JPH0687046B2 - Steel plate surface flaw inspection method by neural network - Google Patents

Steel plate surface flaw inspection method by neural network

Info

Publication number
JPH0687046B2
JPH0687046B2 JP12001189A JP12001189A JPH0687046B2 JP H0687046 B2 JPH0687046 B2 JP H0687046B2 JP 12001189 A JP12001189 A JP 12001189A JP 12001189 A JP12001189 A JP 12001189A JP H0687046 B2 JPH0687046 B2 JP H0687046B2
Authority
JP
Japan
Prior art keywords
range
output
differential
neural network
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12001189A
Other languages
Japanese (ja)
Other versions
JPH02298840A (en
Inventor
公明 中野
聡 瀬野
芳幸 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12001189A priority Critical patent/JPH0687046B2/en
Publication of JPH02298840A publication Critical patent/JPH02298840A/en
Publication of JPH0687046B2 publication Critical patent/JPH0687046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反射光波形による、神経回路網を用いた鋼板
の表面疵検査方法に関する。
TECHNICAL FIELD The present invention relates to a method for inspecting a surface flaw of a steel sheet using a neural network by a reflected light waveform.

〔従来の技術〕[Conventional technology]

鋼板の表面疵の検査には、反射光による方法が広く用い
られている。レーザ光を鋼板表面に投射し、反射光を光
電変換し、その変換出力(電圧波形)またはその微分出
力を閾値と比較し、閾値以上疵とする、は代表的な方法
である。
A method using reflected light is widely used for inspecting the surface defects of the steel sheet. A typical method is to project a laser beam onto the surface of a steel sheet, photoelectrically convert the reflected light, compare the converted output (voltage waveform) or its differential output with a threshold value, and make the flaw equal to or greater than the threshold value.

閾値以外のものを用いる方法としては特開昭62-278403
がある。これは鋼板表面にレーザ光を投射し、反射光を
光電変換し、その平均電圧から表面粗度を求める。粗度
が高いと反射光は散乱光となり、光電変換出力は下るか
ら、予め粗度と光電変換出力との関係を求めておくと、
この関係より、光電変換出力で粗度を知ることができ
る。
As a method of using a method other than the threshold value, Japanese Patent Laid-Open No. 62-278403
There is. In this method, laser light is projected onto the surface of the steel sheet, the reflected light is photoelectrically converted, and the surface roughness is obtained from the average voltage. If the roughness is high, the reflected light becomes scattered light, and the photoelectric conversion output decreases, so if the relationship between the roughness and the photoelectric conversion output is obtained in advance,
From this relationship, the roughness can be known from the photoelectric conversion output.

また特開昭62-235511は被検査体にレーザ光を投射し、
表面状態が異常な所(表面欠陥や凹凸のある所)では反
射光の入射点が正常時よりΔXだけずれるのを利用し
て、該表面状態を検出する。
In addition, JP-A-62-235511 projects a laser beam on an object to be inspected,
The surface state is detected by utilizing the fact that the incident point of the reflected light deviates from the normal state by ΔX in the place where the surface state is abnormal (where there is a surface defect or unevenness).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の鋼板表面疵の検査では、反射光の光電変換出力を
閾値で判別して疵あり/なしとするのが一般的であり、
この方法では絶対的な反射光強度による疵判定であるか
ら、鋼種間の反射程度の差異や地合の影響が考慮されな
い。閾値は、これを低く設定すると疵ではないが反射が
やゝ異常な部分を疵と誤検出し(過検出)、またこれを
高く設定すると疵であるのにこれを疵として検出しない
ケース(見逃し)が増加する。従って閾値は適切な値に
設定する必要があるが、鋼種や地合などによって変わる
から、適切な値の選定、調整が困難で、この方式では判
定精度に難がある。また、検出すべき疵種類が変化した
場合、それに速応できないという問題がある。
In the conventional inspection of steel plate surface flaws, it is general to judge the photoelectric conversion output of the reflected light with a threshold value to determine whether there is a flaw,
In this method, since the flaw is judged by the absolute reflected light intensity, the difference in the degree of reflection between steel types and the influence of formation are not considered. If the threshold value is set low, it is not a flaw but the part where the reflection is a little abnormal is erroneously detected as a flaw (over detection). ) Increases. Therefore, it is necessary to set the threshold value to an appropriate value, but it is difficult to select and adjust the appropriate value because it changes depending on the steel type, formation, etc., and this method has difficulty in determining accuracy. In addition, there is a problem in that if the type of flaw to be detected changes, it cannot respond quickly.

本発明はかゝる点を改善し、反射光の光電変換出力か
ら、疵を包括する狭い範囲Aおよび該範囲Aを包括する
広い範囲Bの変換出力から特徴量を求め、これより、特
に神経回路網を用いて、疵判定して、閾値の選択に悩ま
されることなく、過検出や見逃しを回避することができ
る疵検査方法を提供することを目的とするものである。
The present invention improves such points, and obtains a feature amount from the photoelectric conversion output of reflected light from the conversion output of a narrow range A including a flaw and a wide range B including the range A. An object of the present invention is to provide a flaw inspection method capable of avoiding over-detection and oversight by making a flaw determination using a circuit network and avoiding the trouble of selecting a threshold value.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明では鋼板表面をレーザ光で走査し、その反射光を
光電変換し、更にA/D変換し、鋼板の疵部分に相当する
小範囲Aとその複数個を包含する大範囲(鋼板幅または
その複数分の1の範囲)における該変換出力から、反射
光波形を代表する複数個の特徴量を算出する。
In the present invention, the surface of the steel sheet is scanned with a laser beam, the reflected light is photoelectrically converted, and further A / D converted, and a small range A corresponding to a flaw portion of the steel sheet and a large range including the plurality thereof (steel plate width or A plurality of feature quantities representing the reflected light waveform are calculated from the converted output in the range (one-third range).

この複数個の特徴量を、入力層のノード数は該複数個と
同数、出力ノード層は疵有り/無しに対応させて1つと
し、そして予め学習させた神経回路網に加え、該回路網
より疵有/無出力を生じさせる。
The number of nodes in the input layer is the same as that of the plurality of features, and the number of output nodes is one corresponding to the presence / absence of flaws. The neural network is pre-learned. It causes more defects / no output.

特徴量としては2次平均、3次平均、微分レンジなどが
あるが、次式で表わされる正規化2次平均 と正規化微分レンジxDRSが適当である。
There are quadratic average, cubic average, differential range, etc. as the feature amount, but the normalized quadratic average represented by the following formula And the normalized differential range x DRS is appropriate.

〔作用〕 この鋼板表面疵検査では、小/大範囲A,Bにおける変換
出力からの特徴量算出、得られた特徴量の神経回路網へ
の印加で疵有/無出力が得られ、従来法のように閾値を
どこに設定するかの問題はない。また誤検出と過検出を
共に僅小にすることが可能で、従来法のように閾値を高
く設定すれば誤検出が多発し、閾値を低く設定すれば過
検出が多発するという問題に悩まされることがない。
[Operation] In this steel sheet surface flaw inspection, flaws / no outputs can be obtained by calculating the feature amount from the converted output in the small / large ranges A and B, and applying the obtained feature amount to the neural network. There is no problem as to where to set the threshold. In addition, both false detection and over-detection can be made small, and if the threshold value is set high as in the conventional method, false detection will occur frequently, and if the threshold value is set low, over-detection will occur frequently. Never.

〔実施例〕〔Example〕

本発明の実施例を第1図に示す。10は検査対象である鋼
板、11はレーザ発振器、12はレーザ光、13はそのレシー
バである。例えば鋼板10が矢印方向F1で示す鋼板長手方
向に移動し、レーザ光が矢印F2で示す鋼板幅方向に往復
移動することにより、鋼板10の全表面が走査される。レ
シーバ13は光ファイバとその両端の受光素子(フォトマ
ル)からなり、鋼板に投射されたレーザ光の反射光が光
ファイバに入射し、その光電変換出力を両端の受光素子
が出力する。この型のレシーバは反射光の入射位置従っ
て鋼板上の走査位置情報も与える。
An embodiment of the present invention is shown in FIG. 10 is a steel plate to be inspected, 11 is a laser oscillator, 12 is laser light, and 13 is its receiver. For example, the steel plate 10 moves in the steel plate longitudinal direction indicated by the arrow direction F 1 and the laser beam reciprocates in the steel plate width direction indicated by the arrow F 2 , whereby the entire surface of the steel plate 10 is scanned. The receiver 13 comprises an optical fiber and light receiving elements (photomulsions) at both ends thereof, the reflected light of the laser light projected on the steel plate enters the optical fiber, and the photoelectric conversion output thereof is output by the light receiving elements at both ends. This type of receiver also provides scanning position information on the steel plate according to the incident position of reflected light.

レシーバ13の出力は微分回路21で微分されたのち、A/D
変換器22でA/D変換される。第2図(a)はレシーバ出
力を示し、(b)はその微分出力である。Bは鋼板の板
幅を示し、レシーバ出力は板端で立上り/立下り、また
疵位置で凹陥部を作る。A/D変換器22は(b)の微分波
形を極めて短い周期(20〜100nS)でサンプリングして
(c)の如きアナログ量を得、これを本例では8ビット
のデジタル値に変換する。
The output of the receiver 13 is differentiated by the differentiation circuit 21 and then A / D
A / D conversion is performed by the converter 22. FIG. 2A shows the receiver output, and FIG. 2B is the differential output thereof. B indicates the plate width of the steel plate, and the receiver output rises / falls at the plate edge and makes a recess at the flaw position. The A / D converter 22 samples the differential waveform of (b) at an extremely short cycle (20 to 100 nS) to obtain an analog amount as shown in (c), and converts it into an 8-bit digital value in this example.

このようにして採取したデータから特徴量を計算する。
特徴量としては2次平均と微分レンジを用い、これを、
疵を包括する小範囲Aと、該小範囲Aを包括する広範囲
Bにつき算出する。第2図(a)では範囲Bは全板幅と
するが、これは板幅の1/2,1/3などでもよい。1/2,1/3…
…にする場合は第1図の装置を2組、3組……設けて、
鋼板表面を2分割、3分割、……して検査(並行同時検
査)するとよい。範囲Aは、予想される大きさの疵を十
分包含する微小範囲(例えば5mm幅)とし、範囲Bには
複数個の範囲Aが含まれる。範囲A,Bの2次平均
zallは次式で表わされる。
The feature amount is calculated from the data thus collected.
The second-order average and the differential range are used as the feature quantity,
The calculation is performed for a small range A that covers a flaw and a wide range B that covers the small range A. In FIG. 2 (a), the range B is the entire plate width, but it may be 1/2, 1/3, etc. of the plate width. 1/2, 1/3 ...
In the case of ..., 2 sets, 3 sets of the apparatus of FIG.
It is advisable to divide the surface of the steel sheet into two, three, and so on, and inspect (parallel simultaneous inspection). The range A is a minute range (for example, 5 mm width) that sufficiently covers a flaw of an expected size, and the range B includes a plurality of ranges A. Second-order average of range A and B 2 ,
zall is expressed by the following equation.

こゝでyiは位置xiにおけるA/D変換値、xs,xeは範囲B
の始、終端のi値、io,io+aは範囲Aの始、終端のi
値、E1,E2は範囲A,B内のyの個数の逆数である。範囲
A,Bの微分レンジxDR,xDRallは、 xDR=ABS(maxy−miny) ……(3) io<y<io+a xDRall=ABS(maxy−miny) ……(4) xs<y<xe で表わされる。範囲Bの微分レンジを計算し、過去のデ
ータから標準偏差σxDRを次式により計算し、新たに微
分レンジを得る毎にこれを更新する。
Here, y i is the A / D conversion value at position x i , x s and x e are the range B
I values at the beginning and end of i, i o and i o + a are i at the beginning and end of the range A
The values E 1 and E 2 are the reciprocals of the number of y in the ranges A and B. range
A, the differential range x DR of B, x DRall is, x DR = ABS (maxy- miny) ...... (3) i o <y <i o + a x DRall = ABS (maxy-miny) ...... (4) x It is represented by s <y <x e . The differential range of the range B is calculated, the standard deviation σ xDR is calculated from the past data by the following equation, and this is updated each time a new differential range is obtained.

σxDRの計算方法としては、他の特徴量の計算と同期し
て毎回計算を行なう他、サンプルデータから得られた値
を用いて計算しオンラインユースでは定数とする等があ
る。次は正規化を行なう。次の(5)式、(6)式に示
すように、(1)式を(2)式で割って2次平均の正規
化値2sとし、範囲Aの微分レンジを範囲Bの標準偏差
σxDRで割って範囲Aの微分レンジの正規化値xDRSとす
る。2S2all ……(5) xDRS=xDR/σxDR ……(6) この正規化した特徴量2S,xDRSを用いて疵判定を行な
う。微分レンジxDRと2次平均を第2図(d)に示
すように縦軸、横軸にとって疵有り○、疵無し×の領域
を求めると図示の如くなり、両者は分れるがその境界は
非直線である。第2図(e)に示すように45°線で分離
すれば回帰分析可能であるが、第2図(d)では回帰分
析は困難である。そこでニューラルネットワークを用
い、これにより疵有/無を出力させる。
As a calculation method of σ xDR , there is a method in which calculation is performed every time in synchronization with calculation of other feature amounts, and calculation is performed using a value obtained from sample data and is a constant for online use. Next, normalize. As shown in the following equations (5) and (6), the equation (1) is divided by the equation (2) to obtain a quadratic average normalized value 2s, and the differential range of the range A is the standard deviation σ of the range B. Divide by xDR to obtain the normalized value x DRS of the differential range of range A. 2S = 2 / 2all ...... (5 ) x DRS = x DR / σ xDR ...... (6) The normalized feature quantity 2S, performs flaw determination using x DRS. As shown in FIG. 2 (d), the differential range x DR and the quadratic average 2 are plotted on the ordinate and the abscissa on the regions with flaws ○ and flaws ×, as shown in the figure. Is non-linear. As shown in FIG. 2 (e), it is possible to perform a regression analysis if separated by a 45 ° line, but in FIG. 2 (d), a regression analysis is difficult. Therefore, a neural network is used to output defect / absence.

第2図(f)に示すようにこのニューラルネットワーク
は入力層、中間層、および出力層の3層構造で、ノード
数は入力層が2、中間層が3、出力層が1であり、これ
にバイアス層(学習促進用)が1つ加わる。各ノードの
入、出力の関係はシグモイド関数a(1+e-x)-1であり、
バイアス層の出力は1、学習規則は一般化デルタルール
である。疵あり1、疵なし0で、1000回程度学習させ
る。最終出力層の出力が0.5以上で疵あり、それ以下で
疵なしとする。
As shown in FIG. 2 (f), this neural network has a three-layer structure of an input layer, an intermediate layer, and an output layer, and the number of nodes is two in the input layer, three in the intermediate layer, and one in the output layer. A bias layer (for learning promotion) is added to. The relationship between the input and output of each node is the sigmoid function a (1 + e -x ) -1 ,
The output of the bias layer is 1, and the learning rule is the generalized delta rule. There are 1 defect and 0 defect, and learn about 1000 times. If the output of the final output layer is 0.5 or more, there is a flaw, and if it is less than that, there is no flaw.

正規化特徴量の算出には適所にメモリを置く必要があ
る。メモリ設置位置は第5図に示すように、A/D変換器2
2の出側と微分レンジ計算部24,26の出側などである。範
囲Bは1ライン分(1/2,1/4ライン分などもよいが、こ
ゝでは1ライン分とする)、範囲Aはその1ラインの微
分部分であるから、メモリM1に複数ライン分の格納容量
をもたせ、計算部23,24でその1ラインについて を計算したら計算部25,26で当該ラインの各範囲Aにつ
,xDRを計算し、正規化処理部27で前記(5)
(6)式により、正規化した2次平均 微分レンジXDRSを計算し、ニューラルネットワーク30へ
入力する、のが一つの方法である。
It is necessary to put a memory in a proper place to calculate the normalized feature amount. As shown in Fig. 5, the memory installation position is A / D converter 2
The output side of 2 and the output side of the differential range calculation units 24 and 26. Range B is for 1 line (1/2, 1/4 lines, etc., but in this case, it is for 1 line), and range A is the differential part of 1 line, so there are multiple lines in memory M 1. For the one line in the calculation units 23 and 24. After calculating, the calculation units 25 and 26 calculate 2 , x DR for each range A of the line, and the normalization processing unit 27 calculates (5) above.
Normalized quadratic mean by equation (6) One method is to calculate the differential range X DRS and input it to the neural network 30.

メモリM2を用いて、1ラインの各範囲Aについての計算
結果をM2に蓄え、当該ラインについての即ち範囲Bにつ
いての計算結果が出たとき処理部27で正規化処理する、
は第2の方法であり、メモリM3を用いて範囲Bについて
の計算結果を該メモリM3に格納し、次のラインの各範囲
Aの計算結果とメモリM3の内容(1ライン前の範囲Bに
ついての計算結果)を用いて正規化処理する、は第3の
方法である。
Using the memory M 2 , the calculation result for each range A of one line is stored in M 2 , and when the calculation result for the line, that is, the range B is obtained, the processing unit 27 performs the normalization process.
Is the second method, the calculation results for the range B stored in the memory M 3 using the memory M 3, of each of the ranges A in the next line calculations and memory M 3 content (one line before The third method is to perform the normalization processing using the calculation result of the range B).

上記の第3の方法は、メモリ容量が少なくて済み、1ラ
イン前も今回ラインも2次平均などにそれ程差はないか
ら、有効な方法である。
The above-mentioned third method is an effective method because the memory capacity is small and there is not much difference in the secondary average between the previous line and the current line.

第3図、第4図に誤検出率等を示す。第3図は従来法
で、横軸は閾値(2,4,……は0.2V,0.4,……に相当)、
縦軸は率%である。図示のような閾値を低くすると過検
出(疵でないのに疵とする)率は上り、閾値を高くする
と誤検出(見逃し)率が上り、正答率は適切な閾値で最
高になるが、この最高正答率になる閾値は鋼板の表面性
状等により種々変化する。
3 and 4 show the false detection rate and the like. Fig. 3 shows the conventional method, the horizontal axis is the threshold value (2,4, ... corresponds to 0.2V, 0.4, ...)
The vertical axis is rate%. If the threshold value shown in the figure is low, the rate of over-detection (marked as defective even though it is not a defect) is high, and if the threshold value is high, the rate of false detection (missing) is high. The threshold for the correct answer rate changes variously depending on the surface properties of the steel sheet and the like.

第4図は本発明(ニューラルネット法)と従来法(微分
スレッシュレベル法)とを対比して示すグラフである。
横軸は誤検出率、縦軸は過検出率であり、図示のように
従来法では一方が良くなれば他方は悪くなる。これに対
して本発明法ではグループG1,G2に示すように両方共、
低くすることができる。なおG2はG1より、ニューラルネ
ットを更によく学習させた場合である。
FIG. 4 is a graph showing the present invention (neural net method) and the conventional method (differential threshold level method) in comparison.
The horizontal axis is the false detection rate, and the vertical axis is the over detection rate. As shown, in the conventional method, when one becomes better, the other becomes worse. On the other hand, in the method of the present invention, as shown in groups G 1 and G 2 , both
Can be lowered. It should be noted that G 2 is a case where the neural network is trained better than G 1 .

特徴量としては正規化2次平均2Sと正規化微分レンジ
xDRSを採用する他、3次平均=E・Σy3 iなども含
めて適当に組合わせたものを特徴量とすることも考えら
れる。次にこの組合せ実験の結果を示す。
Normalized quadratic mean 2S and normalized differential range
In addition to adopting x DRS , it is also conceivable to use an appropriate combination including the third -order average 3 = E · Σy 3 i as the feature amount. Next, the result of this combination experiment is shown.

この表からケースNo.10などがよい結果を示しており、
3次平均を用いるものは、複雑な計算を要するにも拘わ
らず結果がよくない。
From this table, Case No. 10 shows good results,
The one using the third-order average gives a poor result although it requires a complicated calculation.

本発明では疵信号(範囲Aの信号)だけでなく、その周
囲の信号(範囲Bの信号)も用いて疵有/無判定を行な
う。これが、閾値を不要にしている。微分レンジは高さ
(強度)情報を与え、2次平均は疵形状情報を与える。
これらで、周囲と相違がある部分が存在するか、否か、
の識別を行なわせている。
In the present invention, not only the flaw signal (the signal in the range A) but also the signals around it (the signal in the range B) are used to determine whether there is a flaw. This makes the threshold unnecessary. The differential range gives height (intensity) information and the quadratic average gives flaw shape information.
Whether or not there is a part that differs from the surroundings,
Is being identified.

本発明では強度が変動した微分波形を、変動を受けてい
ない波形と併せて学習させる事により、入力される微分
波形が強度的に変動を受けても(すなわち、S/Nが悪化
しても)検出率への影響が小さいシステムが得られる。
微分信号の大きさは、ラインでの設置条件、機器の劣化
や対象とする被検定物の種類によっても変化することは
十分に考えられる。従来の微分スレッシュ法では、これ
らの変化に柔軟に対応することは原理上不可能であり、
検出精度が悪化し、設置後、調整(すなわち、微分スレ
ッシュレベルの値)の手直し等が生じる危険が大きい。
In the present invention, by learning the differential waveform whose strength has changed, together with the waveform that has not been changed, even if the input differential waveform is changed in intensity (that is, even if S / N deteriorates). ) A system with little influence on the detection rate can be obtained.
It is quite conceivable that the magnitude of the differential signal will change depending on the installation conditions on the line, the deterioration of the equipment, and the type of the DUT. In the conventional differential threshold method, it is impossible in principle to flexibly respond to these changes,
The detection accuracy deteriorates, and there is a great risk that adjustment (that is, the value of the differential threshold level) will be adjusted after installation.

現在学習に使用しているデータに関し、微分強度を±20
%変動させたデータを併せて学習させた。ついで、本学
習データについても、±20%の変動を与え、微分法とあ
らたしく得られたニューラルネットについて、検出率、
過検出率の評価をしたところ、微分法が大きな変動を示
すのに対し、ニューラルネット法では変動がきわめて少
ないことが確認された。次表にこの結果等を示す。
The differential strength of the data currently used for learning is ± 20
The data that was changed in% was also learned. Then, with respect to this learning data as well, a variation of ± 20% was applied, and the detection rate,
The overdetection rate was evaluated, and it was confirmed that the differential method showed a large fluctuation, while the neural network method showed a very small fluctuation. The following table shows the results.

また前記表2,表3に対する最新データを表7に示す。 Table 7 shows the latest data for Tables 2 and 3.

〔発明の効果〕 以上説明したように本発明によれば、閾値設定に煩わさ
れることなく、誤検出と過検出を共に最低に抑えること
ができる鋼板表面疵検査を行なうことができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to perform a steel plate surface flaw inspection capable of suppressing both false detection and over-detection to the minimum without being bothered by threshold setting.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の鋼板表面疵検査法の説明図、 第2図は疵検査の各部の説明図、 第3図および第4図は検査結果例を示すグラフ、 第5図はメモリ設置位置の各例を示すブロック図であ
る。 第1図で21は微分回路、22はA/D変換器である。
FIG. 1 is an explanatory view of a steel plate surface flaw inspection method of the present invention, FIG. 2 is an explanatory view of each portion of the flaw inspection, FIGS. 3 and 4 are graphs showing inspection result examples, and FIG. 5 is a memory installation position. It is a block diagram showing each example of. In FIG. 1, 21 is a differentiating circuit and 22 is an A / D converter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋼板表面をレーザ光で走査し、その反射光
を光電変換し、更にA/D変換し、鋼板の小範囲(A)と
その複数個を包含する大範囲(B)における該変換出力
から、反射光波形を代表する複数個の特徴量を算出し、
該特徴量を、予め学習させた神経回路網に加えて疵有/
無出力を生じさせることを特徴とする神経回路網による
鋼板表面疵検査方法。
1. A steel plate surface is scanned with a laser beam, the reflected light is photoelectrically converted, and A / D converted, and the small range (A) of the steel plate and the large range (B) including a plurality of the ranges are measured. From the converted output, calculate a plurality of feature quantities that represent the reflected light waveform,
The feature quantity is added to the neural network that has been learned in advance and
A steel sheet surface flaw inspection method using a neural network, which is characterized by producing no output.
【請求項2】特徴量は、次式で表わされる正規化2次平
2Sと正規化微分レンジxDRSであることを特徴とする
請求項1記載の神経回路網による鋼板表面疵検査方法。 こゝでは小範囲のA/D変換出力の2次平均、 は大範囲BのA/D変換出力の2次平均、xDRは小範囲Aの
微分レンジ、σXDRは大範囲Bの微分レンジの標準偏
差。
2. The steel sheet surface flaw inspection method according to claim 1, wherein the feature quantities are a normalized quadratic mean 2S and a normalized differential range x DRS represented by the following equation. Here, 2 is the secondary average of A / D conversion output in a small range, Is the quadratic average of the A / D conversion output of the large range B, x DR is the differential range of the small range A, and σ XDR is the standard deviation of the differential range of the large range B.
【請求項3】鋼板表面を走査するレーザ光を発生するレ
ーザ発振器と、 鋼板表面で反射したレーザ光を受光するレシーバと、 該レシーバの出力を微分し、その微分出力をA/D変換す
る回路と、 該A/D変換出力より、各小範囲(A)について2次平均
と微分レンジを計算する手段と、 該A/D変換出力より、前記小範囲の複数個を包含する大
範囲(B)について2次平均、微分レンジ、および標準
偏差を計算する手段と、 これらの2次平均より正規化2次平均を、また小範囲
(A)の微分レンジと大範囲(B)の標準偏差から正規
化微分レンジを算出する正規化処理手段と、 該正規化2次平均および微分レンジを加えられて疵有/
無出力を生じる神経回路網とを備えることを特徴とす
る、神経回路網による鋼板表面疵検査装置。
3. A laser oscillator for generating a laser beam for scanning the surface of a steel sheet, a receiver for receiving the laser beam reflected by the surface of the steel sheet, and a circuit for differentiating the output of the receiver and A / D converting the differential output. And means for calculating a secondary average and a differential range for each small range (A) from the A / D converted output, and a large range (B including a plurality of the small ranges from the A / D converted output. ) For calculating the second-order average, the differential range, and the standard deviation, and the normalized second-order average from these second-order averages, and from the small-range (A) differential range and the large-range (B) standard deviation. Normalization processing means for calculating a normalization differential range, and addition of the normalized secondary average and differential range
A steel sheet surface flaw inspection apparatus using a neural network, comprising: a neural network that produces no output.
JP12001189A 1989-05-12 1989-05-12 Steel plate surface flaw inspection method by neural network Expired - Fee Related JPH0687046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001189A JPH0687046B2 (en) 1989-05-12 1989-05-12 Steel plate surface flaw inspection method by neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001189A JPH0687046B2 (en) 1989-05-12 1989-05-12 Steel plate surface flaw inspection method by neural network

Publications (2)

Publication Number Publication Date
JPH02298840A JPH02298840A (en) 1990-12-11
JPH0687046B2 true JPH0687046B2 (en) 1994-11-02

Family

ID=14775693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001189A Expired - Fee Related JPH0687046B2 (en) 1989-05-12 1989-05-12 Steel plate surface flaw inspection method by neural network

Country Status (1)

Country Link
JP (1) JPH0687046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299204A (en) * 1991-03-27 1992-10-22 Toyoda Mach Works Ltd Device for detecting edge of turning tool
JPH04332855A (en) * 1991-05-07 1992-11-19 Nippon Steel Corp Inspecting apparatus of surface defect of steel plate

Also Published As

Publication number Publication date
JPH02298840A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
JPH04252940A (en) Method and apparatus for inspecting flaw of end part of body
US4253768A (en) Processing system for detection and the classification of flaws on metallic surfaces
JPH11295229A (en) Surface inspection apparatus
JPH08189904A (en) Surface defect detector
JPH0687046B2 (en) Steel plate surface flaw inspection method by neural network
JP3265826B2 (en) Image determination device and image determination method
JP2890801B2 (en) Surface scratch inspection device
JPH0695076B2 (en) Steel plate surface flaw inspection method by neural network
JPS60205683A (en) Method and device for discrminating external appearance
JP2988059B2 (en) Circular container inner surface inspection device
JPS62263404A (en) Apparatus for inspecting pattern
JPH05164702A (en) Surface inspecting device
JPH06160302A (en) Method and apparatus for inspecting surface flaw of running strip
JPS591978B2 (en) Object condition inspection device
JPH0786477B2 (en) Surface inspection device
JPS61225604A (en) Dimension measurement apparatus
JPH0333001Y2 (en)
JPH0755722A (en) Inspection method of surface defect
JPH0121881B2 (en)
JPH0627037A (en) Flaw inspecting apparatus
JPH0239737B2 (en)
JPH01313744A (en) Inspecting device for flaw on surface of metallic band
JPH01253641A (en) Circuit for discriminating streak-like defect
JPH04268445A (en) Mounted substrate inspector
JPH0388079A (en) Method for recognizing object

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees