JPH0685507A - Magnetstatic microwave device - Google Patents

Magnetstatic microwave device

Info

Publication number
JPH0685507A
JPH0685507A JP23547292A JP23547292A JPH0685507A JP H0685507 A JPH0685507 A JP H0685507A JP 23547292 A JP23547292 A JP 23547292A JP 23547292 A JP23547292 A JP 23547292A JP H0685507 A JPH0685507 A JP H0685507A
Authority
JP
Japan
Prior art keywords
magnetostatic wave
value
thin plate
magnetostatic
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23547292A
Other languages
Japanese (ja)
Inventor
Shigeru Takeda
茂 武田
Yasuhide Murakami
安英 邑上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23547292A priority Critical patent/JPH0685507A/en
Publication of JPH0685507A publication Critical patent/JPH0685507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide the high-performance device provided with a high Q value without lowering the entire impedance by using a magnetostatic resonance element which is slender vertically in the current direction of microwaves and is provided with a ratio between the long side and the short side larger than a specified value. CONSTITUTION:This device is composed of a magnetostatic wave resonating element 1 in the shape of a rectangular thin plate, microstrip line 2 which terminal is short- circuited, and ground conductor 3. Then, an external magnetic field Hext is vertically impressed to the plane of the thin plate so as to generate ferrimagnetic resonance. In this case, the ratio between the long side and short side of the magnetostatic wave element 1 in the shape of the rectangular thin plate is set >=1.5. This is because the change of a ferrimagnetic resonance half value width is considerable on the condition of W/Lo <1.5, when the length of the magnetostatic wave element in the microwave current direction is defined as Lo and the width is defined as W, and the change is turned to an almost fixed low value on the condition of W/Lo >=1.5. Thus, the magnetostatic wave element 1 can be regarded as a centralized constant element for the microwave circuit, and the YIG film of large volume can be built across so as to provide the high impedance while keeping the high Q value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フェリ磁性共鳴を利用
した静磁波素子と静磁波を励起する手段を具備する静磁
波マイクロ波装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostatic wave microwave device having a magnetostatic wave element utilizing ferrimagnetic resonance and means for exciting the magnetostatic wave.

【0002】[0002]

【従来の技術】静磁波マイクロ波装置として、GGG
(ガドリニウム・ガリウム・ガ−ネット)非磁性基板上
に、フェリ磁性体であるYIG(イットリウム・鉄・ガ
−ネット)薄膜を液相エピタキシャル成長(以下LPE
という)させたYIG薄膜をファトリソグラフィー技術
による選択エッチングや機械加工により円形あるいは矩
型等の所要形状に加工し、これらのフェリ磁性共鳴を利
用することによって、フィルタ、オシレータ等の静磁波
マイクロ波装置を構成するものが提案されている。これ
らの静磁波マイクロ波装置は、マイクロストリップライ
ン等を伝送線路としてマイクロ波集積回路を作製するこ
とが可能であり、他のマイクロ波集積回路とハイブリッ
ド接続を容易に行うことができるという利点がある。ま
た、YIG薄膜のフェリ磁性共鳴による静磁波素子は、
上述のようにLPEと加工技術によって作製できること
から量産性に優れている。このようにYIG薄膜静磁波
素子による静磁波マイクロ波装置は、これまでのYIG
球を用いたものに比較し、実用上の多くの利点を有す
る。とことが、このようなYIG薄膜のフェリ磁性共鳴
を利用した静磁波マイクロ波装置は、YIG薄膜の幾何
学的な形状によりその性能が大きく左右される。特に、
大きなインピ−ダンスを得ようとすると、大きな面積や
膜厚の厚いYIG薄膜が必要となる。これはマイクロ波
回路の小型化だけでなく、高性能を維持しようとする場
合、設計上大きな問題となる。図6は、従来技術による
矩型状の薄板静磁波素子1を用いた静磁波マイクロ波装
置の構造図である。矩型状の薄板静磁波素子1が、終端
短絡のマイクロストリップライン2と地導体3の間に装
架されている。フェリ磁性共鳴を生じさせるために外部
磁界Hextが薄板の平面に垂直に印加されている。従来
技術では、矩型の2辺Lo、Wの大小関係はほとんど同
じであり、正方形に近いものがほとんどであった。一
部、既出版物(USP4782312)の中には細長い
形状のものが記述されているが、長辺と短辺の大小関係
に関してその重要性が全く触れられていない。これまで
の構成では、マイクロストリップラインの入力側から見
た共振時のインピ−ダンスRを大きくしようとすると、
静磁波素子1の寸法Lo、W、tを同時に大きくしてゆ
く方法が取られてきた。本来、静磁波素子1は、図8に
示すように、入力端子からdだけ離れた部分に集中定数
型のLCの並列共振器が接続されているのが理想的な等
価回路である。しかし、高インピ−ダンスを得るための
従来技術の方法では、Loの長さが波長に対して無視で
きなくなり、図9のように、Loの間に無数の共振器が
分布接続された等価回路となる。このことは位相の異な
るマイクロ波で励起された複数の共振器を同時に観測し
たことに相当し、静磁波共振素子の本来の高Q値を外部
に取り出すことができないという欠点につながる。ま
た、逆に高いQ値を得ようとして、Lo、W、tを同時
に小さくしてゆくと、Q値は改善されるが、全体のマイ
クロ波エネルギ−に対する静磁波素子の担うエネルギ−
分が低下し、好ましくない。すなわち、電気回路的に
は、共振時のインピ−ダンスが著しく低下することに相
当する。図7は、従来技術による円形状の薄板静磁波素
子を用いた静磁波マイクロ波装置の構造図である。本構
成においても、前述の関係は変わらない。すなわち、高
い共振時のインピ−ダンスを得ようとして外径Dと厚み
tを大きくすると、静磁波素子のQ値は低下し、高いQ
を得ようとすしてDとtを小さくすると、共振時のイン
ピ−ダンスが低下する。
2. Description of the Related Art As a magnetostatic wave microwave device, GGG is used.
Liquid phase epitaxial growth of YIG (yttrium, iron, garnet) thin film, which is a ferrimagnetic material, on a (gadolinium, gallium, garnet) non-magnetic substrate (hereinafter referred to as LPE).
The processed YIG thin film is processed into a desired shape such as a circular shape or a rectangular shape by selective etching or mechanical processing using fattolithography technology, and by utilizing these ferrimagnetic resonance, a magnetostatic wave microwave device such as a filter or an oscillator is used. Are proposed. These magnetostatic microwave devices have an advantage that a microwave integrated circuit can be manufactured using a microstrip line or the like as a transmission line, and hybrid connection with other microwave integrated circuits can be easily performed. . Further, the magnetostatic wave device by ferrimagnetic resonance of the YIG thin film is
Since it can be produced by LPE and processing techniques as described above, it is excellent in mass productivity. As described above, the magnetostatic wave microwave device using the YIG thin film magnetostatic wave element is the same as the conventional YIG thin film magnetostatic wave device.
It has many practical advantages compared to those using spheres. That is, the performance of the magnetostatic wave microwave device using the ferrimagnetic resonance of the YIG thin film is greatly influenced by the geometrical shape of the YIG thin film. In particular,
In order to obtain a large impedance, a large YIG thin film having a large area and a large film thickness is required. This is a big design problem when not only miniaturizing the microwave circuit but also maintaining high performance. FIG. 6 is a structural diagram of a magnetostatic wave microwave device using a rectangular thin plate magnetostatic wave element 1 according to the related art. The rectangular thin magnetostatic wave element 1 is mounted between the microstrip line 2 and the ground conductor 3 which are short-circuited at the terminal end. An external magnetic field Hext is applied perpendicularly to the plane of the thin plate to cause ferrimagnetic resonance. In the prior art, the size relationship between the two sides Lo and W of the rectangular type is almost the same, and most of them are close to a square. A part of the already-published article (USP4782312) describes an elongated shape, but the importance of the relationship between the long side and the short side is not mentioned at all. In the configuration so far, when an attempt is made to increase the impedance R at the time of resonance seen from the input side of the microstrip line,
A method has been adopted in which the dimensions Lo, W, and t of the magnetostatic wave device 1 are increased at the same time. Originally, as shown in FIG. 8, the magnetostatic wave element 1 is an ideal equivalent circuit in which a lumped constant type LC parallel resonator is connected to a portion separated from the input terminal by d. However, in the conventional method for obtaining high impedance, the length of Lo cannot be ignored with respect to the wavelength, and as shown in FIG. 9, an equivalent circuit in which innumerable resonators are distributed and connected between Lo. Becomes This corresponds to observing a plurality of resonators excited by microwaves having different phases at the same time, which leads to the drawback that the original high Q value of the magnetostatic wave resonant element cannot be extracted to the outside. On the contrary, if Lo, W, and t are reduced at the same time in order to obtain a high Q value, the Q value is improved, but the energy of the magnetostatic wave element with respect to the total microwave energy is reduced.
This is not preferable because the minutes are reduced. That is, in terms of an electric circuit, this corresponds to a significant decrease in impedance at resonance. FIG. 7 is a structural diagram of a magnetostatic wave microwave device using a circular thin plate magnetostatic wave element according to the related art. Even in this configuration, the relationship described above does not change. That is, when the outer diameter D and the thickness t are increased in order to obtain the impedance at the time of high resonance, the Q value of the magnetostatic wave element decreases and the high Q
If D and t are reduced in order to obtain the desired value, the impedance at resonance is reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前述の従来
技術の問題点に鑑みなされたものであり、高Q値を維持
しつつ高インピ−ダンスの実現が可能な静磁波マイクロ
波装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and provides a magnetostatic microwave device capable of realizing a high impedance while maintaining a high Q value. It is intended to be provided.

【0004】[0004]

【課題を解決するための手段】本発明の静磁波マイクロ
波装置は、矩型状の薄板状静磁波素子の長辺と短辺の長
さの比が1.5以上あり、かつ前記静磁波素子の上に設
けられた外部導体に流れる電流の方向が前記長辺と直交
していることを特徴としている。
According to the magnetostatic wave microwave device of the present invention, the rectangular thin plate magnetostatic wave element has a ratio of the long side to the short side of 1.5 or more, and the magnetostatic wave It is characterized in that the direction of the current flowing through the outer conductor provided on the element is orthogonal to the long side.

【0005】[0005]

【作用】上記構成によれば、静磁波素子はマイクロ波回
路上集中定数的素子とみなすことができ、高Q値を維持
しつつ高インピ−ダンスを得るために体積の大きなYI
G膜を装架することができる。
According to the above construction, the magnetostatic wave element can be regarded as a lumped element on the microwave circuit, and a large volume YI is required to obtain a high impedance while maintaining a high Q value.
A G membrane can be mounted.

【0006】[0006]

【実施例】以下、図面を参照しつつ本発明の実施例を詳
細に説明する。図1は本発明の基本構成を説明する図で
ある。図中、矩型状の1は静磁波共振素子、Loはマイ
クロ波電流方向の静磁波素子1の長さ、Wはその幅であ
る。2は終端短絡のマイクロストリップライン、4はそ
れを流れるマイクロ波の電流方向、3は地導体、4’は
地導体を流れるマイクロ波電流の方向である。フェリ磁
性共鳴を生じさせるために、外部磁界Hextが薄板の平
面に垂直に印加されている。図に示すように、本発明の
構成では、図6の従来技術とは異なり、WはLoの約2
倍近い幅がある。図2は、本発明の実施例を示す図であ
る。静磁波素子1として、LPEによりGGG基板上に
YIG薄膜1’が作製された構成となっている。図3
は、図2の構成でYIG薄膜1’の面積をLo×W=1
0mm2と一定にして、W/Loの変化させた場合の5G
Hz帯におけるフェリ磁性共鳴半値幅ΔHの測定結果で
ある。YIG薄膜1’の膜厚は20μmと一定とした。
W/Loが1以下の場合は、ΔHは2Oeと大きくなる
が、W/Loが大きくなるにつれてΔHが小さくなる傾
向にある。特に、W/Lo<1.5では、ΔHの変化が
激しい。しかし、W/Lo≧1.5では、ほぼ一定の低
い値ΔH=0.75Oeと材料特性に近くなることが分
かる。ここで述べたΔHは、本発明の静磁波マイクロ波
装置のQ値の逆数に相当し、ΔHが小さければ小さいほ
ど高Q値が得られることから、本発明の範囲はW/Lo
≧1.5と規定できることが図3から理解できる。図4
は本発明の他の実施例を示す。W/Loの大きい、すな
わちマイクロ波電流と垂直の方向に細長いYIG膜1’
とマイクロ波の結合を改善するために、YIG膜1’の
上に複数の電極指7が幅方向に分布し、端部にパッド
6、6’を有する金属薄膜電極が形成されている。入力
のマイクロストリップライン2aはパッド6に、短絡マ
イクロストリップライン2bはパッド6’に接続されて
いる。本構成により、さらにQ値の高い高インピ−ダン
スの静磁波マイクロ波装置を実現できた。図5は、本発
明の他の実施例である。短絡マイクロストリップライン
2bの代わりにオープンスタッブ8が接続されている。
これは、幅の広いYIG薄膜1’の中心からオープンス
タッブ8の開放端までの電気長がλ/4になるように設
計されている。これにより、幅の広いYIG薄膜1’の
中心は、常に電気的には電流最大、すなわち短絡状態と
等価となる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a diagram for explaining the basic configuration of the present invention. In the figure, the rectangular-shaped 1 is a magnetostatic wave resonance element, Lo is the length of the magnetostatic wave element 1 in the microwave current direction, and W is its width. 2 is a microstrip line for terminating short circuit, 4 is the direction of microwave current flowing therethrough, 3 is a ground conductor, and 4'is the direction of microwave current flowing through the ground conductor. An external magnetic field Hext is applied perpendicular to the plane of the thin plate in order to generate ferrimagnetic resonance. As shown in the figure, in the configuration of the present invention, W is about 2 of Lo, unlike the prior art of FIG.
There is almost double the width. FIG. 2 is a diagram showing an embodiment of the present invention. As the magnetostatic wave element 1, a YIG thin film 1'is formed on a GGG substrate by LPE. Figure 3
Is the area of the YIG thin film 1'with the configuration of FIG.
5G when changing W / Lo with 0 mm 2 kept constant
It is the measurement result of the ferrimagnetic resonance half-value width ΔH in the Hz band. The YIG thin film 1'has a constant film thickness of 20 μm.
When W / Lo is 1 or less, ΔH increases to 20 Oe, but ΔH tends to decrease as W / Lo increases. In particular, when W / Lo <1.5, the change in ΔH is large. However, it can be seen that when W / Lo ≧ 1.5, the material properties are close to a substantially constant low value ΔH = 0.75 Oe. The ΔH described here corresponds to the reciprocal of the Q value of the magnetostatic wave microwave device of the present invention, and the smaller the ΔH is, the higher the Q value is obtained. Therefore, the range of the present invention is W / Lo.
It can be understood from FIG. 3 that ≧ 1.5 can be defined. Figure 4
Shows another embodiment of the present invention. YIG film 1'having a large W / Lo, that is, elongated in the direction perpendicular to the microwave current
In order to improve the coupling of the microwaves, a plurality of electrode fingers 7 are distributed in the width direction on the YIG film 1 ', and a metal thin film electrode having pads 6 and 6'at the ends is formed. The input microstrip line 2a is connected to the pad 6, and the short-circuited microstrip line 2b is connected to the pad 6 '. With this configuration, a high impedance magnetostatic wave microwave device having a higher Q value can be realized. FIG. 5 shows another embodiment of the present invention. An open stub 8 is connected instead of the short-circuited microstrip line 2b.
This is designed so that the electrical length from the center of the wide YIG thin film 1 ′ to the open end of the open stub 8 is λ / 4. As a result, the center of the wide YIG thin film 1'is always electrically maximum in current, that is, equivalent to a short circuit state.

【0007】[0007]

【発明の効果】本発明によれば、従来技術に比較し、マ
イクロ波の電流方向に対して、垂直の方向に細長い静磁
波共振素子を用いることから、全体のインピ−ダンス低
下をもたらすことなく、高いQ値を有する高性能な静磁
波マイクロ波装置を提供し得る。
According to the present invention, as compared with the prior art, since the magnetostatic wave resonant element elongated in the direction perpendicular to the current direction of the microwave is used, the overall impedance is not lowered. A high-performance magnetostatic wave microwave device having a high Q value can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構造図である。FIG. 1 is a structural diagram showing an embodiment of the present invention.

【図2】本発明の実施例を示す構造図である。FIG. 2 is a structural diagram showing an embodiment of the present invention.

【図3】本発明の実施例を示す構造図である。FIG. 3 is a structural diagram showing an embodiment of the present invention.

【図4】本発明の実施例を示す構造図である。FIG. 4 is a structural diagram showing an embodiment of the present invention.

【図5】本発明の実施例を示す構造図である。FIG. 5 is a structural diagram showing an embodiment of the present invention.

【図6】従来技術の構造図である。FIG. 6 is a structural diagram of a prior art.

【図7】従来技術の構造図である。FIG. 7 is a structural diagram of a prior art.

【図8】静磁波素子の等価回路を示す図である。FIG. 8 is a diagram showing an equivalent circuit of a magnetostatic wave device.

【図9】従来技術の問題点を説明する等価回路図であ
る。
FIG. 9 is an equivalent circuit diagram illustrating a problem of the conventional technique.

【符号の説明】[Explanation of symbols]

1 矩型状薄板静磁波素子 1’ YIG薄膜 2 マイクロストリップライン 3 地導体 4 マイクロ波電流の方向 5 GGG基板 6 パッド 7 電極指 8 オープンスタッブ 1 rectangular thin plate magnetostatic wave element 1'YIG thin film 2 microstrip line 3 ground conductor 4 microwave current direction 5 GGG substrate 6 pad 7 electrode finger 8 open stub

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 矩型状の薄板状静磁波素子の長辺と短辺
の長さの比が1.5以上あり、かつ前記静磁波素子の上
に設けられた外部導体に流れる電流の方向が前記長辺と
直交していることを特徴とする静磁波マイクロ波装置。
1. A rectangular thin plate magnetostatic wave device having a ratio of a long side to a short side of 1.5 or more, and a direction of a current flowing through an external conductor provided on the magnetostatic wave device. Is orthogonal to the long side, a magnetostatic wave microwave device.
【請求項2】 前記薄板状静磁波素子がYIG(イット
リウム・鉄・ガ−ネット)を主成分とするフェリ磁性薄
膜であることを特徴とする請求項1の静磁波マイクロ波
装置。
2. The magnetostatic wave microwave device according to claim 1, wherein the thin plate magnetostatic wave element is a ferrimagnetic thin film containing YIG (yttrium, iron, garnet) as a main component.
JP23547292A 1992-09-03 1992-09-03 Magnetstatic microwave device Pending JPH0685507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23547292A JPH0685507A (en) 1992-09-03 1992-09-03 Magnetstatic microwave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23547292A JPH0685507A (en) 1992-09-03 1992-09-03 Magnetstatic microwave device

Publications (1)

Publication Number Publication Date
JPH0685507A true JPH0685507A (en) 1994-03-25

Family

ID=16986588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23547292A Pending JPH0685507A (en) 1992-09-03 1992-09-03 Magnetstatic microwave device

Country Status (1)

Country Link
JP (1) JPH0685507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512868A (en) * 1993-09-28 1996-04-30 Hitachi Metals, Ltd. Magnetostatic microwave device having large impedance change at resonance
WO1999005751A1 (en) * 1997-07-24 1999-02-04 Tdk Corporation Magnetostatic wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512868A (en) * 1993-09-28 1996-04-30 Hitachi Metals, Ltd. Magnetostatic microwave device having large impedance change at resonance
WO1999005751A1 (en) * 1997-07-24 1999-02-04 Tdk Corporation Magnetostatic wave device
US6114929A (en) * 1997-07-24 2000-09-05 Tdk Corporation Magnetostatic wave device with specified distances between magnetic garnet film and ground conductors

Similar Documents

Publication Publication Date Title
JP4444836B2 (en) Magnetostatic devices based on thin metal films, methods for manufacturing the same, and applications to devices for processing microwave signals
US4020429A (en) High power radio frequency tunable circuits
EP0836276A2 (en) Magnetostatic-wave device
US4992760A (en) Magnetostatic wave device and chip therefor
US4521753A (en) Tuned resonant circuit utilizing a ferromagnetically coupled interstage line
US3611197A (en) Yig resonator microstrip coupling device
JP2909363B2 (en) Magnetostatic microwave device
JPH0685507A (en) Magnetstatic microwave device
Röschmann YIG filters
US4983936A (en) Ferromagnetic resonance device
Poston et al. A new microwave ring resonator using guided magnetostatic surface waves
US5053734A (en) Magnetostatic wave device
US5289143A (en) Magnetostatic wave device
JP2522579B2 (en) Magnetostatic microwave oscillator for PLL control
US6114929A (en) Magnetostatic wave device with specified distances between magnetic garnet film and ground conductors
US3882420A (en) Magnetically tunable ferrite stripline trapatt mode oscillator and amplifier circuits
KR960006463B1 (en) Ferromagnetic resonance device and filter device
JP2755320B2 (en) Magnetostatic wave resonator
JP2798148B2 (en) Magnetostatic wave element
US5189383A (en) Circuit element utilizing magnetostatic wave
Kinoshita et al. Planar resonator and integrated oscillator using magnetostatic waves
JP3272967B2 (en) Magnetostatic wave device and voltage controlled oscillator using the same
Hines et al. Wide-band resonance isolator
JPS62224101A (en) Magnetostatic wave filter bank
JP2608088B2 (en) Ferrimagnetic thin film resonator