or less, there are great advantages in terms of improved corrosion resistance and economical efficiency.

処理液に求められる特性は、基本的にはステンレス鋼の
電解スケール除去が可能な系であることで、従来から用
いられている硝酸、硝塩酸、硫酸、リン酸などの酸水溶
液あるいはN a 2 S O4などの中性塩電解質水
溶液を用いることができる。
The properties required of the treatment liquid are basically that it is a system that can electrolytically remove scale from stainless steel, and it can be used with conventionally used acid aqueous solutions such as nitric acid, nitric-hydrochloric acid, sulfuric acid, and phosphoric acid, or with N a 2 A neutral salt aqueous electrolyte solution such as S 2 O 4 can be used.

これらの酸あるいは中性塩電解質水溶液の濃度について
本発明では特に規定をするものではなく、一般に適正濃
度範囲として用いられている5〜20重量%とすれば良
い。本発明者の検討ては先に示したように一般的濃度範
囲で本発明の効果上問題のないことが分っている。
The concentration of these acid or neutral salt electrolyte aqueous solutions is not particularly defined in the present invention, and may be within the range of 5 to 20% by weight, which is generally used as an appropriate concentration range. The inventor's studies have revealed that there is no problem with the effectiveness of the present invention within a general concentration range, as shown above.

処理液は酸性あるいは中性領域を用いる。第5図はpH
とスケール除去性および耐食性との関係を示したもので
試験条件は次の通りである。
The processing solution used is acidic or neutral. Figure 5 shows the pH
The test conditions are as follows.

供試材 5US304鋼 焼鈍済み鋼帯処理液組成濃度 Na2504 : 200g/ff MoCff5  :  15g/[ 電解条件 液温:80°C 電解パターン: 陰極5秒−陽極5秒−陰極5秒 電流密度: I 5A/drn’ スケール除去性は評価記号で表わし次の通りである。Test material: 5US304 steel, annealed steel strip treatment liquid composition concentration Na2504: 200g/ff MoCff5: 15g/[ Electrolysis conditions Liquid temperature: 80°C Electrolysis pattern: Cathode 5 seconds - Anode 5 seconds - Cathode 5 seconds Current density: I 5A/drn' The scale removability is expressed by evaluation symbols as follows.

○ スケール残りなし △ スケール残り小 × スケール残り大 またrii1食性の評価は塩水噴霧試験(JIS  Z
2371法)により、96時間後の錆発生面積率による
評価により、その評価記号は次の通りとした。
○ No scale remaining △ Small scale remaining × Large scale remaining
2371 method), evaluation was made based on the area ratio of rust occurrence after 96 hours, and the evaluation symbols were as follows.

C0% ○ 1〜4% △ 5〜9% X: io〜20% XX:>21% 第5図に示すごとく、中性塩電解質水溶液を用い希硫酸
およびN a OH水溶液でpH値を変化させて本発明
を実施した結果、酸性および中性領域ではスケール除去
が完了されると共に、耐食性の向上化もなされるが、p
Hが9〜10以」二のアルカリ性領域となるとスケール
除去性が低下し、スケール残りの発生が多くなると共に
、耐食性の向上化効果も低Fして行((ψ向のあること
が分った。この結果から、本発明の目的を十分に達成す
るために適切な処理液としては、酸性あるいは中性塩電
解質の水(8液とする必要がある。
C0% ○ 1-4% △ 5-9% As a result of carrying out the present invention, scale removal is completed in acidic and neutral regions, and corrosion resistance is also improved.
When H is in the alkaline region of 9 to 10 or more, the scale removability decreases, the occurrence of scale remains increases, and the effect of improving corrosion resistance is low ((It was found that there is a ψ direction). From this result, it is necessary to use acidic or neutral salt electrolyte water (8 liquids) as a suitable treatment liquid in order to fully achieve the purpose of the present invention.

本発明の電解方法はスケール除去されるステンレス鋼が
陽、陰両極性を採り、電解槽出側での最終極性は陰極と
なるような電解方法とされなければならない。すなわち
、ステンレス鋼の表面酸化スケールを電解によって溶解
し除去するには当該ステンレス鋼を陽極とすることが必
要であり、また、モリブデンによるステンレス鋼表面処
理が達成されるには、当該ステンレス鋼を陰極とするこ
とが必要なのである。さらにこのモリブデンによるステ
ンレス鋼表面の耐食性層を減損させることなく、仕上げ
成品の性状に活かすには電解時の最終極性が陰極でなけ
ればならない。もし最終極性がわずかでも陽極となれば
、極く薄い皮膜から形成されているモリブデンによる耐
食性層が溶解されてしまうことになる。このような理由
か6本発明での電解方法を、上記のように設定したので
ある。
The electrolysis method of the present invention must be such that the stainless steel to be scaled has both positive and negative polarity, and the final polarity at the exit side of the electrolytic cell is cathode. In other words, in order to dissolve and remove the surface oxide scale of stainless steel by electrolysis, it is necessary to use the stainless steel as an anode, and in order to achieve stainless steel surface treatment with molybdenum, the stainless steel must be used as a cathode. It is necessary to do so. Furthermore, in order to utilize the corrosion-resistant layer of molybdenum on the surface of stainless steel without degrading it and to make use of it in the properties of finished products, the final polarity during electrolysis must be cathode. If the final polarity becomes even slightly positive, the corrosion-resistant layer of molybdenum formed from an extremely thin film will be dissolved. For this reason, the electrolysis method of the present invention was set as described above.

なお、陽極、陰極両極性それぞれでの処理時間あるいは
最終の極性を除いた極性パターンは本発明の目的を達成
する上で達成度に差を生りることはあっても基本的な作
用の発揮の面では変わらないので本発明では特に限定を
するものではないが、例えば、極性のパターンとしては
■→○、〇−■−〇等とし、電解時間は陽、陰極性とも
1秒〜20秒とすれば良いものである。
Note that although the treatment time for each anode and cathode polarity or the polarity pattern excluding the final polarity may cause a difference in the degree of achievement in achieving the purpose of the present invention, the basic effect is achieved. Although there is no particular limitation in the present invention since there is no difference in terms of It is good to do so.

ところで、陰極電解によって、モリブデンがどのように
ステンレス鋼表面に作用し、その耐食性を向上化するか
については、今のところ明らかではないが、本処理をな
されたステンレス鋼表面のI MM A (Jon M
ass Micro Analysis)  結果(第
6図)を見るとステンレス鋼表層にモリブデン(Mo)
の層が形成されていることが分り、その表面モリブデン
層が耐食性向上に寄与していることは間違いないと考え
られる。第6区の試験条件は次の通りである。
By the way, it is not clear at present how molybdenum acts on the stainless steel surface and improves its corrosion resistance through cathodic electrolysis, but IMMA (Jon) M
Ass Micro Analysis) The results (Figure 6) show that molybdenum (Mo) is present on the stainless steel surface layer.
The surface molybdenum layer is believed to contribute to improving corrosion resistance. The test conditions for Section 6 are as follows.

供試材 S U I(409鋼 焼鈍済み鋼帯処理液組
成濃度 硫酸 :50g/2 MoCI25  :5g/12 電解条件 液温:50°C 電解パターン。
Test material SUI (409 steel Annealed steel strip treatment solution composition concentration Sulfuric acid: 50g/2 MoCI25: 5g/12 Electrolysis conditions Solution temperature: 50°C Electrolysis pattern.

陽極5秒−陰極5秒 電流密度 15A/drn2 一般にはモリブデンは水溶液中では、単独で(単体金属
として)は電析せず、鉄族金属との誘起共析の形をとる
と言われている(参考文献、例えば第77回、金属表面
処理技術協会講演大会原稿集P8)。本発明でのモリブ
デン析出もそのような形態をとっているものと考えられ
、そのような析出層が耐食性を示す表層をなしていると
思われる。
Anode 5 seconds - Cathode 5 seconds Current density 15A/drn2 It is generally said that molybdenum does not deposit alone (as a single metal) in an aqueous solution, but takes the form of induced eutectoid deposition with iron group metals. (References, for example, 77th Metal Surface Treatment Technology Association Lecture Conference Manuscript Collection P8). The molybdenum precipitated in the present invention is also considered to have such a form, and such a precipitated layer is considered to constitute a surface layer exhibiting corrosion resistance.

なお、電解処理における処理液の温度については、温度
の高い方が、本発明の効果出現に好ましい傾向があるが
、通常ステンレス鋼のスケール除去に利用されている液
温、すなわち40〜80℃て十分な効果が認められると
共に操業上も問題がな(好ましいものである。
Regarding the temperature of the treatment solution in electrolytic treatment, a higher temperature tends to be more favorable for the effects of the present invention, but the temperature of the solution normally used for removing scale from stainless steel, that is, 40 to 80°C Sufficient effects are recognized and there are no operational problems (this is preferable).

また、電解時の電流密度は大きい程、本発明の効果出現
に対して好ましいものであるが、大きすぎると肌荒れの
問題、排ガス処理の問題、ならびにコスト的な問題等が
生しるので、通常利用されているごとく、5〜30 A
/drn”程度が好ましい。
In addition, the larger the current density during electrolysis, the better it is for the effects of the present invention to appear, but if it is too large, problems such as rough skin, exhaust gas treatment, and cost problems will occur. As used, 5-30A
/drn” is preferable.

なお、以上述べたような形態を採ることを特徴とする本
発明は通常よく用いられている組成のアルカリ溶融塩浸
漬処理、中性塩電解質水溶液中での電解処理あるいは硫
酸浸漬または電解処理等の予備処理と組合わせると、そ
の効果が一層昂揚される。
The present invention, which is characterized by adopting the form described above, can be applied to commonly used alkaline molten salt immersion treatment, electrolytic treatment in a neutral salt electrolyte aqueous solution, sulfuric acid immersion, electrolytic treatment, etc. When combined with pre-treatment, the effect is further enhanced.

[実施例] 以下に本発明の実施例について述べる。[Example] Examples of the present invention will be described below.

実施例−1 冷間圧延後、通常の焼鈍条件にて連続焼鈍された5US
430鋼の鋼帯に対して、処理液を硝酸−塩化物系の酸
とする実施例および比較例を用いて電解処理した後、塩
水噴霧試験LT T 522371)を実施し、スケー
ル除去性と耐食性を比較した。結果を第3表に示す。
Example-1 5US continuously annealed under normal annealing conditions after cold rolling
After electrolytically treating a 430 steel strip using a nitric acid-chloride based acid as the treatment liquid in Examples and Comparative Examples, a salt spray test (LT T 522371) was conducted to determine the scale removal performance and corrosion resistance. compared. The results are shown in Table 3.

この結果、本発明法の硝酸−塩化モリブデン系での電解
処理により、短時間でスケール除去が完了されると共に
、従来技術では得られなかった耐食性向上化をも達成す
ることが確認された。
As a result, it was confirmed that the electrolytic treatment using a nitric acid-molybdenum chloride system according to the present invention not only completes scale removal in a short period of time, but also achieves an improvement in corrosion resistance that could not be achieved with conventional techniques.

実施例−2 実施例1と同じく通常の焼鈍条件にてバッチ焼鈍された
5US304鋼の鋼帯に対して、処理液を硫酸−塩化物
系の酸とする実施例および比較例を用いて電解処理した
後、塩水噴霧試験を実施し、スケール除去性と耐食性を
比較した。結果を第4表に示す。
Example 2 A steel strip of 5US304 steel that was batch annealed under the same normal annealing conditions as in Example 1 was subjected to electrolytic treatment using an example and a comparative example in which the treatment liquid was a sulfuric acid-chloride acid. After that, a salt spray test was conducted to compare scale removal performance and corrosion resistance. The results are shown in Table 4.

この結果、本発明法の硫酸−塩化モリブデン系での電解
処理により、短時間でスケール除去が完了されると共に
、従来技術では得られなかった耐食性の向上化をも達成
することが確認された。
As a result, it was confirmed that the electrolytic treatment using the sulfuric acid-molybdenum chloride system according to the present invention not only completes scale removal in a short time, but also achieves an improvement in corrosion resistance that could not be obtained with the conventional techniques.

実施例−3 実施例−1と同しく通常の焼鈍条件にて連続焼鈍された
5UH409鋼の鋼帯に対して、処理液を硝酸−塩酸一
塩化物系の酸とする実施例および比較例を用いて電解処
理した後、塩水噴霧試験を実施し、スケール除去性と耐
食性を比較した。結果を第5表に示す。
Example-3 An example and a comparative example in which the treatment liquid was a nitric acid-hydrochloric acid monochloride-based acid were carried out on a 5UH409 steel strip that was continuously annealed under the same normal annealing conditions as in Example-1. After electrolytic treatment using the same material, a salt spray test was conducted to compare scale removal performance and corrosion resistance. The results are shown in Table 5.

この結果、本発明法の硝酸−塩酸−塩化モリブデン系で
の電解処理により短時間でスケール除去が完了されると
共に、従来技術では得られなかった耐食性の向上化をも
達成することが確認された。
As a result, it was confirmed that the electrolytic treatment using the nitric acid-hydrochloric acid-molybdenum chloride system of the present invention not only completes scale removal in a short time, but also achieves improvements in corrosion resistance that could not be obtained with conventional techniques. .

実施例−4 実施例−3で用いたと同し5UH409鋼鋼帯に対して
、処理液をリン酸−塩化物系の酸とする実施例および比
較例を用いて電解処理した後、塩水噴霧試験を実施し、
スケール除去性と耐食性を比較した。結果を第6表に示
す。
Example-4 The same 5UH409 steel strip used in Example-3 was subjected to electrolytic treatment using an example and a comparative example in which the treatment liquid was a phosphoric acid-chloride acid, and then a salt spray test was conducted. carried out,
The scale removability and corrosion resistance were compared. The results are shown in Table 6.

この結果、本発明法のリン酸−塩化物系での電解処理に
より短時間でスケール除去が完了されると共に、従来技
術では得られなかった耐食性の向上化をも達成すること
が確認された。
As a result, it was confirmed that the electrolytic treatment using a phosphoric acid-chloride system according to the present invention not only completes scale removal in a short time, but also achieves an improvement in corrosion resistance that could not be obtained with the prior art.

実施例−5 実施例−1で用いたと同し5US430鋼鋼帯に対して
、処理液をNa2504−塩化物系水溶液とする実施例
および比較例を用いて電解処理した後、塩水噴霧試験を
実施し、スケール除去性と耐食性を比較した。結果を第
7表に示す。
Example-5 The same 5US430 steel strip used in Example-1 was electrolytically treated using an example and a comparative example in which the treatment liquid was a Na2504-chloride-based aqueous solution, and then a salt spray test was conducted. The scale removability and corrosion resistance were compared. The results are shown in Table 7.

この結果、本発明法のNa2504−塩化モリブデン系
での電解処理により短時間でスケール除去が完了される
と共に、従来技術では得られなかった耐食性の向上をも
達成することが確認された。
As a result, it was confirmed that the electrolytic treatment using the Na2504-molybdenum chloride system according to the present invention not only completes scale removal in a short time, but also achieves an improvement in corrosion resistance that could not be obtained with the conventional technique.

[発明の効果] 以上、実施例に基づいて説明したように、本発明はステ
ンレス鋼冷延、焼鈍鋼帯を塩化物を添加した処理液中て
電解スケ−ル除去性去に当っての画!UI的な新方法を
提案するものであり、以下の如くの効果を発揮できるも
のである。すなわち、(1つ  本発明方法によって、
又ケール除去と同時に耐食性の向上(改冴)化が同一工
程で可能となる。
[Effects of the Invention] As described above based on the examples, the present invention provides a method for electrolytically removing scale from cold-rolled and annealed stainless steel strip in a treatment solution containing chlorides. ! This proposes a new UI-like method, which can achieve the following effects. That is, (one) by the method of the present invention,
In addition, it is possible to remove kale and improve corrosion resistance (improvement) in the same process.

(2−液一工程の簡便な処理法であり、新たな設備投資
が不要で、かつ生産性の大幅なアップ、生産コストのタ
ウンが図れる。
(It is a simple two-liquid, one-step processing method that does not require any new equipment investment, and can significantly increase productivity and reduce production costs.

(J 電解処理時間が短く、高速通板が可能。(J Electrolytic treatment time is short and high-speed threading is possible.

等の効果が(′)られ、産業界への貢献度は非常に大な
るものがある。
It has the following effects ('), and its contribution to industry is extremely large.

また、本発明によって示された塩化モリブデンの添加は
、従来技術であるFe(、j23、NaCff等の塩化
物を使用する処理液中への混合添加にも適用できること
は言うまでもない。
It goes without saying that the addition of molybdenum chloride according to the present invention can also be applied to the conventional technique of mixing and adding chlorides such as Fe(, j23, NaCff, etc.) into a processing solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硝酸を処理液とする場合、第2図は硫酸を処理
液とする場合、第3図はリン酸を処理液とする場合、第
4図は中性塩電解質(硫酸ナトリウム)を処理液とする
場合のそれぞれのスケール除去性と酸あるいは中性塩電
解質濃度−塩素濃度の関係を示すグラフ、第5図は塩化
モリブデン添加処理系でのスケール除去性および内・1
食性向−)1性に及ばずp Hの影響を示すグラフ、第
6図は本発明による処理をしたステンレス鋼の表面IM
M△深さ方向の分析結果を示すグラフである。
Figure 1 shows the case when nitric acid is used as the treatment liquid, Figure 2 shows the case when sulfuric acid is used as the treatment liquid, Figure 3 shows the case when phosphoric acid is used as the treatment liquid, and Figure 4 shows the case when the treatment liquid is neutral salt electrolyte (sodium sulfate). A graph showing the relationship between each scale removal property and the acid or neutral salt electrolyte concentration - chlorine concentration when used as a treatment liquid.
Fig. 6 shows the surface IM of stainless steel treated according to the present invention.
It is a graph showing the analysis results in the MΔ depth direction.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼を酸または中性塩電解質水溶液からな
る処理液中でスケール除去するに当り、前記処理液中に
塩化モリブデンを添加し、かつ該ステンレス鋼を少なく
とも1回以上陽、陰両極性とし、電解槽出側での最終極
性を陰極性とし、電解処理を行うことを特徴とするステ
ンレス鋼のスケール除去方法。
1. When removing scale from stainless steel in a treatment solution consisting of an acid or neutral salt electrolyte aqueous solution, molybdenum chloride is added to the treatment solution, and the stainless steel is made to have positive and negative polarity at least once, A method for removing scale from stainless steel, characterized by performing electrolytic treatment with the final polarity at the exit side of the electrolytic cell being negative.
JP14358088A 1988-06-13 1988-06-13 Method for descaling stainless steel Pending JPH01312100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14358088A JPH01312100A (en) 1988-06-13 1988-06-13 Method for descaling stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14358088A JPH01312100A (en) 1988-06-13 1988-06-13 Method for descaling stainless steel

Publications (1)

Publication Number Publication Date
JPH01312100A true JPH01312100A (en) 1989-12-15

Family

ID=15342043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14358088A Pending JPH01312100A (en) 1988-06-13 1988-06-13 Method for descaling stainless steel

Country Status (1)

Country Link
JP (1) JPH01312100A (en)

Similar Documents

Publication Publication Date Title
US9580831B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
JP2002525429A (en) Electrolytic pickling method using nitric acid-free solution
US3429792A (en) Method of electrolytically descaling and pickling steel
JPH0357196B2 (en)
US6391187B1 (en) Method for treating a metal product
JPH01312100A (en) Method for descaling stainless steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US5022971A (en) Process for the electrolytic pickling of high-grade steel strip
JP2517353B2 (en) Descaling method for stainless steel strip
JP2842787B2 (en) Annealing and descaling of cold rolled stainless steel strip
JP4221984B2 (en) Martensitic stainless steel cold rolled-annealed-pickled steel strip with extremely good surface gloss
JP2966188B2 (en) Descaling method for ferritic stainless steel annealed steel strip
Hudson Pickling and descaling
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
DE19624436A1 (en) Stainless steel strip surface treatment
JPS6345480B2 (en)
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
DE19926102B4 (en) Process and plant for producing an electrolytically coated hot strip
JPH0247299A (en) Method for descaling strainless steel
JPH0241599B2 (en)
EP4056737A1 (en) Ionic liquid for pickling stainless steel and method for pickling stainless steel by using same
KR100347596B1 (en) Method for removing surface scale of wire rod steel
JPH0534439B2 (en)
JP3195144B2 (en) Highly efficient pickling method for Cr-containing steel