JPH0686283B2 - Method for producing hydrogen separation medium - Google Patents

Method for producing hydrogen separation medium

Info

Publication number
JPH0686283B2
JPH0686283B2 JP1092050A JP9205089A JPH0686283B2 JP H0686283 B2 JPH0686283 B2 JP H0686283B2 JP 1092050 A JP1092050 A JP 1092050A JP 9205089 A JP9205089 A JP 9205089A JP H0686283 B2 JPH0686283 B2 JP H0686283B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
substrate
thin film
separation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1092050A
Other languages
Japanese (ja)
Other versions
JPH02271901A (en
Inventor
弘 宮村
博 石川
哲男 境
哲也 君島
智 羽坂
Original Assignee
工業技術院長
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 日本酸素株式会社 filed Critical 工業技術院長
Priority to JP1092050A priority Critical patent/JPH0686283B2/en
Publication of JPH02271901A publication Critical patent/JPH02271901A/en
Publication of JPH0686283B2 publication Critical patent/JPH0686283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、水素ガスの回収、精製、除去等に用いられ
る水素分離媒体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a hydrogen separation medium used for recovery, purification, removal, etc. of hydrogen gas.

「従来技術とその課題」 従来高純度水素ガスを選択的に回収あるいは分離する方
法として、低温吸着法、Pd膜法などが知られており、こ
れらの方法は主に半導体産業で採用されている。しか
し、低温吸着法は液体窒素を必要とするため高圧ガス取
締法の規制を受けると共に極低温技術が不可欠となり、
またPd膜法では膜が高価であると共に操業温度が高いと
いった不都合がある。したがって、低温吸着法およびPd
膜法は、ともに装置製作および操作上に大きな問題を有
し、また装置コストが高いという欠点をも有するものと
なる。
“Conventional technology and its problems” Conventionally, low-temperature adsorption method, Pd film method, etc. are known as methods for selectively recovering or separating high-purity hydrogen gas, and these methods are mainly adopted in the semiconductor industry. . However, since the low temperature adsorption method requires liquid nitrogen, it is subject to the regulations of the High Pressure Gas Control Law and cryogenic technology becomes indispensable.
Further, the Pd film method has the disadvantages that the film is expensive and the operating temperature is high. Therefore, the low temperature adsorption method and Pd
Both of the membrane methods have major problems in manufacturing and operating the device, and also have the drawback of high device cost.

ところで、このような状況に鑑み、安価な水素吸蔵合金
を用いた水素分離方法が提案されている。しかし、この
方法では、水素吸蔵合金が水素の吸蔵放出の繰返しによ
り微粉化するため、系外に水素吸蔵合金を出さないため
のパーティクル対策をしなくてはならないといった不都
合があり、また吸蔵時に発熱し放出時には吸熱するた
め、複雑な熱操作が必要となり、かつ合金の体積膨張に
伴う応力に耐える容器構造である必要があることから実
用性に乏しいといった問題もある。
In view of such a situation, a hydrogen separation method using an inexpensive hydrogen storage alloy has been proposed. However, in this method, the hydrogen-absorbing alloy is pulverized due to repeated storage and release of hydrogen, so there is the inconvenience that it is necessary to take measures against particles to prevent the hydrogen-absorbing alloy from being discharged outside the system. However, since it absorbs heat at the time of discharge, complicated thermal operations are required, and the container structure must withstand the stress associated with the volume expansion of the alloy.

近時、その解決策として水素吸蔵合金を多孔質体からな
る基板上に堆積し、この水素吸蔵合金を薄膜化した水素
分離材の提案がなされている。しかし、基板に直接水素
吸蔵合金を堆積したものでは、水素を吸蔵した際合金の
体積膨張により基板と合金とが剥離してしまうという欠
点がある。この欠点を解決するため、基板に、遷移金属
あるいは周期律表第IIIb族元素の金属をメッキするなど
の方法により表面処理を施しし、合金との親和性を高
め、また熱膨張係数の差を小さくするといった試みがな
されている。しかしながらこの方法では、基板表面に付
着せしめた金属の膜厚が厚くなることから基板の孔径が
狭まり、水素透過能力が低下するといった問題がある。
また、特に表面をメッキ処理した場合には、工程が複雑
となることから生産コストが高くなり、さらに基板に残
った水分を除去するのが困難であるといった問題が依然
として残る。
Recently, as a solution to this problem, a hydrogen separation material has been proposed in which a hydrogen storage alloy is deposited on a substrate made of a porous body and the hydrogen storage alloy is formed into a thin film. However, the one in which the hydrogen storage alloy is directly deposited on the substrate has a drawback that the substrate and the alloy are separated due to the volume expansion of the alloy when hydrogen is stored. In order to solve this drawback, the substrate is subjected to a surface treatment by a method such as plating a transition metal or a metal of the group IIIb of the periodic table to increase the affinity with the alloy and to reduce the difference in the coefficient of thermal expansion. Attempts have been made to reduce the size. However, this method has a problem in that the film thickness of the metal deposited on the surface of the substrate becomes large, so that the hole diameter of the substrate is narrowed and the hydrogen permeation ability is lowered.
Further, particularly when the surface is plated, the production cost is increased due to the complicated process, and it is still difficult to remove the water remaining on the substrate.

この発明は前記課題に鑑みてなされたもので、その目的
とするところは、優れた水素透過能力を有し、精製した
水素中に水分を混入させることがないとともに、基体に
対して剥離しにくく接合強度が高くピンホールを有さな
い水素吸蔵性薄膜を備えた水素分離媒体を簡略な工程で
製造し得る製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to have an excellent hydrogen permeation ability, not to mix water into purified hydrogen, and to prevent peeling from a substrate. It is an object of the present invention to provide a manufacturing method capable of manufacturing a hydrogen separation medium including a hydrogen storage thin film having high bonding strength and having no pinhole in a simple process.

「課題を解決するための手段」 請求項1記載の発明は前記課題を解決するために、多孔
質体からなる基体に、金属ハロゲン化物溶液、金属硝酸
塩溶液、あるいは金属硫酸塩溶液を接触せしめてCu,Zn,
Ni,Pd,Snの中から選択されるいずれかの金属元素の金属
核を分散状態で付着形成し、次いで真空雰囲気あるいは
還元雰囲気にて50〜1200℃の温度で乾燥処理および焼付
け処理を施して基体上の水分除去を行うと同時に金属核
の固定を行い、次いで前記基体上にスパッタ法により厚
さ50μm以下の水素吸蔵性薄膜を形成するものである。
[Means for Solving the Problem] In order to solve the above-mentioned problems, the invention according to claim 1 comprises contacting a metal halide solution, a metal nitrate solution or a metal sulfate solution with a substrate made of a porous body. Cu, Zn,
Ni, Pd, Sn is formed by depositing metal nuclei of any one of the metal elements in a dispersed state, and then dried and baked at a temperature of 50 to 1200 ° C in a vacuum atmosphere or a reducing atmosphere. At the same time as removing water from the substrate, the metal nuclei are fixed, and then a hydrogen storage thin film having a thickness of 50 μm or less is formed on the substrate by a sputtering method.

請求項2記載の発明は前記課題を解決するために、金属
核としてPdの金属核を用い、水素吸蔵性薄膜としてLaNi
2の薄膜を用いるものである。
In order to solve the above-mentioned problems, the invention according to claim 2 uses a Pd metal nucleus as a metal nucleus and LaNi as a hydrogen storage thin film.
The thin film of 2 is used.

請求項3記載の発明は前記課題を解決するために、多孔
質体からなる基体に、Pdのハロゲン化物溶液を接触せし
めてPdの金属核を分散状態で付着形成し、次いで真空雰
囲気あるいは還元雰囲気にて150℃以上の温度で乾燥処
理および焼付け処理を施して基体上の水分除去を行うと
同時にPdの金属核の固定を行い、次いで前記基体上にス
パッタ法によりLaNi2からなる非晶質状態の厚さ50μm
以下の水素吸蔵性薄膜を形成するものである。
In order to solve the above-mentioned problems, the invention according to claim 3 brings a Pd halide solution into contact with a substrate made of a porous body to deposit and form Pd metal nuclei in a dispersed state, and then to form a vacuum atmosphere or a reducing atmosphere. At 150 ° C or higher, the substrate is dried and baked to remove water on the substrate, and at the same time, the metal nuclei of Pd are fixed. Then, the amorphous state of LaNi 2 is sputtered on the substrate. Thickness of 50 μm
The following hydrogen storage thin film is formed.

以下、本発明の水素分離媒体の製造方法について詳しく
説明する。
Hereinafter, the method for producing the hydrogen separation medium of the present invention will be described in detail.

まず、多孔質体からなる基板(基体)を用意する。多孔
質体としては、SUSフィルター、セラミックスフィルタ
ー、多孔質ガラス等の耐熱性の高い材料からなるものが
好適に用いられ、またその平均孔径が1μm以下のもの
が好ましく、特に孔径分布が揃っているものが望まし
い。
First, a substrate (base) made of a porous body is prepared. As the porous body, one made of a material having high heat resistance such as a SUS filter, a ceramics filter, or a porous glass is preferably used, and the average pore diameter thereof is preferably 1 μm or less, and particularly the pore diameter distribution is uniform. Things are desirable.

次に、この基板表面に金属を付着して金属核を分散形成
する。ここで付着して金属核にするための金属として
は、Cu,Zn,Ni,Pd,Snのいずれかを用いる。
Next, a metal is attached to the surface of the substrate to disperse and form metal nuclei. Here, any one of Cu, Zn, Ni, Pd, and Sn is used as the metal for attaching to form a metal nucleus.

金属核の具体的な形成方法としては、前記金属のハロゲ
ン化物溶液、硝酸塩溶液あるいは硫酸塩溶液を用いる方
法が好適に採用される。これら金属塩溶液を用いる方法
としては、例えば使用する金属塩溶液を適宜にpH調整
し、次いでこの溶液中に基体を浸漬した後、乾燥・焼付
けするといった方法が採用される。また、より積極的な
方法として、導電性のない無機質材へメッキする場合に
常用される活性処理のように、電気化学的に電位が異る
金属イオンを交換させ、これにより基体上に金属核を形
成するといった方法を用いることもできる。
As a specific method for forming the metal nuclei, a method using a halide solution, a nitrate solution or a sulfate solution of the above metal is preferably adopted. As a method of using these metal salt solutions, for example, a method of appropriately adjusting the pH of the metal salt solution to be used, then immersing the substrate in this solution, followed by drying and baking is adopted. As a more active method, metal ions with electrochemically different potentials are exchanged as in the activation treatment commonly used when plating on a non-conductive inorganic material, which causes metal nuclei on the substrate. It is also possible to use a method of forming.

なお、基板に金属核形成処理を行うにあたっては、繰り
返し複数回処理するのが、基板と後述する水素吸蔵性金
属との親和力をより強めることができ、よって基板から
の水素吸蔵性金属の剥離を抑制することができるので好
ましい。この場合、基板の孔を閉塞しない程度に処理
し、金属核を形成しなくてはならないのは勿論である。
Note that when performing the metal nucleation treatment on the substrate, it is possible to further strengthen the affinity between the substrate and the hydrogen-storing metal described later by performing the treatment a plurality of times, and thus the hydrogen-storing metal is separated from the substrate. It is preferable because it can be suppressed. In this case, it goes without saying that the metal nuclei must be formed by treating the substrate to such an extent that it does not close the holes.

また、前記の如く金属塩溶液を用いて金属核を形成した
場合、処理後、真空雰囲気あるいは還元雰囲気にて50〜
1200℃の温度範囲で乾燥処理および焼付け処理をするの
が、作製する水素分離媒体の水分除去を行う点で有効で
あり、好ましい。
When the metal nuclei are formed by using the metal salt solution as described above, after the treatment, 50 to 50
It is preferable to perform the drying treatment and the baking treatment in the temperature range of 1200 ° C. from the viewpoint of removing the water content of the produced hydrogen separation medium.

その後、前記基板上に水素吸蔵性金属を堆積し、水素吸
蔵性薄膜を形成して水素分離媒体を得る。ここで水素吸
蔵性金属とは、ある条件下にて水素のみを可逆的に吸蔵
し、あるいは放出し、さらには透過する金属または合金
である。このような金属の代表例としてはLaNi5,TiMn
1.5等の合金群があり、一般に水素吸蔵合金といわれて
いる。また、Pd,V,Nb等の金属も水素吸蔵性を有するも
のであり、前記合金とともに本発明の水素吸蔵性金属と
して用いられるものである。
Then, a hydrogen storage metal is deposited on the substrate to form a hydrogen storage thin film to obtain a hydrogen separation medium. Here, the hydrogen occluding metal is a metal or alloy that reversibly occludes or desorbs only hydrogen under a certain condition and further permeates. Typical examples of such metals are LaNi 5 and TiMn.
There is a group of alloys such as 1.5, which is generally called a hydrogen storage alloy. Further, metals such as Pd, V and Nb also have a hydrogen storage property, and are used as the hydrogen storage metal of the present invention together with the above alloy.

なお、水素吸蔵性金属としてLaNi5,TiMn1.5等の合金群
を採用する場合には、その合金組成の制御が容易となる
ことから、スパッタリング法等の物理的方法がより好適
とされる。
When an alloy group such as LaNi 5 , TiMn 1.5 or the like is used as the hydrogen storage metal, a physical method such as a sputtering method is more suitable because the alloy composition can be easily controlled.

このような堆積方法によって基板に水素吸蔵性金属を堆
積すると、基板上に金属核が形成されていることから、
得られた水素吸蔵性金属の薄膜は前記金属核を介在する
ことによって基板と強固に接合する。
When a hydrogen storage metal is deposited on a substrate by such a deposition method, metal nuclei are formed on the substrate,
The obtained hydrogen storage metal thin film is firmly bonded to the substrate by interposing the metal nuclei.

このような物理的方法により堆積して得る薄膜として
は、非晶質状態でもよく、また結晶状態でも良いが、非
晶質状態のほうがより好ましい。なぜなら、結晶性合金
に比べ非晶質合金のほうが一般的に水素吸蔵時の格子の
体積膨張が少なく、また粒界が無いので割れにくいから
である。また薄膜の厚さとしては、例えばLaNi5,TiMn
1.5等の水素吸蔵合金を成膜する場合、50μm以下にす
るのが、単位面積当りの水素透過速度が向上するので好
ましい。
The thin film obtained by depositing by such a physical method may be in an amorphous state or a crystalline state, but the amorphous state is more preferable. This is because the amorphous alloy generally has less volume expansion of the lattice when hydrogen is absorbed and has no grain boundary, so that the amorphous alloy is less likely to be broken than the crystalline alloy. The thickness of the thin film is, for example, LaNi 5 , TiMn
When forming a film of a hydrogen storage alloy such as 1.5 , it is preferable that the thickness is 50 μm or less because the hydrogen permeation rate per unit area is improved.

このようにして得られた水素分離媒体を用い、例えば不
純物を含む原料水素ガスを精製するには、この原料水素
ガスを適宜な圧力にて水素分離媒体に通気する。すると
原料水素ガス中の水素分子は、水素吸蔵金属からなる薄
膜の表面で水素原子として解離し、優先的に薄膜内に拡
散することによって原料水素ガスから分離する。この場
合、原料水素ガスの圧力とこの原料水素ガス中の純水素
ガスの圧力との差により、水素原子は水素吸蔵性金属内
に拡散せしめられる。
To purify a raw material hydrogen gas containing impurities, for example, using the thus obtained hydrogen separation medium, the raw material hydrogen gas is passed through the hydrogen separation medium at an appropriate pressure. Then, hydrogen molecules in the raw material hydrogen gas are dissociated as hydrogen atoms on the surface of the thin film made of a hydrogen storage metal and preferentially diffused in the thin film to be separated from the raw material hydrogen gas. In this case, due to the difference between the pressure of the raw material hydrogen gas and the pressure of the pure hydrogen gas in the raw material hydrogen gas, hydrogen atoms are diffused in the hydrogen occluding metal.

また、この時の操作温度としては100℃〜500℃程度の温
度範囲が望ましく、500℃以上の温度で操業すると、多
孔質体からなる基板の孔が基板の熱膨張により小さくな
って通気抵抗が上昇し、さらに加熱費用も高くなって装
置の稼働コストが上昇するといった不都合を生ずる。ま
た、原料水素ガスを水素分離媒体に通気する際の圧力と
しては、操作温度における基板の曲げ強度によって主に
決定されるが、高圧ガス取締法の圧力範囲以下で操作す
るのが望ましい。
Further, the operating temperature at this time is preferably in a temperature range of about 100 ° C to 500 ° C, and when operating at a temperature of 500 ° C or higher, the pores of the substrate made of a porous body become small due to the thermal expansion of the substrate and the ventilation resistance is reduced. In addition, the heating cost rises and the operating cost of the apparatus rises. The pressure at which the raw hydrogen gas is passed through the hydrogen separation medium is mainly determined by the bending strength of the substrate at the operating temperature, but it is desirable to operate within the pressure range of the high pressure gas control method.

なお、このようにして原料水素ガスを精製する場合、用
いる原料水素ガスの純度としては、水素分離媒体におけ
る水素分離用金属薄膜の表面酸化を考えると酸化性ガス
の少ないことが好ましく、酸化性ガスが総計で0.1%以
下である原料水素ガスを用いるのが、水素分離媒体の耐
久性の面で有利である。
When purifying the raw material hydrogen gas in this manner, the purity of the raw material hydrogen gas used is preferably a small amount of oxidizing gas considering the surface oxidation of the hydrogen separation metal thin film in the hydrogen separation medium. It is advantageous in terms of durability of the hydrogen separation medium to use the raw material hydrogen gas whose total content is 0.1% or less.

「作用」 請求項1記載の方法によれば、多孔質体からなる基体
に、金属ハロゲン化物溶液、金属硝酸塩溶液、あるいは
金属硫酸塩溶液を接触せしめてCu,Zn,Ni,Pd,Snの中から
選択されるいずれかの金属元素の金属核を分散状態で付
着形成し、次いで真空雰囲気あるいは還元雰囲気にて50
〜1200℃の温度で乾燥処理および焼付け処理を施して基
体上の水分除去を行うと同時に金属核の固定を行い、次
いで前記基体上にスパッタ法により厚さ50μm以下の水
素吸蔵性薄膜を形成するので、基体上に乾燥処理および
焼付け処理により金属核を強固に固定できるとともに、
基体上の金属核周囲の不要な水分や溶媒を除去すること
ができ、更にその上にスパッタ法により水素吸蔵性薄膜
を形成するので、水素吸蔵性薄膜が不要な水分の無い状
態で金属核を介して強固に基体に密着する。よって水素
吸蔵性薄膜が基体から剥離することがない。また、前述
の如く良好な条件で金属核を介して基体上に水素吸蔵性
薄膜を形成するのでピンホールの無い良質な水素吸蔵性
薄膜が生成される。また、得られた水素吸蔵性薄膜内へ
の水分や溶媒の残留を防止できるので、水素を精製した
場合に水素中への水分の混入を防止することができ、露
点が低く、水分を十分に除去した良質の水素ガスを得る
ことができる。
[Operation] According to the method of claim 1, a metal halide solution, a metal nitrate solution, or a metal sulfate solution is brought into contact with a substrate made of a porous material to obtain a Cu, Zn, Ni, Pd, Sn solution. Metal nuclei of one of the metal elements selected from
Drying and baking are performed at a temperature of ~ 1200 ° C to remove water on the substrate and at the same time fix the metal nuclei, and then form a hydrogen-absorbing thin film having a thickness of 50 µm or less on the substrate by sputtering. Therefore, the metal nuclei can be firmly fixed on the substrate by the drying treatment and the baking treatment.
Unnecessary water and solvent around the metal nuclei on the substrate can be removed, and the hydrogen-storing thin film is formed thereon by the sputtering method. It firmly adheres to the base body through. Therefore, the hydrogen storage thin film does not peel off from the substrate. Further, as described above, since the hydrogen-storing thin film is formed on the substrate through the metal nuclei under good conditions, a good quality hydrogen-storing thin film without pinholes is produced. In addition, since it is possible to prevent water and solvent from remaining in the obtained hydrogen-absorbing thin film, it is possible to prevent water from being mixed into hydrogen when hydrogen is purified, and the dew point is low and the water content is sufficient. It is possible to obtain the removed high-quality hydrogen gas.

請求項2記載の発明によれば、金属核としてPdの金属核
を用い、水素吸蔵性薄膜としてLaNi2の薄膜を用いるの
で、ピンホールの無い良質な水素吸蔵性薄膜を確実に得
ることができる。
According to the invention of claim 2, since the Pd metal nuclei are used as the metal nuclei and the LaNi 2 thin film is used as the hydrogen storage thin film, it is possible to surely obtain a good quality hydrogen storage thin film without pinholes. .

請求項3記載の発明によれば、請求項1と請求項2記載
の発明で得られる効果を得られる上に、基体上の不要な
水分や溶媒を完全に除去することができ、より品質の高
い水素吸蔵性薄膜を得ることができる。更に、水素吸蔵
性薄膜を非晶質のものとすることで、水素吸蔵時の堆積
膨張を少なくできるとともに、粒界が無いので割れにく
く、剥離しにくい水素吸蔵性薄膜が得られる。
According to the invention of claim 3, in addition to obtaining the effects obtained by the inventions of claims 1 and 2, unnecessary water and solvent on the substrate can be completely removed, and a higher quality can be obtained. A high hydrogen storage thin film can be obtained. Furthermore, by making the hydrogen storage thin film amorphous, it is possible to reduce the deposition expansion during hydrogen storage, and it is possible to obtain a hydrogen storage thin film that is hard to crack and peels off because there are no grain boundaries.

「実施例」 以下、この発明の製造方法を実施例によりさらに具体的
に説明する。
[Examples] Hereinafter, the production method of the present invention will be described more specifically with reference to Examples.

まず、基板としてシラス組成を有し、50mm×50mmで厚さ
0.5mmの正方形板状の多孔質ガラスを用意した。なお、
この多孔質ガラスの平均孔径は3000Åであった。
First, it has a shirasu composition as a substrate and a thickness of 50 mm x 50 mm.
A 0.5 mm square plate-shaped porous glass was prepared. In addition,
The average pore diameter of this porous glass was 3000Å.

次に、用意した多孔質ガラス基板をアセトンで洗浄し、
その後以下に示す(1)〜(5)の操作手順で表面処理
を行い、基板表面上に金属核を分散形成した。
Next, wash the prepared porous glass substrate with acetone,
After that, the surface treatment was performed by the following operation procedure (1) to (5) to disperse and form metal nuclei on the substrate surface.

(1)前記基板を処理容器内に入れ、この容器内に、MA
C-100(奥野製薬工業(株)社製;HCl+SnCl2水溶液)を
水50ml中に5mlの割合で加えて作製した処理液を入れ、
常温にて1〜2分間処理液を攪拌し、表面処理を行う。
(1) Put the substrate in a processing container, and put MA in the container.
C-100 (Okuno Pharmaceutical Co., Ltd .; HCl + SnCl 2 aqueous solution) was added to 50 ml of water at a ratio of 5 ml to prepare a treatment liquid,
The surface treatment is performed by stirring the treatment liquid at room temperature for 1 to 2 minutes.

(2)処理容器から基板を取り出し、多量の水で洗浄す
る。
(2) Remove the substrate from the processing container and wash it with a large amount of water.

(3)洗浄後の基板を再度別の処理容器内に入れ、この
容器内に、MAC-200(奥野製薬工業(株)社製;HCl+PdC
l2水溶液)を水50ml中に5mlの割合で加えて作製した処
理液を入れ、常温にて1〜2分間処理液を攪拌し、表面
処理を行う。
(3) The substrate after cleaning is put in another processing container again, and MAC-200 (manufactured by Okuno Chemical Industries Co., Ltd .; HCl + PdC) is placed in this processing container again.
( 2 ) Aqueous solution is added to 50 ml of water at a ratio of 5 ml to prepare a treatment liquid, and the treatment liquid is stirred at room temperature for 1 to 2 minutes to perform surface treatment.

(4)処理容器から基板を取り出し、多量の水で洗浄す
る。
(4) Remove the substrate from the processing container and wash it with a large amount of water.

(5)(1)〜(4)までの工程を5回繰り返し、その
後150℃の温度にて30分間真空乾燥し、これによりPd金
属核を基板表面に形成する。
(5) The steps (1) to (4) are repeated 5 times, and then vacuum-dried at a temperature of 150 ° C. for 30 minutes, whereby Pd metal nuclei are formed on the substrate surface.

次いで、高周波マグネトロンスパッタ法を用い、以下の
条件により前記基板の表面上にLaNi2を堆積し、薄膜を
形成して水素分離媒体を得た。
Then, using a high-frequency magnetron sputtering method, LaNi 2 was deposited on the surface of the substrate under the following conditions to form a thin film to obtain a hydrogen separation medium.

ここで、スパッタリングターゲットとしては分割型ター
ゲットを使用した。この分割型ターゲットの分割角はL
a:40°,Ni:50°であり、それぞれ4枚用意してディスク
状に張り合わせ、ターゲットとした。また、スパッタリ
ング条件は以下の通りとした。
Here, a split target was used as the sputtering target. The split angle of this split target is L
It was a: 40 ° and Ni: 50 °, and four each were prepared and laminated in a disk shape to obtain a target. The sputtering conditions were as follows.

(i)雰囲気 4×10-3Torr(Ar) (ii)基板乾燥 150℃, 300sec, (iii)エッチング 150℃,200W, 30sec, (iv)プレスパッタ 200W,180sec, (v)スパッタ 100℃,800W,1800sec, 前記条件でスパッタリングして得られた薄膜は、その厚
さが5μmであり、LaNi2の組成を有していた。
(I) Atmosphere 4 × 10 -3 Torr (Ar) (ii) Substrate drying 150 ° C, 300sec, (iii) Etching 150 ° C, 200W, 30sec, (iv) Pre-sputtering 200W, 180sec, (v) Sputtering 100 ° C, The thin film obtained by sputtering at 800 W for 1800 sec under the above conditions had a thickness of 5 μm and had a composition of LaNi 2 .

このようにして得られた水素分離媒体を、その成膜直後
に130℃,15atmで水素加圧し、水素吸蔵後の状態をX線
回折したところ、LaNi2からなる水素吸蔵合金薄膜が非
晶質状態になっていることが確認された。
Immediately after film formation, the hydrogen separation medium thus obtained was pressurized with hydrogen at 130 ° C. and 15 atm, and the state after hydrogen storage was subjected to X-ray diffraction. As a result, a hydrogen storage alloy thin film composed of LaNi 2 was found to be amorphous. It was confirmed that it was in a state.

さらに、この水素分離媒体を300℃,15atmで水素加圧し
た後、走査型電子顕微鏡を用いてその状態を観察したこ
とろ、薄膜にピンホールは観察されず、また水素吸蔵性
合金(LaNi2)とは基板との剥離も観察されず良好な状
態を保持していた。
Furthermore, after hydrogen-pressurizing this hydrogen separation medium at 300 ° C. and 15 atm, the state was observed using a scanning electron microscope. No pinholes were observed in the thin film, and the hydrogen storage alloy (LaNi 2 No peeling from the substrate was observed, and a good condition was maintained.

次に、このようにして得られた水素分離媒体を第1図に
示す水素分離用装置に装填し、Heリーク量を測定した。
第1図において符号1は水素分離装置、2は前記実施例
によって得られた水素分離媒体である。
Next, the hydrogen separation medium thus obtained was loaded into the hydrogen separation apparatus shown in FIG. 1 and the amount of He leak was measured.
In FIG. 1, reference numeral 1 is a hydrogen separation device, and 2 is a hydrogen separation medium obtained in the above embodiment.

測定の操作方法を説明すると、まず水素分離装置1内の
処理室内に第1図に示すように水素分離媒体2をセット
する。ここで水素分離装置1は、断熱材からなる外壁3
内に処理室4を形成し、外壁3と処理室4との間に後述
する温度コントローラに接続されたヒータ5を配したも
ので、処理室4の前後方向にそれぞれガス供給管6とガ
ス排出管7とを外壁外に通じるよう配管したものであ
る。また、水素分離媒体2をセットするにあたっては、
水素吸蔵性金属からなる薄膜側をガス供給管6側とし、
分離媒体2の前後を2個のOリング8,8により固定して
処理室4内における分離媒体2前後の空間を分離媒体2
によって気密に遮断した。
Explaining the operation method of the measurement, first, the hydrogen separation medium 2 is set in the processing chamber in the hydrogen separation apparatus 1 as shown in FIG. Here, the hydrogen separator 1 includes an outer wall 3 made of a heat insulating material.
A processing chamber 4 is formed inside, and a heater 5 connected to a temperature controller to be described later is arranged between the outer wall 3 and the processing chamber 4, and a gas supply pipe 6 and a gas exhaust are provided in the front-back direction of the processing chamber 4, respectively. The pipe 7 is connected to the outside of the outer wall. When setting the hydrogen separation medium 2,
The thin film side made of a hydrogen-absorbing metal is the gas supply pipe 6 side,
The front and rear of the separation medium 2 are fixed by two O-rings 8, 8 so that the space before and after the separation medium 2 in the processing chamber 4 is separated.
Airtightly shut off by.

次いで、処理室4に図示略の蓋をして処理室4内を気密
にし、その後ガス供給管6より一定量のHeガスを処理室
4内に供給し、ガス排出管7からのHeガスの排出量を測
定してHeリーク量を調べた。なお、測定に際しては、温
度コントローラー9に接続された温度センサ10を予めガ
ス供給管6内に挿通配置し、温度センサ9で検出された
ガス温度から温度コントローラ10によりヒータ5を制御
して供給ガスの温度を一定にした。また、処理室4内に
供給する供給ガスの流量は、供給ガスの一部をガス供給
管6に接続されたバイパス管11に逃がすことによって一
定にした。
Next, the processing chamber 4 is covered with a lid (not shown) to make the inside of the processing chamber 4 airtight, and then a certain amount of He gas is supplied from the gas supply pipe 6 into the processing chamber 4 to remove the He gas from the gas discharge pipe 7. The emission amount was measured and the He leak amount was examined. At the time of measurement, the temperature sensor 10 connected to the temperature controller 9 is previously inserted and arranged in the gas supply pipe 6, and the heater 5 is controlled by the temperature controller 10 from the gas temperature detected by the temperature sensor 9 to supply gas. Temperature was kept constant. Further, the flow rate of the supply gas supplied into the processing chamber 4 was made constant by allowing a part of the supply gas to escape to the bypass pipe 11 connected to the gas supply pipe 6.

このようにしてHeガスのリーク量を調べたところ、リー
ク量は2.0×10-9atm・cc/sec以下であり、作製した薄膜
にピンホールがないことが確認された。
When the leak amount of He gas was examined in this manner, the leak amount was 2.0 × 10 −9 atm · cc / sec or less, and it was confirmed that the produced thin film had no pinhole.

次いで、第1図に示した水素分離装置を用いてこれに前
記水素分離媒体をセットし、Ar:30vol%,H2:70vol%の
混合原料水素ガスを300℃、10atmで通気して水素分離能
試験を行った。その結果、混合原料水素ガスは99.99vol
%の純度の水素に精製され、本発明によって得られた水
素分離媒体は高い水素ガス分離能があることが確認され
た。
Then, using the hydrogen separation device shown in FIG. 1, the above hydrogen separation medium was set in the hydrogen separation device, and a mixed raw material hydrogen gas of Ar: 30 vol% and H 2 : 70 vol% was aerated at 300 ° C. and 10 atm for hydrogen separation. Noh test was conducted. As a result, mixed raw material hydrogen gas is 99.99vol
It was confirmed that the hydrogen separation medium obtained according to the present invention, which had been purified to hydrogen with a purity of%, had a high hydrogen gas separation ability.

また、上述した方法によって得られた水素分離媒体(本
発明試料)と、本実施例で用いた多孔質ガラス基板にCu
の無電解メッキを施し、先に示した(5)の乾燥処理を
施し、さらに実施例と同様の条件で水素吸蔵性合金膜を
作製した試料とをそれぞれ用い、前記水素分離能試験と
同一の条件で水素を精製し、得られた精製水素の露点を
測定してその結果を第1表に示す。
In addition, the hydrogen separation medium obtained by the method described above (sample of the present invention) and Cu on the porous glass substrate used in this example.
Electroless plating was performed, and the drying treatment of (5) described above was performed, and a sample in which a hydrogen-absorbing alloy film was produced under the same conditions as in the examples was used. Hydrogen was purified under the conditions, the dew point of the obtained purified hydrogen was measured, and the results are shown in Table 1.

第1表に示した結果より、本発明試料によって精製され
た水素は純度99.99%の原料水素ガスよりも露点が低
く、ほぼ完全に水分が除去されていることが確認され
た。一方、Cuの無電解メッキ処理を施した試料によって
得られた精製水素では、原料水素ガスよりも露点が高
く、したがって水分が精製水素中に混在していると考え
られることから、試料より水分が発生していると推察さ
れる。なお、このときの水素透過速度はいずれも0.56cm
3/cm2・secであった。
From the results shown in Table 1, it was confirmed that the hydrogen purified by the sample of the present invention has a lower dew point than the raw material hydrogen gas having a purity of 99.99% and the water is almost completely removed. On the other hand, in the purified hydrogen obtained by the sample subjected to the electroless plating of Cu, the dew point is higher than that of the raw material hydrogen gas, and it is considered that the moisture is mixed in the purified hydrogen. It is suspected that it has occurred. The hydrogen permeation rate at this time was 0.56 cm in all cases.
It was 3 / cm 2 · sec.

以上の結果より、本発明の製造方法によって得られた水
素分離媒体は、水分がほぼ完全に除去されているのこと
から基板からの水素吸蔵性合金の剥離が抑制されている
ことがわかり、よって本発明による水素分離媒体は十分
使用に耐えうるものであることが確認された。
From the above results, it was found that the hydrogen separation medium obtained by the production method of the present invention has suppressed the peeling of the hydrogen storage alloy from the substrate because the water content is almost completely removed. It was confirmed that the hydrogen separation medium according to the present invention is sufficiently durable for use.

「発明の効果」 以上説明したように、請求項1記載の方法によれば、多
孔質体からなる基体に、金属ハロゲン化物溶液、金属硝
酸塩溶液、あるいは金属硫酸塩溶液を接触せしめてCu,Z
n,Ni,Pd,Snの中から選択されるいずれかの金属元素の金
属核を分散状態で付着形成し、次いで真空雰囲気あるい
は還元雰囲気にて50〜1200℃の温度で乾燥処理および焼
付け処理を施して基体上の水分除去を行うと同時に金属
核の固定を行い、次いで前記基体上にスパッタ法により
厚さ50μm以下の水素吸蔵性薄膜を形成するので、基体
上に乾燥処理および焼付け処理により金属核を強固に固
定できるとともに、基体上の金属核周囲の不要な水分や
溶媒を除去することができ、更にその上にスパッタ法に
より水素吸蔵性薄膜を形成するので、水素吸蔵性薄膜が
不要な水分の無い状態で金属核を介して強固に基体に密
着する。よって水素吸蔵性薄膜が基体から剥離すること
がない。
"Effects of the Invention" As described above, according to the method of claim 1, the metal halide solution, the metal nitrate solution, or the metal sulfate solution is brought into contact with the substrate made of a porous body to form Cu, Z.
Metal nuclei of any metal element selected from n, Ni, Pd, and Sn are deposited and formed in a dispersed state, and then dried and baked at a temperature of 50 to 1200 ° C in a vacuum atmosphere or a reducing atmosphere. The metal nuclei are fixed at the same time as the removal of water on the substrate, and then a hydrogen-absorbing thin film having a thickness of 50 μm or less is formed on the substrate by a sputtering method. The nucleus can be firmly fixed, and unnecessary moisture and solvent around the metal nucleus on the substrate can be removed. Furthermore, the hydrogen storage thin film is formed on the substrate by the sputtering method, so that the hydrogen storage thin film is unnecessary. Firmly adheres to the substrate through the metal core in the absence of water. Therefore, the hydrogen storage thin film does not peel off from the substrate.

また、前述の如く良好な条件で金属核を介して基体上に
水素吸蔵性薄膜を形成するのでピンホールの無い良質な
高い水素分離能を有する水素吸蔵性薄膜を得ることがで
きる。そして、ピンホールのない均一な水素吸蔵性薄膜
を得ることができるので、従来のものに比べて水素吸蔵
性薄膜の厚さを薄くでき、従ってこの水素分離媒体を用
いれば水素の透過速度が大きくなることから、水素分離
媒体自身をコンパクトにすることができる。
Further, as described above, since the hydrogen-storing thin film is formed on the substrate through the metal nuclei under favorable conditions, it is possible to obtain a high-quality hydrogen-storing thin film having no pinhole and having high hydrogen separation ability. Since a uniform hydrogen-storing thin film without pinholes can be obtained, the thickness of the hydrogen-storing thin film can be made thinner than that of the conventional one. Therefore, when this hydrogen separation medium is used, the hydrogen permeation rate is high. Therefore, the hydrogen separation medium itself can be made compact.

更に、金属核の形成後に乾燥処理と焼付け処理を行い、
その上にスパッタ法で水素吸蔵性薄膜を形成するので、
得られた水素吸蔵性薄膜内への水分や溶媒の残留を防止
でき、本発明方法で得られた水素分離媒体を用いて水素
を精製した場合に水素中への水分の混入を防止すること
ができ、露点が低く、水分を十分に除去した水素ガスを
得ることができる。
Furthermore, after forming the metal nuclei, a drying process and a baking process are performed,
Since a hydrogen storage thin film is formed on it by the sputtering method,
It is possible to prevent water and a solvent from remaining in the obtained hydrogen-absorbing thin film, and prevent mixing of water in hydrogen when hydrogen is purified using the hydrogen separation medium obtained by the method of the present invention. It is possible to obtain hydrogen gas having a low dew point and sufficiently removed water.

更にまた、基体に溶液を接触させ、更に乾燥処理と焼付
け処理を行い、スパッタリングを行うといった簡略な工
程により水素分離媒体を製造するものであるから、水素
分離媒体を製造コストを低減することができる。
Furthermore, since the hydrogen separation medium is manufactured by a simple process such as bringing the solution into contact with the substrate, further performing a drying process and a baking process, and performing sputtering, the manufacturing cost of the hydrogen separation medium can be reduced. .

請求項2記載の発明によれば、金属核としてPdの金属核
を用い、水素吸蔵性薄膜としてLaNi2の薄膜を用いるの
で、ピンホールの無い良質な水素吸蔵性薄膜を確実に得
ることができる。
According to the invention of claim 2, since the Pd metal nuclei are used as the metal nuclei and the LaNi 2 thin film is used as the hydrogen storage thin film, it is possible to surely obtain a good quality hydrogen storage thin film without pinholes. .

請求項3記載の発明によれば、請求項1と請求項2記載
の発明で得られる効果を得られる上に、基体上の不要な
水分や溶媒を完全に除去することができ、水分を含んで
いないより品質の高い水素吸蔵性薄膜を得ることができ
る。更に、水素吸蔵性薄膜を非晶質のものとすること
で、水素吸蔵時の堆積膨張を少なくできるとともに、粒
界が無いので割れにくく、剥離しにくい水素吸蔵性薄膜
を得ることができる。
According to the invention described in claim 3, in addition to obtaining the effects obtained by the inventions of claims 1 and 2, unnecessary water and solvent on the substrate can be completely removed, and water containing water can be contained. It is possible to obtain a higher quality hydrogen storage thin film. Furthermore, by making the hydrogen storage thin film amorphous, it is possible to reduce the deposition expansion during hydrogen storage, and it is possible to obtain a hydrogen storage thin film that is hard to crack and peel off because there are no grain boundaries.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明によって得られた水素分離媒体の水素
分離能を調べるための試験方法を説明するための図であ
って、水素分離装置の概略構成図である。 1……水素分離装置、 2……水素分離媒体。
FIG. 1 is a diagram for explaining a test method for investigating the hydrogen separation ability of the hydrogen separation medium obtained by the present invention, and is a schematic configuration diagram of the hydrogen separation device. 1 ... Hydrogen separation device, 2 ... Hydrogen separation medium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽坂 智 神奈川県川崎市幸区塚越4―320 日本酸 素株式会社内 審査官 柳 和子 (56)参考文献 特開 昭62−273029(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Hasaka 4-320 Tsukagoshi, Sachi-ku, Kawasaki-shi, Kanagawa Examiner, Kazuko Yanagi (56) )

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多孔質体からなる基体に、金属ハロゲン化
物溶液、金属硝酸塩溶液、あるいは金属硫酸塩溶液を接
触せしめてCu,Zn,Ni,Pd,Snの中から選択されるいずれか
の金属元素の金属核を分散状態で付着形成し、次いで真
空雰囲気あるいは還元雰囲気にて50〜1200℃の温度で乾
燥処理および焼付け処理を施して基体上の水分除去を行
うと同時に金属核の固定を行い、次いで前記基体上にス
パッタ法により厚さ50μm以下の水素吸蔵性薄膜を形成
することを特徴とする水素分離媒体の製造方法。
1. A metal selected from Cu, Zn, Ni, Pd, and Sn by bringing a metal halide solution, a metal nitrate solution, or a metal sulfate solution into contact with a substrate made of a porous body. The metal nuclei of the element are deposited and formed in a dispersed state, and then dried and baked at a temperature of 50 to 1200 ° C in a vacuum atmosphere or a reducing atmosphere to remove water on the substrate and simultaneously fix the metal nuclei. Then, a method for producing a hydrogen separation medium, characterized in that a hydrogen storage thin film having a thickness of 50 μm or less is formed on the substrate by a sputtering method.
【請求項2】金属核としてPdの金属核を用い、水素吸蔵
性薄膜としてLaNi2の薄膜を用いることを特徴とする請
求項1記載の水素分離媒体の製造方法。
2. The method for producing a hydrogen separation medium according to claim 1, wherein a Pd metal nucleus is used as the metal nucleus, and a LaNi 2 thin film is used as the hydrogen storage thin film.
【請求項3】多孔質体からなる基体に、Pdのハロゲン化
物溶液を接触せしめてPdの金属核を分散状態で付着形成
し、次いで真空雰囲気あるいは還元雰囲気にて150℃以
上の温度で乾燥処理および焼付け処理を施して基体上の
水分除去を行うと同時にPdの金属核の固定を行い、次い
で前記基体上にスパッタ法によりLaNi2からなる非晶質
状態の厚さ50μm以下の水素吸蔵性薄膜を形成すること
を特徴とする水素分離媒体の製造方法。
3. A Pd halide solution is brought into contact with a substrate made of a porous body to deposit and form Pd metal nuclei in a dispersed state, and then dried at a temperature of 150 ° C. or higher in a vacuum atmosphere or a reducing atmosphere. And a baking treatment is performed to remove water on the substrate and at the same time to fix Pd metal nuclei, and then a hydrogen storage thin film of LaNi 2 having an amorphous state and a thickness of 50 μm or less is formed on the substrate by a sputtering method. A method for producing a hydrogen separation medium, which comprises:
JP1092050A 1989-04-12 1989-04-12 Method for producing hydrogen separation medium Expired - Lifetime JPH0686283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092050A JPH0686283B2 (en) 1989-04-12 1989-04-12 Method for producing hydrogen separation medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092050A JPH0686283B2 (en) 1989-04-12 1989-04-12 Method for producing hydrogen separation medium

Publications (2)

Publication Number Publication Date
JPH02271901A JPH02271901A (en) 1990-11-06
JPH0686283B2 true JPH0686283B2 (en) 1994-11-02

Family

ID=14043686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092050A Expired - Lifetime JPH0686283B2 (en) 1989-04-12 1989-04-12 Method for producing hydrogen separation medium

Country Status (1)

Country Link
JP (1) JPH0686283B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generating device for fuel cell and composite material for hydrogen separation
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP2006520686A (en) * 2003-03-21 2006-09-14 ウスター ポリテクニック インスティチュート Composite gas separation module with intermediate metal layer
WO2004098751A1 (en) * 2003-05-02 2004-11-18 Worcester Polytechnic Institute Composite gas separation modules having high tamman temperature intermediate layers
AU2008236737A1 (en) 2007-04-05 2008-10-16 Worcester Polytechnic Institute Composite structures with porous anodic oxide layers and methods of fabrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273029A (en) * 1986-05-20 1987-11-27 Ise Kagaku Kogyo Kk Medium for separating hydrogen

Also Published As

Publication number Publication date
JPH02271901A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP3213430B2 (en) Gas separator and method for producing the same
EP0822161B1 (en) Gas separator
US7727596B2 (en) Method for fabricating a composite gas separation module
EP0818233A2 (en) Gas separator
AU2004224371B2 (en) Method for fabricating composite gas separation modules
Li et al. Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique
US6828037B2 (en) Hydrogen-permeable structure and method for manufacture thereof or repair thereof
WO2006031080A1 (en) Preparation method of palladium alloy composite membrane for hydrogen separation
JP2007535393A (en) Defect correction methods in the manufacture of composite gas separation modules.
JPH0686283B2 (en) Method for producing hydrogen separation medium
US9149762B2 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP3117276B2 (en) Hydrogen separation membrane
JPH03146122A (en) Manufacture of hydrogen separation membrane
JP3399694B2 (en) Method for producing gas separator
JPH04346824A (en) Hydrogen separating membrane
JP4112856B2 (en) Method for producing gas separator
JP2006346621A (en) Hydrogen separation membrane and hydrogen separation method
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP3396470B2 (en) Method for producing Pd-based hydrogen separation membrane
JPH02268817A (en) Production of hydrogen separating medium
JPH02271902A (en) Production of hydrogen separating medium
JPH02268818A (en) Hydrogen separating material
Akis Preparation of Pd-Ag/PSS Composite Membranes for Hydrogen Separation
JPH06304457A (en) Hydrogen separating membrane
WO1996000608A1 (en) Gas separator and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term