JPH0687158A - Production of syndiotactic polystyrene biaxially-oriented film - Google Patents

Production of syndiotactic polystyrene biaxially-oriented film

Info

Publication number
JPH0687158A
JPH0687158A JP23722592A JP23722592A JPH0687158A JP H0687158 A JPH0687158 A JP H0687158A JP 23722592 A JP23722592 A JP 23722592A JP 23722592 A JP23722592 A JP 23722592A JP H0687158 A JPH0687158 A JP H0687158A
Authority
JP
Japan
Prior art keywords
temperature
stretching
syndiotactic polystyrene
heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23722592A
Other languages
Japanese (ja)
Inventor
Naonobu Oda
尚伸 小田
Masayuki Imai
正幸 今井
Tomonori Yoshinaga
知則 吉永
Tadashi Okudaira
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP23722592A priority Critical patent/JPH0687158A/en
Publication of JPH0687158A publication Critical patent/JPH0687158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a method for producing a syndiotactic polystyrene biaxially- oriented film superior in heat resistance, mechanical characteristics, thickness uniformity, and flatness with a high productivity. CONSTITUTION:A syndiotactic polystyrene biaxially-oriented film production method includes an orienting process for orienting an unoriented syndiotactic polystyrene polymer sheet longitudinally and, thereafter, orienting it crosswise and a thermally fixing process for tensing and thermally fixing the oriented sheet in a tenter. The sheet is oriented longitudinally in a temperature range from a 10 deg.C higher than the glass transition temperature of the unoriented sheet to the cold crystallization temperature thereof. The sheet is oriented crosswise in two or more temperature zones. The final temperature zone in a crosswise orientation is determined to be from 70 deg.C lower than the maximum thermally fixing temperature up to the maximum temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシンジオタクチックポリ
スチレン系二軸延伸フィルムの製造方法に関し、更に詳
しく言えば耐熱性、機械的特性、厚み均一性、平面性に
優れたシンジオタクチックポリスチレン系二軸延伸フィ
ルムを高い生産性で製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a biaxially stretched syndiotactic polystyrene film, and more specifically, it is a syndiotactic polystyrene resin having excellent heat resistance, mechanical properties, thickness uniformity and flatness. The present invention relates to a method for producing an axially stretched film with high productivity.

【0002】[0002]

【従来の技術】シンジオタクチックポリスチレン系二軸
延伸フィルムは耐熱性、電気特性、透明性などに優れ、
磁気テープ用、写真・製版用、コンデンサー用、包装用
等、各種のフィルム用途に展開が期待されている。シン
ジオタクチックポリスチレン系フィルムの製造法として
は実質上無定形フィルムをガラス転移温度以上、冷結晶
化温度以下の温度範囲で延伸し、緊張下に冷結晶化温度
以上、融点未満の温度範囲で熱処理する方法(特開平1-
110122)、重量平均分子量が100,000 以上のシンジオタ
クチックポリスチレン系重合体を1軸方向に2倍以上あ
るいは2軸方向にそれぞれに1.5 倍以上の延伸倍率で延
伸する方法および120 〜250 ℃の温度で熱処理する製造
方法(特開平1-316246)、シンジオタクチックポリスチ
レン系重合体またはそのそせい物からなる密度1.07g/cm
3 以下、結晶過度5 〜30%の延伸用予備成形体を加熱
し、フィルムの複屈折率の絶対値が3 ×10-3〜70×10-3
の範囲になるように縦方向に延伸し、ついで横方向に逐
次延伸した後熱処理する方法(特開平3-99828 )が知ら
れている。
2. Description of the Related Art Biaxially stretched syndiotactic polystyrene films are excellent in heat resistance, electrical characteristics, transparency, etc.
It is expected to be applied to various film applications such as magnetic tapes, photo / plate making, capacitors, and packaging. As a method for producing a syndiotactic polystyrene-based film, a substantially amorphous film is stretched in a temperature range of a glass transition temperature or higher and a cold crystallization temperature or lower, and heat-treated in a temperature range of a cold crystallization temperature or higher under tension and a melting point or lower. Method (Japanese Patent Laid-Open No. 1-
110122), a method of stretching a syndiotactic polystyrene polymer having a weight average molecular weight of 100,000 or more in a uniaxial direction at a draw ratio of 2 times or more or in a biaxial direction at a draw ratio of 1.5 times or more, and at a temperature of 120 to 250 ° C. Production method of heat treatment (JP-A-1-316246), density of syndiotactic polystyrene polymer or its derivative 1.07 g / cm
3 below, crystals excessive 5 heated to 30 percent of the preliminary molded product for stretching, the absolute value of the birefringence of the film is 3 × 10 -3 ~70 × 10 -3
There is known a method (Japanese Patent Laid-Open No. 3-99828) in which the film is stretched in the machine direction so as to be in the range of 1, and then successively stretched in the transverse direction and then heat-treated.

【0003】[0003]

【発明が解決しようとしている課題】しかし、上記従来
の製造方法では、シンジオタクチックポリスチレン系重
合体は延伸中に破断が発生しやすいため高倍率に延伸す
ることができず、また低倍率に延伸した場合には製膜速
度が低く、生産性が不良となり、また厚みむらおよび平
面性が不良となることが分かった。また、上記従来の方
法では、耐熱性を良好にするためには熱処理に長時間必
要であり、得られた二軸延伸フィルムの平面性が不良と
なりやすく、また熱処理温度によっては十分な耐熱性が
得られない場合があることが分かった。本発明は、この
ような事情に鑑みてなされたものであって、 耐熱性、
機械的特性、厚み均一性、平面性に優れたシンジオタク
チックポリスチレン系二軸延伸フィルムを高い生産性で
得るための製造方法を提供することを目的とするもので
ある。
However, in the above-mentioned conventional production method, the syndiotactic polystyrene polymer cannot be stretched at a high ratio because it is likely to be broken during stretching, and the syndiotactic polystyrene polymer is stretched at a low ratio. It was found that in such a case, the film forming speed was low, the productivity was poor, and the uneven thickness and the flatness were poor. Further, in the above conventional method, heat treatment requires a long time in order to improve heat resistance, the flatness of the obtained biaxially stretched film is likely to be poor, and sufficient heat resistance may be obtained depending on the heat treatment temperature. It turns out that there are cases where you cannot get it. The present invention has been made in view of such circumstances, and has heat resistance,
An object of the present invention is to provide a manufacturing method for obtaining a syndiotactic polystyrene biaxially stretched film having excellent mechanical properties, thickness uniformity, and flatness with high productivity.

【0004】[0004]

【課題を解決するための手段】本発明は、延伸工程にお
ける縦方向の延伸を未延伸シートを、そのガラス転移温
度より10℃以上高い温度から冷結晶化温度以下の温度範
囲で行ない、横延伸を2つ以上の温度ゾーンで行ない、
横延伸の最終ゾーンの温度が熱固定の最高温度より70℃
低い温度から最高温度の温度範囲で行なうようにする
か、またこの熱固定の最高温度を220 ℃から融点未満と
するか、緊張熱固定終了後、熱固定の最高温度以下の温
度で横方向に0.5 〜6%弛緩処理するか、緊張熱固定終了
後または横弛緩処理後、ガラス転移温度より10℃以上高
い温度で、熱固定の最高温度以下の温度で縦方向に0.1
〜3%弛緩処理することを特徴とする、耐熱性、機械的
特性、厚み均一性、平面性に優れたシンジオタクチック
ポリスチレン系二軸延伸フィルムを高い生産性で得るた
めの製造方法を提供するものである。また本発明で得ら
れたシンジオタクチックポリスチレン系二軸延伸フィル
ムの特性を評価したところ、幅方向の物性の差が小さい
ことが明らかになり、均一な物性をフィルムのほぼ全幅
方向に得ることが可能になり、非常に優れた製造方法で
あることが明らかになった。本発明に用いられる立体規
則性がシンジオタクチック構造であるポリスチレン系重
合体は、側鎖であるフェニル基又は置換フェニル基が核
磁気共鳴法により定量されるタクテイシテイがダイアッ
ド(構成単位が二個)で85%以上、ペンタッド(構成単
位が5個)で50%以上のシンジオタクチック構造である
ことが望ましい。
[Means for Solving the Problems] The present invention is to perform longitudinal stretching in a stretching step on a non-stretched sheet in a temperature range of 10 ° C. or more higher than its glass transition temperature to a cold crystallization temperature or less, and transverse stretching. In two or more temperature zones,
The temperature of the final zone of transverse stretching is 70 ℃ above the maximum temperature of heat setting
Whether it is performed in the temperature range of low temperature to maximum temperature, the maximum temperature of this heat setting is from 220 ℃ to less than the melting point, or after the completion of tension heat setting, the temperature is kept below the maximum temperature of heat setting. 0.5 to 6% relaxation treatment, or after completion of tension heat fixation or after transverse relaxation treatment, at a temperature higher than the glass transition temperature by 10 ° C or more and at a temperature not higher than the maximum heat fixation temperature by 0.1 in the longitudinal direction.
Provided is a production method for obtaining a syndiotactic polystyrene biaxially stretched film having excellent heat resistance, mechanical properties, thickness uniformity, and flatness, which is characterized by being subjected to a relaxation treatment of 3% by high productivity. It is a thing. Further, when the properties of the syndiotactic polystyrene biaxially stretched film obtained in the present invention were evaluated, it became clear that the difference in the physical properties in the width direction was small, and uniform physical properties could be obtained in almost the entire width direction of the film. It has become possible and has proved to be a very good manufacturing method. The polystyrene polymer with stereoregularity having a syndiotactic structure used in the present invention has a tacticity of diad (two constitutional units) in which a phenyl group or a substituted phenyl group which is a side chain is quantified by a nuclear magnetic resonance method. It is desirable that the syndiotactic structure is 85% or more, and pentad (5 constitutional units) is 50% or more.

【0005】該ポリスチレン系重合体としては、ポリス
チレン、ポリ(p-、m-又はo-メチルスチレン)、ポリ
(2,4-、2,5-、3,4-又は3,5-ジメチルスチレン)、ポリ
(p-ターシャリーブチルスチレン)などのポリ(アルキ
ルスチレン)、ポリ(p-、m-又はo-クロロスチレン)、
ポリ(p-、m-又はo-ブロモスチレン)、ポリ(p-、m-又
はo-フルオロスチレン)、ポリ(o-メチル-p- フルオロ
スチレン)などのポリ(ハロゲン化スチレン)、ポリ
(p-、m-又はo-クロロメチルスチレン)などのポリ(ハ
ロゲン置換アルキルスチレン)、ポリ(p-、m-又はo-メ
トキシスチレン)、ポリ(p-、m-又はo-エトキシスチレ
ン)などのポリ(アルコキシスチレン)、ポリ(p-、m-
又はo-カルボキシメチルスチレン)などのポリ(カルボ
キシアルキルスチレン)ポリ(p-ビニルベンジルプロピ
ル)などのポリ(アルキルエーテルスチレン)、ポリ
(p-トリメチルシリルスチレン)などのポリ(アルキル
シリルスチレン)、さらにはポリ(ビニルベンジルジメ
トキシホスファイド)などが挙げられる。本発明におい
ては、前記ポリスチレン系重合体のなかで、特にポリス
チレンが好適である。また、本発明で用いるシンジオタ
クチック構造を有するポリスチレン系重合体は、必ずし
も単一化合物である必要はなく、シンジオタクティシテ
ィが前記範囲内であればアタクチック構造やアイソタク
チック構造のポリスチレン系重合体との混合物や、共重
合体及びそれらの混合物でもよい。また本発明に用いる
ポリスチレン系重合体は、重量平均分子量が10,000以
上、更に好ましくは50,000以上である。重量平均分子量
が10,000未満のものでは、強伸度特性や耐熱性に優れた
二軸延伸フィルムを得ることができない。重量平均分子
量の上限について特に限定されるものではないが、150
0,000以上では延伸張力の増大に伴う破断の発生等が生
じることもあり、余り好ましくない。本発明に用いられ
るポリスチレン系重合体には必要に応じて、公知の滑剤
微粒子、酸化防止剤、帯電防止剤等を適量配合したもの
を用いることができる。配合量は、ポリスチレン系重合
体100 重量%に対して、10重量%以下が望ましい。10重
量%を越えると延伸時に破断が起こり易くなり、生産安
定性が不良となり、好ましくない。
Examples of the polystyrene-based polymer include polystyrene, poly (p-, m- or o-methylstyrene), poly (2,4-, 2,5-, 3,4- or 3,5-dimethylstyrene. ), Poly (alkylstyrene) such as poly (p-tertiarybutylstyrene), poly (p-, m- or o-chlorostyrene),
Poly (halogenated styrene) such as poly (p-, m- or o-bromostyrene), poly (p-, m- or o-fluorostyrene), poly (o-methyl-p-fluorostyrene), poly ( p-, m- or o-chloromethylstyrene) and other poly (halogen-substituted alkylstyrenes), poly (p-, m- or o-methoxystyrene), poly (p-, m- or o-ethoxystyrene), etc. Poly (alkoxystyrene), poly (p-, m-
Or, poly (carboxyalkylstyrene) such as o-carboxymethylstyrene), poly (alkyletherstyrene) such as poly (p-vinylbenzylpropyl), poly (alkylsilylstyrene) such as poly (p-trimethylsilylstyrene), and Examples thereof include poly (vinylbenzyldimethoxyphosphide). In the present invention, polystyrene is particularly preferable among the polystyrene polymers. Further, the polystyrene polymer having a syndiotactic structure used in the present invention does not necessarily have to be a single compound, and if the syndiotacticity is within the above range, the polystyrene polymer having an atactic structure or an isotactic structure is used. It may be a mixture with a combination, a copolymer and a mixture thereof. The polystyrene-based polymer used in the present invention has a weight average molecular weight of 10,000 or more, more preferably 50,000 or more. When the weight average molecular weight is less than 10,000, it is not possible to obtain a biaxially stretched film having excellent strength and elongation characteristics and heat resistance. The upper limit of the weight average molecular weight is not particularly limited, but 150
If it is more than 000, breakage may occur due to an increase in stretching tension, which is not preferable. The polystyrene-based polymer used in the present invention may contain, if necessary, known lubricant fine particles, an antioxidant, an antistatic agent, and the like in appropriate amounts. The blending amount is preferably 10% by weight or less with respect to 100% by weight of the polystyrene polymer. If it exceeds 10% by weight, breakage easily occurs during stretching, resulting in poor production stability, which is not preferable.

【0006】滑剤微粒子の種類及び添加量は特に限定さ
れるものではないが、シリカ、二酸化チタン、タルク、
カオリナイト等の金属酸化物、炭酸カルシウム、リン酸
カルシウム、硫酸バリウムなどの金属の塩または有機ポ
リマーからなる粒子等のシンジオタクチックポリスチレ
ン系ポリマーに対し不活性な粒子が例示される。そし
て、これらの滑剤は、いずれか一種を単独で用いてもよ
く、また2種以上を併用してもよいが、滑り性が良好な
フィルムを得るためには、使用する滑剤の平均粒子系は
0.01μm以上2.0 μm以下、特に0.05μm以上1.5 μm
以下が好ましく、粒子径のばらつき度(標準偏差と平均
粒子径との比率)が25%以下が好ましく、添加量はシ
ンジオタクチックポリスチレン系ポリマー100 重量%に
対し0.005重量%以上2.0 重量%以下含有することが好
ましく、特に0.1 重量%以上1.0 重量%以下が好まし
い。また、滑剤粒子の形状は、面積形状係数が60%以上
のものが1種類以上含まれていることが好ましい。この
面積形状係数は次式によって求められる。 面積形状係数=(粒子の投影断面積/粒子に外接する円
の面積)× 100(%) これらの微粒子の添加方法は特に限定されないが、スチ
レン系単量体の重合工程の任意の課程で添加する方法、
重合後にマスターバッチとして混練する方法、または溶
融押出し時に直接投入添加する方法が挙げられる。
The type and amount of the lubricant fine particles are not particularly limited, but silica, titanium dioxide, talc,
Examples are particles that are inert to syndiotactic polystyrene-based polymers, such as metal oxides such as kaolinite, salts of metals such as calcium carbonate, calcium phosphate, and barium sulfate, or particles consisting of organic polymers. Any one of these lubricants may be used alone, or two or more thereof may be used in combination, but in order to obtain a film having good slipperiness, the average particle system of the lubricant used is
0.01 μm or more and 2.0 μm or less, especially 0.05 μm or more and 1.5 μm
The following is preferred, and the degree of variation in particle size (ratio between standard deviation and average particle size) is preferably 25% or less, and the addition amount is 0.005% by weight or more and 2.0% by weight or less based on 100% by weight of syndiotactic polystyrene polymer. It is preferable that the content be 0.1% by weight or more and 1.0% by weight or less. In addition, it is preferable that the shape of the lubricant particles includes at least one kind having a surface shape factor of 60% or more. This area shape factor is calculated by the following equation. Area shape factor = (projected cross-sectional area of particle / area of circle circumscribing particle) × 100 (%) The addition method of these fine particles is not particularly limited, but is added in any step of the polymerization step of the styrene-based monomer. how to,
A method of kneading as a masterbatch after polymerization or a method of directly adding and adding during melt extrusion can be mentioned.

【0007】本発明に於て、延伸工程における縦方向の
延伸は、未延伸シートを、そのガラス転移温度より10℃
以上高い温度から冷結晶化温度以下の温度範囲で行なう
ことが必要である。好ましくはガラス転移温度より20℃
以上高い温度から冷結晶化温度以下である。縦方向の延
伸温度がガラス転移温度より10℃以上高い温度未満で
は、延伸が冷延伸となりフィルムが白化することがあ
る。また、高倍率に延伸すると、破断が発生しやすく、
また最終フィルムの熱寸法安定性が不良となり耐熱性に
優れたフィルムが得られない。また、冷結晶化温度より
高い温度ではフィルムの結晶化が進み、続く横延伸が困
難になる。縦方向の最適延伸倍率は延伸速度により異な
るため限定できないが、延伸倍率を高くしていく課程
で、延伸張力の立ち上がる延伸倍率または配向が大きく
変化し始める倍率から、これらの倍率より0.5 倍高い倍
率以下がよい。これらの倍率の目安とすると、3.0 〜4.
5 倍程度である。縦方向の延伸速度は10000%/min以上、
好ましくは15000%/min以上、更に好ましくは20000%/min
以上である。10000%/min未満では機械的強度や平面性が
不良になりやすい。また縦方向の延伸は一段でもよい
が、二段以上でもよい。二段以上縦延伸する場合、最終
の縦方向の延伸まではガラス転移温度より20℃以上高温
で、フィルムの厚み均一性が保たれ且つ低配向な状態と
なるように延伸することが好ましい。最終の縦方向の延
伸において、延伸張力の立ち上がる延伸倍率または配向
が大きく変化し始める倍率から、これらの倍率より0.5
倍高い倍率以下の倍率で延伸するのがよい。更に、縦方
向の延伸が終了した後フィルムを冷却する必要がある。
縦延伸におけるフィルムは延伸温度を冷結晶化温度以下
に設定しても延伸発熱等により結晶化が進むためである
と考えられるが、冷却を行わない場合続く横方向の延伸
において破断を発生しやすくなる。冷却は縦延伸を行っ
たロールの高速側のロールで行うことが好ましい。ま
た、この冷却温度は40℃程度より低くすることが好まし
い。多段に延伸する場合には、後段で行う延伸が連続し
て行われ且つ温度が冷結晶化温度より低い場合は必ずし
も各延伸においてそれぞれ40℃程度まで冷却をする必要
はない。
In the present invention, the unstretched sheet is stretched in the machine direction in the machine direction by 10 ° C. from its glass transition temperature.
It is necessary to carry out in the temperature range from the higher temperature to the cold crystallization temperature or lower. 20 ° C above the glass transition temperature
From the high temperature to the cold crystallization temperature or higher. If the stretching temperature in the machine direction is less than 10 ° C higher than the glass transition temperature, the stretching may be cold stretching and the film may be whitened. Also, when stretched to a high ratio, breakage easily occurs,
Further, the thermal dimensional stability of the final film becomes poor, and a film having excellent heat resistance cannot be obtained. Further, at a temperature higher than the cold crystallization temperature, crystallization of the film progresses, and subsequent transverse stretching becomes difficult. The optimum stretching ratio in the machine direction cannot be limited because it depends on the stretching speed, but in the process of increasing the stretching ratio, the stretching ratio at which the stretching tension rises or the ratio at which the orientation begins to change greatly, The following is good. As a guideline for these magnifications, 3.0 to 4.
It is about 5 times. The stretching speed in the machine direction is 10,000% / min or more,
Preferably 15000% / min or more, more preferably 20000% / min
That is all. If it is less than 10000% / min, mechanical strength and flatness tend to be poor. Further, the stretching in the machine direction may be one step, or may be two or more steps. When the film is longitudinally stretched in two or more steps, it is preferable that the film is stretched at a temperature of 20 ° C. or more higher than the glass transition temperature until the final stretching in the longitudinal direction so that the thickness uniformity of the film is maintained and a low orientation is obtained. In the final longitudinal stretching, from the draw ratio at which the draw tension rises or the ratio at which the orientation begins to change significantly, 0.5
It is preferable to stretch at a draw ratio equal to or less than twice as high. Further, it is necessary to cool the film after the stretching in the machine direction is completed.
It is considered that the film in longitudinal stretching is because crystallization proceeds due to stretching heat even if the stretching temperature is set to a cold crystallization temperature or lower, but if cooling is not performed, breakage easily occurs in the subsequent transverse stretching. Become. Cooling is preferably performed by a roll on the high speed side of the roll that has been longitudinally stretched. Further, this cooling temperature is preferably lower than about 40 ° C. In the case of stretching in multiple stages, if the stretching performed in the latter stage is continuously performed and the temperature is lower than the cold crystallization temperature, it is not always necessary to cool each stretching to about 40 ° C.

【0008】本発明において、延伸工程における横方向
の延伸は2つ以上の温度ゾーンで行ない、横延伸の最終
ゾーンの温度が熱固定の最高温度より70℃低い温度から
最高温度の温度範囲で行なう必要がある。これにより耐
熱性、機械的特性、厚み均一性、平面性に優れたシンジ
オタクチックポリスチレン系二軸延伸フィルムを高い生
産性で得ることが可能となる。横方向の延伸を1ゾーン
で行なった場合、延伸温度が比較的低い条件、即ちガラ
ス転移温度より10〜30℃高い温度では、高倍率延伸が困
難であるため厚み均一性、生産性が不良になり、延伸温
度が比較的高い場合、即ちガラス転移温度より30℃以上
高い場合、延伸倍率は高く出来るが、機械的特性が不良
になりやすく、また平面性や厚み均一性も良好なものを
得ることが困難となる。横延伸の最終ゾーンの温度が熱
固定の最高温度より70℃以上低い温度では、熱固定中に
破断が発生しやすく、また耐熱性、厚み均一性を良好と
することが難しい。熱固定の最高温度より高い温度で
は、延伸中に破断が発生しやすく、また平面性が不良に
なりやすい。
In the present invention, the transverse stretching in the stretching step is carried out in two or more temperature zones, and the temperature in the final zone of the transverse stretching is 70 ° C. lower than the maximum heat setting temperature to the maximum temperature range. There is a need. This makes it possible to obtain a syndiotactic polystyrene biaxially stretched film having excellent heat resistance, mechanical properties, thickness uniformity, and flatness with high productivity. When the stretching in the transverse direction is carried out in one zone, under conditions where the stretching temperature is relatively low, that is, at a temperature 10 to 30 ° C. higher than the glass transition temperature, it is difficult to stretch at a high ratio, resulting in poor thickness uniformity and productivity. When the stretching temperature is relatively high, that is, when the stretching temperature is higher than the glass transition temperature by 30 ° C. or more, the stretching ratio can be increased, but mechanical properties tend to be poor, and flatness and thickness uniformity are also obtained. Becomes difficult. If the temperature in the final zone of transverse stretching is lower than the maximum temperature for heat setting by 70 ° C. or more, breakage easily occurs during heat setting, and it is difficult to improve heat resistance and thickness uniformity. At a temperature higher than the maximum temperature for heat setting, breakage easily occurs during stretching, and flatness is likely to be poor.

【0009】横方向の延伸温度は最初の延伸温度から最
終の延伸温度まで徐々に高温になっていくのが好まし
く、最初の横方向の延伸温度はガラス転移温度より10℃
〜50℃高い温度が好ましい。また隣り合う各ゾーン間の
温度差は100 ℃以下が好ましく、更に好ましくは70℃以
下、特に好ましくは50℃以下である。ここで、横方向の
延伸は連続で行ってもよく、又横方向の延伸の途中に定
長ゾーンや弛緩ゾーンを設けてもよい。これらの場合に
おいても、横延伸工程中の各ゾーンの温度は前のゾーン
の温度より低くすることは、破断の原因となり好ましく
ない。
The stretching temperature in the transverse direction is preferably gradually increased from the initial stretching temperature to the final stretching temperature, and the initial stretching temperature in the transverse direction is 10 ° C. above the glass transition temperature.
Temperatures up to -50 ° C are preferred. The temperature difference between adjacent zones is preferably 100 ° C or lower, more preferably 70 ° C or lower, and particularly preferably 50 ° C or lower. Here, the transverse stretching may be performed continuously, or a constant length zone or a relaxation zone may be provided in the middle of the transverse stretching. Also in these cases, lowering the temperature of each zone during the transverse stretching step to be lower than the temperature of the previous zone is not preferable because it causes breakage.

【0010】本発明に於て、緊張熱固定の最高温度は、
220 ℃から融点未満とすることが好ましい。更に好まし
くは、230 ℃以上で融点より10℃以上低い温度である。
熱固定の最高温度が220 ℃以下では耐熱性を良好にため
には、熱固定に長時間必要かまたは十分な耐熱性が得ら
れないかである。融点より高い温度では溶解のため生産
が出来ない。熱固定に必要な時間は、熱固定の温度およ
び必要とする耐熱性によって異なるが、30秒を越えるこ
とはなく、通常は10秒以下で十分である。本発明におい
ては、緊張熱固定終了後、熱固定の最高温度以下の温度
で横方向に0.5 〜6%弛緩処理する。これにより横方向
の熱収縮率が更に改善される。弛緩処理温度は、耐熱性
の必要とされる温度とその温度における収縮率によって
決まるが、通常は耐熱性の必要とされる温度より10℃〜
30℃程度高い温度がよい。本発明においては、緊張熱固
定終了後または横弛緩処理後、ガラス転移温度より10℃
以上高い温度で、熱固定の最高温度以下の温度で縦方向
に0.1 〜3%弛緩処理する。これにより、縦方向の熱収
縮率が更に改善される。弛緩処理温度は、耐熱性の必要
とされる温度とその温度における収縮率によって決まる
が、通常は耐熱性の必要とされる温度より10℃〜30℃程
度高い温度がよい。
In the present invention, the maximum temperature for tension heat fixation is
It is preferable that the temperature is from 220 ° C to below the melting point. More preferably, the temperature is 230 ° C. or higher and 10 ° C. or more lower than the melting point.
If the maximum temperature of heat setting is 220 ° C or less, it is necessary to heat-fix for a long time or to obtain sufficient heat resistance in order to obtain good heat resistance. It cannot be produced at a temperature higher than the melting point because it melts. The time required for heat setting varies depending on the temperature of heat setting and the required heat resistance, but it does not exceed 30 seconds, and usually 10 seconds or less is sufficient. In the present invention, after completion of the tension heat setting, a relaxation treatment of 0.5 to 6% in the lateral direction is performed at a temperature not higher than the maximum temperature of heat setting. This further improves the lateral heat shrinkage. The relaxation treatment temperature is determined by the temperature required for heat resistance and the shrinkage ratio at that temperature, but usually 10 ° C to the temperature required for heat resistance
A temperature as high as 30 ° C is good. In the present invention, after the tension heat fixation is completed or after the transverse relaxation treatment, the glass transition temperature is 10 ° C.
At the above-mentioned high temperature, a relaxation treatment of 0.1 to 3% is carried out in the longitudinal direction at a temperature not higher than the maximum heat setting temperature. This further improves the heat shrinkage in the vertical direction. The relaxation treatment temperature is determined by the temperature at which heat resistance is required and the shrinkage ratio at that temperature, but usually a temperature higher by about 10 to 30 ° C. than the temperature at which heat resistance is required.

【0011】[0011]

【実施例】以下に実施例にて本発明を具体的に説明する
が、本発明はこれら実施例のみに限定されるものではな
い。本発明に用いる測定・評価方法を以下に示す。 (1)200℃における熱収縮率(HS200) 無張力の状態で200 ℃の雰囲気中30分におけるフィルム
の収縮率を求めた。 (2) 弾性率 フィルムを幅10mm、長さ間隔100mm に於て引っ張り試験
機(島津製作所製オートグラフ)に取付け、温度23℃、
湿度65%RH の環境下で、200mm/分の速度で引っ張り、立
ち上がりの伸びに対する強度をkg/mm2単位で求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measurement / evaluation methods used in the present invention are shown below. (1) Heat shrinkage rate at 200 ° C. (HS200) The shrinkage rate of the film in a tension-free state at 200 ° C. for 30 minutes was determined. (2) Modulus of elasticity Attach the film at a width of 10 mm and a length interval of 100 mm to a tensile tester (Autograph made by Shimadzu Corp.), temperature 23 ℃,
In an environment with a humidity of 65% RH, the tensile strength at a speed of 200 mm / min was measured, and the strength against rising elongation was determined in kg / mm 2 units.

【0012】(3) 厚み均一性 膜厚測定機( ミクロン計測器社製)を用い、長手方向に
5m測定し、厚みの均一性を5 段回評価し、次のランク付
けで表した。 1級;厚みむら10%以上 2級;厚みむら8〜10% 3級;厚みむら6〜8% 4級;厚みむら4〜6% 5級;厚みむら4%未満 ここで厚みむらは次式で算出した。 厚みむら=[(フィルム最大厚み−フィルム最小厚み)/フ
ィルム平均厚み] ×100(%) (4) 平面性 幅50cmのフィルムをロールから長さ200cm 巻出し、フィ
ルムの平面性の状態を観察し5 段回評価し、次のランク
付けで表した。 1級;強い張力をかけても波打ち全面にあり 2級;強い張力をかけても波打ち一部あり 3級;強い張力をかけると波打ちなし 4級;弱い張力をかけると波打ちなし 5級;張力をかけなくても波打ちなし
(3) Thickness uniformity Using a film thickness measuring machine (manufactured by Micron Measuring Instruments Co., Ltd.)
The thickness was measured for 5 m, and the uniformity of thickness was evaluated in 5 steps, and the following ranking was used. Grade 1; thickness unevenness 10% or more Grade 2; thickness unevenness 8 to 10% Grade 3; thickness unevenness 6 to 8% Grade 4; thickness unevenness 4 to 6% Grade 5; thickness unevenness less than 4% Was calculated. Thickness unevenness = [(maximum film thickness-minimum film thickness) / average film thickness] x 100 (%) (4) Flatness A film with a width of 50 cm is unrolled for a length of 200 cm from a roll and the flatness of the film is observed. It was evaluated 5 times and expressed in the following ranking. 1st grade; there is a wavy surface even with strong tension 2nd grade; there is some wavy even with strong tension 3rd grade; no waviness when strong tension is applied 4th grade; no waviness when weak tension is applied 5th grade; tension No waviness without applying

【0013】実施例1 滑剤として、平均粒子径1.0 μm、ばらつき度20%、面
積形状係数80%の炭酸カルシウムをシンジオタクチック
ポリスチレン(重量平均分子量300000)100 重量%に対
して3.0 重量%添加したポリマーチップと、滑剤の添加
されていないポリマーチップを重量比で1対9の割合で
混合した後、乾燥し、295 ℃で溶融し、200 μmのリッ
プギャップのT ダイから押し出し、40℃の冷却ロールに
静電印荷法により密着・ 冷却固化し、82μmの無定形シ
ートを得た。該無定形シートをまずロールにより95℃に
予熱し、表面温度700℃の赤外線加熱ヒーターを4本使
用し、更に加熱し、フィルム温度135 ℃で縦方向に3.8
倍延伸した。ここで延伸テンションの立ち上がりは3.7
倍であった。縦方向の延伸を行った2 本のロールの高速
側のロールで35℃にフィルムを冷却した。その後、テン
ターで、フィルムを120 ℃に予熱し、最初の横延伸温度
は120 ℃で2.5 倍延伸し、ついで170 ℃で1.2 倍横延伸
し、更に200 ℃で1.2 倍横延伸した。次に、260 ℃で10
秒間緊張熱固定処理した。
Example 1 As a lubricant, 3.0% by weight of calcium carbonate having an average particle size of 1.0 μm, a degree of variation of 20% and an area shape factor of 80% was added to 100% by weight of syndiotactic polystyrene (weight average molecular weight 300000). Polymer chips and non-lubricated polymer chips were mixed at a weight ratio of 1: 9, dried, melted at 295 ° C, extruded from T die with 200 μm lip gap, and cooled at 40 ° C. It adhered to the roll by the electrostatic loading method and was cooled and solidified to obtain an 82 μm amorphous sheet. The amorphous sheet is first preheated to 95 ° C. by a roll, four infrared heaters having a surface temperature of 700 ° C. are used, and further heated to a film temperature of 135 ° C. in a longitudinal direction of 3.8.
It was stretched twice. Here, the rise of stretching tension is 3.7
It was double. The film was cooled to 35 ° C. by the roll on the high speed side of the two rolls stretched in the machine direction. After that, the film was preheated to 120 ° C. with a tenter, the initial transverse stretching temperature was 120 ° C., 2.5 times, then 170 ° C., 1.2 times, and 200 ° C., 1.2 times. Then 10 at 260 ° C
Tension heat fixation treatment was performed for a second.

【0014】実施例2 実施例1で得られたフィルムを更に220 ℃で3%横方向
に弛緩処理した。 実施例3 実施例2で得られたフィルムを更に220 ℃で2%縦弛緩
処理した。
Example 2 The film obtained in Example 1 was further subjected to 3% transverse relaxation treatment at 220 ° C. Example 3 The film obtained in Example 2 was further subjected to 2% longitudinal relaxation treatment at 220 ° C.

【0015】比較例1 実施例1における横方向の延伸と変形速度は同様とし、
温度を120 ℃一定とした以外は同様の方法で行なった。
横方向の延伸倍率を、実施例1 の全倍率と同様の3.6 倍
としたところ、破断が頻発し安定な生産が行えなかっ
た。 比較例2 比較例1の無定形シートの厚みを75μm とし、横方向の
延伸倍率を3.3 倍にした以外は同様に行った。 比較例3 比較例1の横方向の延伸温度を150 ℃で行った以外は同
様に行った。
Comparative Example 1 In Example 1, the transverse stretching and deformation rate were the same,
The same method was used except that the temperature was kept constant at 120 ° C.
When the transverse draw ratio was set to 3.6, which is the same as the total draw ratio in Example 1, frequent breakage occurred and stable production could not be performed. Comparative Example 2 The same procedure as in Comparative Example 1 was repeated except that the thickness of the amorphous sheet was set to 75 μm and the transverse stretching ratio was set to 3.3 times. Comparative Example 3 The procedure of Comparative Example 1 was repeated except that the transverse stretching temperature was 150 ° C.

【0016】[0016]

【発明の効果】以上、記載のとおり、延伸工程における
縦方向の延伸を未延伸シートを、そのガラス転移温度よ
り10℃以上高い温度から冷結晶化温度以下の温度範囲で
行ない、横延伸を2 つ以上の温度ゾーンで行ない、横延
伸の最終ゾーンの温度が熱固定の最高温度より70℃低い
温度から最高温度の温度範囲で行なうようにするか、ま
たこの熱固定の最高温度を220 ℃から融点未満とする
か、緊張熱固定終了後、熱固定の最高温度以下の温度で
横方向に0.5 〜6%弛緩処理するか、緊張熱固定終了後
または横弛緩処理後、ガラス転移温度より10℃以上高い
温度で、熱固定の最高温度以下の温度で縦方向に0.1 〜
3%弛緩処理することにより、耐熱性、機械的特性、厚
み均一性、平面性に優れたシンジオタクチックポリスチ
レン系二軸延伸フィルムをほぼ全幅方向に均一な物性で
得ることが可能となり、その結果、高速で且つ幅方向に
高収率で優れた特性を持つシンジオタクチックポリスチ
レン系二軸延伸フィルムを得ることができ、従って本発
明の工業的価値は大である。
As described above, the longitudinal stretching in the stretching step is performed on the unstretched sheet in the temperature range of 10 ° C. or more higher than the glass transition temperature to the cold crystallization temperature or less, and the transverse stretching is performed 2 The temperature in the final zone of transverse stretching is 70 ° C lower than the maximum temperature of heat setting to the maximum temperature, or the maximum temperature of heat setting is 220 ° C. If the temperature is less than the melting point, or after the heat-setting of tension is finished, 0.5-6% relaxation treatment in the transverse direction is performed at a temperature not higher than the maximum temperature of heat-setting, or after completion of heat-setting of tension or after transverse relaxation, the glass transition temperature is 10 ° C. Higher than the above, at a temperature below the maximum heat setting temperature, 0.1 to 0.1
By performing 3% relaxation treatment, it becomes possible to obtain a syndiotactic polystyrene biaxially stretched film having excellent heat resistance, mechanical properties, thickness uniformity, and flatness with uniform physical properties in almost the entire width direction. It is possible to obtain a syndiotactic polystyrene biaxially stretched film having excellent characteristics at high speed and in high yield in the width direction, and therefore the industrial value of the present invention is great.

【0017】[0017]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥平 正 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Okuhira 2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチックポリスチレン系重合
体の未延伸シートを縦方向に延伸した後横方向に延伸す
る延伸工程と、この延伸工程の後テンターにおいて緊張
熱固定を行なう熱固定処理工程を含むシンジオタクチッ
クポリスチレン系二軸延伸フィルムの製造方法で、前記
縦方向の延伸を未延伸シートのガラス転移温度より10℃
以上高い温度から冷結晶化温度以下の温度範囲で行な
い、横延伸を2 つ以上の温度ゾーンで行ない、横延伸の
最終ゾーンの温度が熱固定の最高温度より70℃低い温度
から最高温度の温度範囲であることを特徴とするシンジ
オタクチックポリスチレン系二軸延伸フィルムの製造方
法。
1. A stretching step of stretching an unstretched sheet of a syndiotactic polystyrene-based polymer in a longitudinal direction and then a transverse direction, and a heat-setting treatment step of performing tension heat-setting in a tenter after this stretching step. In the method for producing a syndiotactic polystyrene-based biaxially stretched film, stretching in the longitudinal direction is performed at a temperature of 10 ° C or higher than the glass transition temperature of the unstretched sheet.
The temperature is from the higher temperature to the cold crystallization temperature or less, the transverse stretching is performed in two or more temperature zones, and the temperature of the final zone of the transverse stretching is 70 ° C lower than the maximum temperature of heat setting to the maximum temperature. A method for producing a syndiotactic polystyrene-based biaxially stretched film, characterized by being in the range.
【請求項2】 熱固定の最高温度が220 ℃から融点未満
である請求項1記載のシンジオタクチックポリスチレン
系二軸延伸フィルムの製造方法。
2. The method for producing a syndiotactic polystyrene biaxially stretched film according to claim 1, wherein the maximum temperature for heat setting is from 220 ° C. to less than the melting point.
【請求項3】 緊張熱固定終了後、熱固定の最高温度以
下の温度で横方向に0.5 〜6%弛緩処理する請求項1また
は2記載のシンジオタクチックポリスチレン系二軸延伸
フィルムの製造方法。
3. The method for producing a syndiotactic polystyrene biaxially stretched film according to claim 1, wherein after the tension heat setting is completed, a relaxation treatment of 0.5 to 6% in the transverse direction is performed at a temperature not higher than the maximum temperature of heat setting.
【請求項4】 緊張熱固定終了後または横弛緩処理後、
ガラス転移温度より10℃以上高い温度で、熱固定の最高
温度以下の温度で縦方向に0.1 〜3%弛緩処理する請求
項1ないし3記載のシンジオタクチックポリスチレン系
二軸延伸フィルムの製造方法。
4. After completion of tension heat fixation or after lateral relaxation treatment,
4. The method for producing a syndiotactic polystyrene biaxially stretched film according to claim 1, wherein 0.1% to 3% relaxation treatment in the machine direction is performed at a temperature higher than the glass transition temperature by 10 ° C. or higher and at a temperature not higher than the maximum temperature for heat setting.
JP23722592A 1992-09-04 1992-09-04 Production of syndiotactic polystyrene biaxially-oriented film Pending JPH0687158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23722592A JPH0687158A (en) 1992-09-04 1992-09-04 Production of syndiotactic polystyrene biaxially-oriented film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23722592A JPH0687158A (en) 1992-09-04 1992-09-04 Production of syndiotactic polystyrene biaxially-oriented film

Publications (1)

Publication Number Publication Date
JPH0687158A true JPH0687158A (en) 1994-03-29

Family

ID=17012239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23722592A Pending JPH0687158A (en) 1992-09-04 1992-09-04 Production of syndiotactic polystyrene biaxially-oriented film

Country Status (1)

Country Link
JP (1) JPH0687158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017004A1 (en) * 1994-12-02 1996-06-06 Idemitsu Petrochemical Co., Ltd. Stretched polystyrene film, process for producing the same, and photographic process and ohp films
JPH08323877A (en) * 1995-05-29 1996-12-10 Toyobo Co Ltd Biaxially oriented film of syndiotactic polystyrene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017004A1 (en) * 1994-12-02 1996-06-06 Idemitsu Petrochemical Co., Ltd. Stretched polystyrene film, process for producing the same, and photographic process and ohp films
JPH08323877A (en) * 1995-05-29 1996-12-10 Toyobo Co Ltd Biaxially oriented film of syndiotactic polystyrene

Similar Documents

Publication Publication Date Title
JPH06104337B2 (en) Stretched styrene resin film and method for producing the same
JP2826350B2 (en) Method for producing styrenic polymer film
JP2779231B2 (en) Method for producing styrenic polymer film
JP2779225B2 (en) Method for producing styrenic polymer film
JPS5936851B2 (en) Manufacturing method of polyester film
JP3804311B2 (en) Polyester film and method for producing the same
JPH0687158A (en) Production of syndiotactic polystyrene biaxially-oriented film
JPH0125695B2 (en)
JPH08283496A (en) Polystyrene-based film for condenser
JPH0657015A (en) Syndiotactic polystyrenic oriented film
JP2569471B2 (en) Method for producing toughened polyester film
JPH10258458A (en) Biaxially oriented polyester film and its manufacture
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPS60187530A (en) Preparation of heat resistant polyether ketone film or sheet
JPH02130125A (en) Production of polyester film
JPH11129327A (en) Biaxially drawn film
KR0157090B1 (en) Biaxial oriented polyester film
JP2846490B2 (en) Twist packaging film
JP2992586B2 (en) Method for producing biaxially oriented polyester film
JP2988579B2 (en) Polyester film and method for producing the same
JP2679234B2 (en) Method for producing polyester film
JPH07106599B2 (en) Stretch molding method for polyester film
JPH0691749A (en) Syndiotactic polystyrene biaxially drawn film for photograph/plate-making
JPH08276493A (en) Producion of polyester film
JPH10138333A (en) Biaxially stretched polyester film and its production