JPH0686634B2 - Reactor pressure control method for direct heating furnace - Google Patents
Reactor pressure control method for direct heating furnaceInfo
- Publication number
- JPH0686634B2 JPH0686634B2 JP5018283A JP5018283A JPH0686634B2 JP H0686634 B2 JPH0686634 B2 JP H0686634B2 JP 5018283 A JP5018283 A JP 5018283A JP 5018283 A JP5018283 A JP 5018283A JP H0686634 B2 JPH0686634 B2 JP H0686634B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- heating furnace
- induction fan
- exhaust gas
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Control Of Heat Treatment Processes (AREA)
Description
【発明の詳細な説明】 本発明は、直火式加熱炉の炉圧制御方法に関する。The present invention relates to a furnace pressure control method for a direct-fired heating furnace.
直火式加熱炉(以下たんに加熱炉という)において、排
ガスの排気力が過大のときは、 (イ)過剰空気が多くなる、(ロ)排ガスによる熱損失
が大となる、(ハ)炉内温度が低下し温度分布が不均一
となる等の問題があり、 又排気不足のときは、 (ニ)不完全燃焼ですすを発生、(ホ)燃料の損失が大
きい、(ヘ)逆火の危険がある等の問題があり、排気状
態(炉圧)は加熱炉の性能に大きく影響をする。In a direct-fired heating furnace (hereinafter simply referred to as “heating furnace”), when the exhaust gas exhaust power is excessive, (a) excess air increases, (b) heat loss due to exhaust gas increases, and (c) furnace There are problems such as the internal temperature decreasing and the temperature distribution becoming non-uniform. When exhaust gas is insufficient, (d) incomplete combustion causes soot, (e) large fuel loss, (f) flashback. However, the exhaust condition (furnace pressure) greatly affects the performance of the heating furnace.
そこで加熱炉の排気状態を所望の値に保つ為に、煙突で
排ガスドラフト力を与え、煙道ダンパーで適当な圧損を
加えて、炉内排気状態すなわち炉圧制御を行つている。
建設コストや場所の問題から煙突が設けられない場合
は、誘引フアンを設けて排ガスドラフト力を与え、煙道
ダンパーで適当な圧損を加えて炉圧の制御を行う事もあ
る。又煙突の高さ制限や建設コスト上から、煙突と誘引
フアンの両方を設けて排気ドラフト力を与え、煙道ダン
パーで適当な圧損を加えて炉圧制御を行う場合もある。Therefore, in order to maintain the exhaust state of the heating furnace at a desired value, an exhaust gas draft force is applied by the chimney and an appropriate pressure loss is added by the flue damper to control the exhaust state in the furnace, that is, the furnace pressure control.
If a chimney cannot be installed due to construction cost or location problems, an induction fan may be installed to provide an exhaust gas draft force, and a flue damper may be used to control the furnace pressure by adding an appropriate pressure loss. In addition, due to the height limitation of the chimney and the construction cost, there are cases where both the chimney and the induction fan are provided to provide an exhaust draft force, and an appropriate pressure loss is added by the flue damper to control the furnace pressure.
従来の煙突と誘引フアンの両方を設けた加熱炉の炉圧制
御方法は、煙道ダンパーの開閉による制御を主体とし
て、煙道ダンパーによる制御範囲を超えるとき誘引フア
ンで補助的に制御する方法をとつていた。しかしこの方
法の場合は、燃焼量が少なくなつたときに煙道ダンパー
は、過剰ドラフト力を抑える為に全閉近くまでのダンパ
ー開度になり、そこではじめて誘引フアンのドラフト力
を少なくするようにフアンの回転数を落す方法であるの
で、煙道ダンパーの制御特性が悪くなつている範囲で誘
引フアンのドラフト力が変更することになり、結果とし
て炉圧への外乱につながり、安定した炉圧制御が確保出
来ないという問題があつた。The conventional furnace pressure control method for a heating furnace equipped with both a chimney and an induction fan is mainly based on the control by opening and closing the flue damper. I was told. However, in the case of this method, when the combustion amount becomes small, the flue damper becomes the damper opening close to fully closed to suppress the excessive draft force, and the draft force of the attracting fan is reduced for the first time there. Since it is a method of lowering the rotation speed of the fan, the draft force of the attracting fan is changed within the range where the control characteristics of the flue damper are deteriorated, resulting in disturbance to the furnace pressure and stable furnace pressure. There was a problem that control could not be secured.
本発明は、かかる従来法の問題点を解決した炉圧制御方
法であり、その要旨は、 排ガスを誘引フアンで誘引しつつ煙突から排出させる方
式の直火式加熱炉の炉圧制御方法において、煙道ダンパ
ーの開度を該ダンパー自体の制御特性が良好な範囲内に
設定したうえで、加熱炉の燃料ガス量、過剰空気率およ
び排ガス排出系の温度を含む加熱炉燃焼状態を示すパラ
メータを用いて排ガス排出系の圧損とドラフト力を算出
し、これらの算出値から誘引フアンの基準回転数を演算
設定し、該設定した誘引フアン回転数のもとで常時はダ
ンパー開度制御で炉圧制御を行ない、ダンパー開度が前
記制御特性が良好な範囲を超えるとき前記誘引フアン回
転数を修正することを特徴とする直火式加熱炉の炉圧制
御方法である。The present invention is a furnace pressure control method that solves the problems of the conventional method, the gist thereof is a furnace pressure control method for a direct-fired heating furnace of a method of discharging exhaust gas from a chimney while attracting exhaust gas with an induction fan, After setting the opening of the flue damper within a range where the control characteristics of the damper itself are good, the parameters indicating the combustion state of the heating furnace including the fuel gas amount of the heating furnace, the excess air ratio, and the temperature of the exhaust gas discharge system are set. The pressure loss and draft force of the exhaust gas exhaust system are calculated using these values, the reference rotational speed of the induction fan is calculated and set from these calculated values, and the furnace pressure is normally controlled by the damper opening control under the set induction fan rotational speed. A method for controlling a furnace pressure of a direct-fired heating furnace, which is characterized in that control is performed, and when the damper opening exceeds a range where the control characteristic is good, the induction fan rotational speed is corrected.
以下図面を参照しながら本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の実施例における制御系を示す図であ
る。FIG. 1 is a diagram showing a control system in an embodiment of the present invention.
炉1で燃焼された排ガスは、排ガス排出経路に設けてあ
る熱交換器3、煙道ダンパー4、誘引フアン5及び煙突
6を通つて大気に排出される。7,8,9は、排出経路の各
部の排ガス温度を測定する熱電対である。10は炉温測定
用熱電対であり、その出力信号を温度指示調節計11へ送
る。13は燃料流量指示計、16は空気流量指示計であつ
て、オリフイス15,18及び温度指示調節計11,過剰空気率
設定器12の出力信号を受けて流量調節弁14,17を開閉す
る。19は炉圧検出器であり、その出力信号を受けて炉圧
指示調節計20は、煙道ダンパー4の開閉を行う。2は演
算器、21は加算器である。The exhaust gas burned in the furnace 1 is discharged to the atmosphere through the heat exchanger 3, the flue damper 4, the induction fan 5 and the chimney 6 which are provided in the exhaust gas discharge path. Reference numerals 7, 8 and 9 are thermocouples for measuring the exhaust gas temperature in each part of the discharge path. Reference numeral 10 is a thermocouple for measuring the furnace temperature, and its output signal is sent to the temperature indicating controller 11. Reference numeral 13 is a fuel flow rate indicator, and 16 is an air flow rate indicator which opens and closes the flow rate control valves 14 and 17 in response to the output signals of the orifices 15 and 18, the temperature indicator controller 11 and the excess air ratio setting device 12. Reference numeral 19 is a furnace pressure detector, and the furnace pressure indicating controller 20 receives the output signal thereof and opens and closes the flue damper 4. 2 is an arithmetic unit, and 21 is an adder.
次にこの装置の動作を説明する。Next, the operation of this device will be described.
加熱炉の炉圧は、大気圧よりやや高めに保持しながら燃
焼を行うのが良い。又炉圧は、下式(1)のバランスで
決まるものである。Combustion is preferably carried out while maintaining the furnace pressure of the heating furnace slightly higher than atmospheric pressure. The furnace pressure is determined by the balance of the following formula (1).
(煙突ドラフト力)+(誘引フアンドラフト力)= (煙道ダンパー圧損)+(煙突流動圧損) +(排出経路流動圧損) ・・・・・・・(1) 前記(1)式の各項の値は、下式(2)〜(7)で算出
できる。(Chimney draft force) + (Attractive fan draft force) = (Flue damper pressure loss) + (Chimney flow pressure loss) + (Discharge path flow pressure loss) ... (1) Each term in the equation (1) The value of can be calculated by the following equations (2) to (7).
煙突ドラフト力;Po=355Hc(1/To‐1/Tc) ・・・・・
(2) 排ガス量;QE=QGas・G+(m-1)QGas・Lo ・・・・・
(3) 煙突流動圧損;Pc=Kc・Q2E・1/Tc ・・・・(4) 排出経路流動圧縮損;Pf=Kf・Q2E・1/Tf ・・(5) 煙道ダンパー圧損;Pd=f(QE,σo) ・・・(6) 誘引フアンドラフト力;PoF=Pc+Pf+Pd-Po ・・・・・
(7) 誘引フアン回転数;V=g(PoF,QE) ・・・(8) To;大気温度(゜K),Tc;煙突温度(゜K),Tf;排出経
路温度(゜K),Hc;煙突高さ(m),QGas;炉各ゾーン
燃料ガス流量総和(Nm3/h),G;理論排ガス量(Nm3/Nm
3),Lo;理論空気量(Nm3/Nm3),m;過剰空気率,f;煙
道ダンパー特性関数,g;誘引フアン特性関数,σo;煙
道ダンパー開度(%),V;誘引フアン回転数(rpm),
Kc,Kf;係数 前記(1)式において、煙突ドラフト力と煙突流動圧損
及び排出経路流動圧損は、加熱炉の燃焼状態から一義的
に決まるので、誘引フアンドラフト力及び煙道ダンパー
圧損のバランスで炉圧は決める事が出来る。Chimney draft force; P o = 355H c (1 / T o -1 / T c ) ..
(2) Exhaust gas amount; Q E = Q Gas・ G + (m-1) Q Gas・Lo ...
(3) Stack flow pressure loss; P c = K c · Q 2 E · 1 / T c ··· (4) Discharge path flow compression loss; P f = K f · Q 2 E · 1 / T f · · (5) Flue damper pressure loss; P d = f (Q E , σ o ) ・ ・ ・ (6) Induced fan -and- raft force; P oF = P c + P f + P d -P o
(7) inducement Juan rpm; V = g (P oF, Q E) ··· (8) T o; atmospheric temperature (° K), T c; chimney temperature (° K), T f; discharge path temperature (° K), H c ; Chimney height (m), Q Gas ; Total amount of fuel gas flow in each furnace zone (Nm 3 / h), G; Theoretical exhaust gas amount (Nm 3 / Nm)
3 ), Lo ; theoretical air amount (Nm 3 / Nm 3 ), m; excess air ratio, f; flue damper characteristic function, g; attractive fan characteristic function, σ o ; flue damper opening degree (%), V; Induction fan rotation speed (rpm),
K c , K f ; Coefficients In the equation (1), the stack draft force, stack flow pressure loss, and discharge path flow pressure loss are uniquely determined from the combustion state of the heating furnace, so the induced fan rafts force and flue damper pressure loss are The balance can determine the furnace pressure.
そこで本発明においては、煙道ダンパーの開度を、ダン
パーの制御特性の良い範囲にまづ設定しておき、オリフ
イス15から燃料ガス流量を、過剰空気率設定器12から過
剰空気率をとり込み、又熱電対7,8,9から温度測定結果
をとり込み、演算器2で前記(2)〜(7)式の計算を
行ない、(8)式で誘引フアンの基準回転数Voを算出
し、この基準回転数Voを設定する。その後は、煙道ダン
パー4の開度制御で炉圧制御を行い、そのダンパー開度
がダンパー特性の良い範囲を超えるときには、誘引フア
ンの回転数を±△Voだけ変更し、常に煙道ダンパーが特
性の良い範囲内で制御されるようにする。又(7)式で
PoF≒0のときは、誘引フアンを最小回転数の状態に
し、煙道ダンパーのみの炉圧制御を行い、PoF〉0のと
きは、前記説明のように制御を行う。尚、加熱炉の場合
は、燃焼量変化の頻度は高くないので、誘引フアン基準
回転数Voを演算設定する制御周期は、煙道ダンパーによ
る炉圧制御の制御周期に比べて大きくとるようにする。Therefore, in the present invention, the opening of the flue damper is set within a range in which the damper control characteristics are good, and the fuel gas flow rate is taken in from the orifice 15 and the excess air ratio is taken in from the excess air ratio setting device 12. , uptake temperature measurements from Matanetsu couple 7,8,9, calculator 2 in the (2) subjected to (7) of the calculation, calculates a reference rotational speed V o attractant Juan in (8) and, to set the reference rotation speed V o. After that, the furnace pressure is controlled by controlling the opening of the flue damper 4, and when the damper opening exceeds the range with good damper characteristics, the rotation speed of the induction fan is changed by ± ΔV o and the flue damper is constantly operated. Are controlled within a range with good characteristics. Moreover, in equation (7)
When P oF ≈0 , the induction fan is set to the state of minimum rotation speed, and furnace pressure control of only the flue damper is performed. When P oF > 0, control is performed as described above. In the case of a heating furnace, the frequency of combustion amount change is not high, so the control cycle for calculating and setting the induction fan reference speed V o should be set longer than the control cycle for furnace pressure control by the flue damper. To do.
以上の制御方法を用いることにより 1)誘引フアンの基準回転数Voを排ガス排出系の圧損と
ドラフト力から算出してフイード・フオワード的に設定
でき、その後は、煙道ダンパー主体の炉圧制御で、煙道
ダンパー特性の良い範囲で制御でき、かつ誘引フアン回
転数を小さい変化量±△Voで修正を加えるので、誘引フ
アン回転数変更が炉圧に対して大きな外乱とならず、安
定した炉圧制御が出来る。By using the above control method, 1) the reference rotational speed V o of the induction fan can be set in a feed-forward manner by calculating from the pressure loss and draft force of the exhaust gas discharge system, and then the furnace pressure control mainly of the flue damper. With this, the flue damper characteristics can be controlled within a good range, and the induction fan rotational speed is corrected with a small change amount ± ΔV o , so the induction fan rotational speed change does not cause a large disturbance to the furnace pressure and is stable. The furnace pressure can be controlled.
2)(1)〜(8)式より誘引フアンドラフト力と煙道
ダンパー圧損の適正配分を行う事が出来、炉内圧制御性
の向上が図れるという優れた効果が得られる。2) From expressions (1) to (8), it is possible to properly distribute the induced fand raft force and the pressure loss of the flue damper, and it is possible to obtain an excellent effect that the controllability of the furnace pressure can be improved.
第1図は本発明の実施例における制御系を示す図であ
る。 1……炉 2……演算器 4……煙道ダンパー 5……誘引フアン 6……煙突 7,8,9,10……熱電対 19……炉圧検出器 20……炉圧指示調節計 21……加算器FIG. 1 is a diagram showing a control system in an embodiment of the present invention. 1 …… Furnace 2… Calculator 4 …… Flue damper 5 …… Induction fan 6 …… Chimney 7,8,9,10 …… Thermocouple 19 …… Furnace pressure detector 20 …… Furnace pressure indicating controller 21 ... Adder
Claims (1)
排出させる方式の直火式加熱炉の炉圧制御方法におい
て、煙道ダンパーの開度を該ダンパー自体の制御特性が
良好な範囲内に設定したうえで、加熱炉の燃料ガス量,
過剰空気率および排ガス排出系の温度を含む加熱炉燃焼
状態を示すパラメータを用いて排ガス排出系の圧損とド
ラフト力を算出し、これらの算出値から誘引フアンの基
準回転数を演算設定し、該設定した誘引フアン回転数の
もとで常時はダンパー開度制御で炉圧制御を行ない、ダ
ンパー開度が前記制御特性が良好な範囲を超えるとき前
記誘引フアン回転数を修正することを特徴とする直火式
加熱炉の炉圧制御方法。Claim: What is claimed is: 1. A furnace pressure control method for a direct-fired heating furnace in which exhaust gas is discharged from a chimney while being attracted by an induction fan. After setting, the fuel gas amount of the heating furnace,
The pressure loss and draft force of the exhaust gas exhaust system are calculated using parameters indicating the heating furnace combustion state including the excess air ratio and the temperature of the exhaust gas exhaust system, and the reference rotational speed of the induction fan is calculated and set from these calculated values. It is characterized in that the furnace pressure control is always performed by the damper opening control under the set induction fan rotational speed, and the induction fan rotational speed is corrected when the damper opening exceeds the favorable range of the control characteristics. Control method for furnace pressure of direct-fired heating furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5018283A JPH0686634B2 (en) | 1983-03-25 | 1983-03-25 | Reactor pressure control method for direct heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5018283A JPH0686634B2 (en) | 1983-03-25 | 1983-03-25 | Reactor pressure control method for direct heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59177329A JPS59177329A (en) | 1984-10-08 |
JPH0686634B2 true JPH0686634B2 (en) | 1994-11-02 |
Family
ID=12852045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5018283A Expired - Lifetime JPH0686634B2 (en) | 1983-03-25 | 1983-03-25 | Reactor pressure control method for direct heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686634B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3174538B2 (en) * | 1997-09-03 | 2001-06-11 | 日本碍子株式会社 | Furnace pressure control method of combustion furnace |
EP2010681A4 (en) * | 2006-04-24 | 2012-05-02 | Tech Resources Pty Ltd | Pressure control in direct smelting process |
-
1983
- 1983-03-25 JP JP5018283A patent/JPH0686634B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS59177329A (en) | 1984-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6233917B1 (en) | Method of controlling the temperature of intake air, temperature-control device for carrying out the method and gas turbine having the temperature-control device | |
JPH0686634B2 (en) | Reactor pressure control method for direct heating furnace | |
JPS649533B2 (en) | ||
JPH0213230B2 (en) | ||
JP3534865B2 (en) | Air-fuel ratio control device for combustor | |
JPH0599429A (en) | Heater device | |
JPS56149543A (en) | Temperature controller for hot-air generator | |
JPH0658068B2 (en) | Diesel engine | |
JPS6056894B2 (en) | Fuel control method and device during startup and acceleration of single-shaft gas turbine with heat exchanger | |
JP3566758B2 (en) | Combustor air amount control device and method | |
JPS58148314A (en) | Burning control method for boiler | |
JPH0637972B2 (en) | Combustion control device | |
JP3431054B2 (en) | Combustion equipment | |
JPS6137521B2 (en) | ||
JPS6053718A (en) | Oxygen control device for thermal plant | |
JPS6080019A (en) | Burning control device of water heater | |
JPS6217126B2 (en) | ||
JPH0127348B2 (en) | ||
JPS5817373B2 (en) | Combustion control method using oxygen concentration control in combustion furnace | |
JPH03199892A (en) | Control of amount of supply gas for waste heat boiler | |
JPH05322148A (en) | Furnace pressure control device | |
JPH0523966Y2 (en) | ||
JPS62233406A (en) | Warming device for stream regulating valve | |
JPH0774683B2 (en) | Gas recirculation boiler controller | |
JPS60178217A (en) | Gas recirculation control device for boiler |