JP2755320B2 - Magnetostatic wave resonator - Google Patents

Magnetostatic wave resonator

Info

Publication number
JP2755320B2
JP2755320B2 JP7952392A JP7952392A JP2755320B2 JP 2755320 B2 JP2755320 B2 JP 2755320B2 JP 7952392 A JP7952392 A JP 7952392A JP 7952392 A JP7952392 A JP 7952392A JP 2755320 B2 JP2755320 B2 JP 2755320B2
Authority
JP
Japan
Prior art keywords
magnetostatic wave
thin film
resonance
wave resonator
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7952392A
Other languages
Japanese (ja)
Other versions
JPH05283909A (en
Inventor
安英 邑上
康平 伊藤
茂 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13692350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2755320(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7952392A priority Critical patent/JP2755320B2/en
Publication of JPH05283909A publication Critical patent/JPH05283909A/en
Application granted granted Critical
Publication of JP2755320B2 publication Critical patent/JP2755320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、GGG(ガドリウム・
ガリウム・ガーネット)等の非磁性基板上に形成したY
IG(イットリウム・鉄・ガーネット)等のフェリ磁性
薄膜の磁気スピン共鳴を利用した静磁波素子に関わり、
使用周波数帯域の共振特性に影響を与えない程度まで、
構造による寄生共振の周波数を前記帯域から充分に離す
ことができる素子構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Y formed on a non-magnetic substrate such as gallium garnet)
Involved in magnetostatic wave devices using magnetic spin resonance of ferrimagnetic thin films such as IG (yttrium, iron, garnet),
To the extent that it does not affect the resonance characteristics of the operating frequency band,
The present invention relates to an element structure capable of sufficiently separating the frequency of the parasitic resonance due to the structure from the band.

【0002】[0002]

【従来の技術】マイクロ波発振回路等に使用される素子
として、GGG(ガドリニウム・ガリウム・ガーネッ
ト)非磁性基板上に、液相エピタキシャル成長させたY
IG(イットリウム・鉄・ガ−ネット)薄膜を所要の形
状に加工したフェリ磁性薄膜共鳴素子が提案されてい
る。(特開平2−13101号公報など参照)このフェ
リ磁性薄膜共鳴素子は、マイクロ波帯で共振特性のQが
高いこと、マイクロ波伝送線路(エッチング法で形成し
た電極指など)に磁気的に結合されたフェリ磁性薄膜に
垂直に直流バイアス磁界を与えてその磁界強度によって
共鳴周波数を可変できることなどの特徴を有する。フェ
リ磁性薄膜共鳴を利用した共振子として、前記フェリ磁
性薄膜と前記伝送線路との結合の調整を容易にし、かつ
前記伝送線路との結合度を高めた素子として、前記伝送
線路を前記フェリ磁性薄膜上に写真蝕刻(エッチング)
技術により形成した静磁波素子が提案されている。(特
開昭62−245704号公報など参照)図4は前記静
磁波素子の一例を示す概略構成図である。図4(b)に
おいて、静磁波共振子8は、GGG単結晶基板2の上に
YIG薄膜3を液相エピタキシャル法により形成し、前
記YIG薄膜上にAuあるいはAl膜からなる一本また
は複数本の電極指5、及び前記電極指5の両側にパッド
電極4a、4bを写真蝕刻技術により形成し長さl3
幅w2、厚さtの大きさに切り出したものである。図4
(a)に示すように導体面の一部を除去し、静磁波共振
子8の長さ(l3)よりも大なるギャップg2を形成し、
そして一方に導体板11、もう一方に整合用スタブ7を
形成する。そして直流的に断線したマイクロストリップ
ライン15の前記断線部g2に前記静磁波共振子8を設
置し、前記導体板11と前記パッド電極4aを接続板1
2aを用いて接続し、前記整合用スタブ7と前記パッド
電極4bを接続板12bを用いて接続して静磁波素子1
6を構成するものである。
2. Description of the Related Art As an element used in a microwave oscillation circuit or the like, a liquid phase epitaxially grown Y on a GGG (gadolinium / gallium / garnet) non-magnetic substrate is used.
There has been proposed a ferrimagnetic thin-film resonance element in which an IG (yttrium-iron-garnet) thin film is processed into a required shape. This ferrimagnetic thin-film resonance element has a high resonance characteristic Q in a microwave band and is magnetically coupled to a microwave transmission line (such as an electrode finger formed by an etching method). It is characterized in that a DC bias magnetic field is applied vertically to the ferrimagnetic thin film and the resonance frequency can be varied by the magnetic field strength. As a resonator utilizing ferrimagnetic thin film resonance, the transmission line is used as an element which facilitates adjustment of coupling between the ferrimagnetic thin film and the transmission line and has a high degree of coupling with the transmission line. Photo etching (etching) on top
Magnetostatic wave devices formed by technology have been proposed. FIG. 4 is a schematic configuration diagram showing an example of the magnetostatic wave element. In FIG. 4B, a magnetostatic wave resonator 8 is formed by forming a YIG thin film 3 on a GGG single crystal substrate 2 by a liquid phase epitaxial method, and forming one or more Au or Al films on the YIG thin film. The electrode finger 5 and pad electrodes 4a and 4b formed on both sides of the electrode finger 5 by a photolithography technique to have a length l 3 ,
It is cut out to a size of width w 2 and thickness t. FIG.
As shown in (a), a part of the conductor surface is removed to form a gap g 2 larger than the length (l 3 ) of the magnetostatic wave resonator 8,
Then, the conductor plate 11 is formed on one side and the matching stub 7 is formed on the other side. Then the magnetostatic wave resonator 8 was placed in the disconnected portion g 2 of the DC-disconnected microstrip line 15, connects the pad electrode 4a and the conductor plate 11 plate 1
2a, and the matching stub 7 and the pad electrode 4b are connected by using a connection plate 12b.
6.

【0003】[0003]

【発明が解決しようとする課題】図4(a)に示した静
磁波素子16のバイアス磁界Hoを印加していない時の
通過特性を測定した場合、図5に示すように、ある周波
数で通過損失が落ち込む特性を示した。前記損失の落ち
込みは前記磁界を印加していない時に生じていることか
ら静磁波によるものではない。また、前記バイアス磁界
を徐々に変化させて静磁波共振の最低次モ−ドの周波数
を変化させたところ、前記落ち込みが生じている周波数
までは静磁波共振の最低次モ−ドは劣化されないが、前
記落ち込みが生じている周波数に近づくと、前記最低次
モ−ドのピ−クが劣化し共振の尖鋭度Qが大きく低下す
るなどの問題があった。具体的には静磁波共振子8とし
て、GGG単結晶基板2上に、約40μm厚のYIG膜
3を、次に前記YIG膜上に厚さ1.5μmのAu膜
を、また部分的にAu膜を除去することによって幅30
μm、長さ1mm、の電極指5を5本及びその両側にパ
ッド電極4a、4bを作製し、ダイヤモンドブレ−ドを
有するダイサ−により長さ(l1)2mm、幅(w1)1
mm、厚さ(t)0.5mmの大きさに切り出した共振
子を用いた。マイクロストリップライン15をエッチン
グして作製した、静磁波共振子8の長さ(l3)よりも
大なる、ギャップg2の部分に静磁波共振子8を固定
し、パッド電極4aと導体板11を銅製の接続板12a
で、またパッド電極4bとスタブ7を銅製の接続板12
bでハンダ接合し、静磁波素子16を作製した。ここで
21・g22はそれぞれ間隔0.5mmで作製されたギャ
ップである。バイアス磁界Hoを印加していない時の静
磁波素子16の通過特性をネットワ−クアナライザで測
定したところ、図5に示したように周波数9.3GHz
で通過損失が約20dB落ち込む特性を示した。またバ
イアス磁界Hoを印加することによりこの静磁波素子1
6の共振周波数を約9GHzとして、この静磁波素子1
6の通過特性を測定したところ、図6に示したように、
静磁波の共振の最低次モ−ドが前記落ち込みに影響され
て劣化してしまう特性を示した。バイアス磁界を徐々に
変化させて静磁波共振の最低次モ−ドの周波数を5〜1
3GHzまで変化させたところ、5〜8GHzまでは前
記モ−ドは劣化されないが、前記落ち込みが生じている
周波数9.3GHzに近づくと、前記モ−ドのピ−クが
劣化し、共振の尖鋭度Qが大きく低下する特性を示し
た。ここで静磁波共振子8の長さ5mmは電気長に換算
すると9.6mmであり、9.3GHzにおけるマイク
ロストリップラインを伝搬するマイクロ波の波長19.
2mmの2分の1の長さである。本発明の目的は、使用
周波数帯域の共振特性に影響を与えない程度まで、構造
による寄生共振の周波数を前記帯域から充分に離して、
静磁波素子の共振特性の劣化を改善することができる構
造を有する静磁波素子を提供することである。
When the transmission characteristics of the magnetostatic wave element 16 shown in FIG. 4A when the bias magnetic field Ho is not applied are measured, as shown in FIG. The characteristics showed that the loss decreased. The drop in the loss is not caused by the magnetostatic wave since it occurs when the magnetic field is not applied. When the frequency of the lowest order mode of the magnetostatic wave resonance is changed by gradually changing the bias magnetic field, the lowest order mode of the magnetostatic wave resonance is not deteriorated up to the frequency at which the drop occurs. When the frequency approaches the frequency at which the drop occurs, there is a problem that the peak of the lowest order mode is deteriorated and the sharpness Q of resonance is greatly reduced. More specifically, as the magnetostatic wave resonator 8, a YIG film 3 having a thickness of about 40 μm is formed on the GGG single crystal substrate 2, an Au film having a thickness of 1.5 μm is formed on the YIG film, and a Au film is partially formed. Width 30 by removing the membrane
Five electrode fingers 5 having a length of 1 μm and a length of 1 mm, and pad electrodes 4 a and 4 b formed on both sides of the electrode fingers 5, and a length (l 1 ) of 2 mm and a width (w 1 ) of 1 using a dicer having a diamond blade.
A resonator cut out to a size of 0.5 mm and a thickness (t) of 0.5 mm was used. And the microstrip line 15 is manufactured by etching, larger becomes than the length of the magnetostatic wave resonator 8 (l 3), to secure the magnetostatic wave resonator 8 to the portion of the gap g 2, the pad electrode 4a and the conductor plate 11 To the copper connection plate 12a
And the pad electrode 4b and the stub 7 are connected to the copper
Then, the magnetostatic wave element 16 was manufactured by soldering with b. Here g 21 · g 22 is the gap which is produced in each interval 0.5 mm. When the transmission characteristics of the magnetostatic wave element 16 when the bias magnetic field Ho was not applied were measured by a network analyzer, the frequency was 9.3 GHz as shown in FIG.
, The characteristic that the passage loss is reduced by about 20 dB. By applying a bias magnetic field Ho, the magnetostatic wave element 1
6, the resonance frequency of the magnetostatic wave element 1 is set to about 9 GHz.
6 was measured, and as shown in FIG.
The characteristic shows that the lowest order mode of the resonance of the magnetostatic wave is affected by the drop and deteriorates. By gradually changing the bias magnetic field, the frequency of the lowest order mode of the magnetostatic wave resonance is set to 5-1.
When the frequency is changed to 3 GHz, the mode is not deteriorated up to 5 to 8 GHz, but when approaching the dropping frequency of 9.3 GHz, the peak of the mode is deteriorated and the resonance is sharp. The degree Q greatly decreased. Here, the length 5 mm of the magnetostatic wave resonator 8 is 9.6 mm in terms of an electrical length, and the wavelength of the microwave propagating through the microstrip line at 9.3 GHz.
It is half the length of 2 mm. An object of the present invention is to sufficiently separate the frequency of the parasitic resonance due to the structure from the band to the extent that the resonance characteristics of the used frequency band are not affected,
An object of the present invention is to provide a magnetostatic wave device having a structure capable of improving deterioration of resonance characteristics of the magnetostatic wave device.

【0004】[0004]

【課題を解決するための手段】本発明は、マイクロ波に
より静磁波を励振する手段と、前記静磁波が伝搬するフ
ェリ磁性薄膜とからなる静磁波共振子において、前記フ
ェリ磁性薄膜のマイクロ波伝搬方向の電気長を前記フェ
リ磁性薄膜を含む空間を伝搬するマイクロ波の波長の4
分の1以下にすることを特徴とする静磁波共振子であ
る。本発明において、前記静磁波を励振する手段とし
て、前記フェリ磁性薄膜上に形成された電極にマイクロ
波電流を流す方法を用いてもよいし、或いは、前記静磁
波を励振する手段として、マイクロストリップライン上
に形成された電極を用いてもよい。以下、本発明を詳細
に説明してゆく。本発明者は、静磁波共振子において前
記寄生共振の発生は静磁波が伝搬するフェリ磁性薄膜の
マイクロ波伝搬方向の長さに起因していると推論するに
至った。つまり、静磁波共振子を2端子素子として使用
していることから、構造による共振はその経路の電気長
を半波長として起こると考えられる。基板の誘電率など
を考慮して、前記フェリ磁性薄膜上に形成した電極上で
の、前記寄生共振の周波数におけるマイクロ波の波長を
算出した。その結果、前記波長の半波長は、前記静磁波
が伝搬する媒体である前記フェリ磁性薄膜のマイクロ波
の経路の電気長に対応した。したがって前記寄生共振の
周波数を使用周波数帯域の共振特性に影響を与えない程
度まで充分に離すためには、前記静磁波が伝搬する媒体
である前記フェリ磁性薄膜のマイクロ波の経路の電気
長、すなわち静磁波共振子のマイクロ波伝搬方向の長さ
を充分小さくする必要がある。図8に、静磁波共振子の
マイクロ波伝搬方向の長さと構造による寄生共振の落ち
込み量との関係を示した。前記共振子の長さが前記寄生
共振の半波長と一致するときに前記落ち込み量は最大と
なり、前記共振子の長さが短かくなるにつれて前記落ち
込み量が減少し、前記共振子の長さが4分の1波長以下
の時には、寄生共振による落ち込み量が通過損失による
落ち込み量に比べ充分小さい値となる特性となった。す
なわち本発明は、図1に示すように非磁性基板2上にフ
ェリ磁性薄膜3を形成し、前記フェリ磁性薄膜上に電極
4a、4b及び5を形成し、前記電極に流れるマイクロ
波により前記フェリ磁性薄膜に静磁波を励起し伝搬させ
る構造とした静磁波共振子6において、前記フェリ磁性
薄膜のマイクロ波の経路l1の電気長を最高使用周波数
の波長の4分の1以下にすることを特徴とする。本発明
の別の態様は、図7に示すように第1の非磁性基板2上
にフェリ磁性薄膜3を形成し、第2の非磁性基板15に
形成した電極9及び10により前記フェリ磁性薄膜に静
磁波を励起し伝搬させる構造とした静磁波共振子におい
て、前記フェリ磁性薄膜のマイクロ波伝搬方向の経路l
1の電気長を最高使用周波数の波長の4分の1以下にす
ることを特徴とする静磁波共振子である。
According to the present invention, there is provided a magnetostatic wave resonator comprising: means for exciting a magnetostatic wave by a microwave; and a ferrimagnetic thin film through which the magnetostatic wave propagates. The electrical length in the direction is 4 times the wavelength of the microwave propagating in the space containing the ferrimagnetic thin film.
This is a magnetostatic wave resonator characterized in that the number is reduced to 1 / or less. In the present invention, as a means for exciting the magnetostatic wave, a method of passing a microwave current to an electrode formed on the ferrimagnetic thin film may be used, or as a means for exciting the magnetostatic wave, a microstrip may be used. An electrode formed on the line may be used. Hereinafter, the present invention will be described in detail. The present inventors have inferred that the occurrence of the parasitic resonance in the magnetostatic wave resonator is caused by the length of the ferrimagnetic thin film in which the magnetostatic wave propagates in the microwave propagation direction. That is, since the magnetostatic wave resonator is used as a two-terminal element, it is considered that resonance due to the structure occurs with the electric length of the path being a half wavelength. The wavelength of the microwave at the frequency of the parasitic resonance on the electrode formed on the ferrimagnetic thin film was calculated in consideration of the dielectric constant of the substrate and the like. As a result, the half wavelength of the wavelength corresponded to the electrical length of the microwave path of the ferrimagnetic thin film, which is the medium through which the magnetostatic wave propagates. Therefore, in order to sufficiently separate the frequency of the parasitic resonance so as not to affect the resonance characteristics of the operating frequency band, the electrical length of the microwave path of the ferrimagnetic thin film, which is the medium through which the magnetostatic wave propagates, that is, It is necessary to make the length of the magnetostatic wave resonator in the microwave propagation direction sufficiently small. FIG. 8 shows the relationship between the length of the magnetostatic wave resonator in the microwave propagation direction and the amount of parasitic resonance drop due to the structure. When the length of the resonator is equal to the half wavelength of the parasitic resonance, the amount of dip is maximum, and as the length of the resonator becomes shorter, the amount of dip decreases, and the length of the resonator becomes smaller. When the wavelength is less than a quarter wavelength, the characteristic is such that the amount of dip due to parasitic resonance is sufficiently smaller than the amount of dip due to pass loss. That is, according to the present invention, as shown in FIG. 1, a ferrimagnetic thin film 3 is formed on a nonmagnetic substrate 2, electrodes 4a, 4b and 5 are formed on the ferrimagnetic thin film, and the ferrimagnetic thin film 3 is formed by a microwave flowing through the electrodes. In the magnetostatic wave resonator 6 having a structure in which a magnetostatic wave is excited and propagated in the magnetic thin film, the electric length of the microwave path l 1 of the ferrimagnetic thin film is set to be equal to or less than の of the wavelength of the highest operating frequency. Features. According to another aspect of the present invention, as shown in FIG. 7, a ferrimagnetic thin film 3 is formed on a first nonmagnetic substrate 2, and the ferrimagnetic thin film 3 is formed by electrodes 9 and 10 formed on a second nonmagnetic substrate 15. In a magnetostatic wave resonator having a structure in which a magnetostatic wave is excited and propagated, a path l in the microwave propagation direction of the ferrimagnetic thin film is formed.
1 is a magnetostatic wave resonator characterized in that the electrical length of the magnetostatic wave resonator is 1/4 or less of the wavelength of the highest operating frequency.

【0005】[0005]

【作用】本発明による静磁波共振子によれば、使用周波
数帯域の共振特性に影響を与えない程度まで、構造によ
る寄生共振の周波数を前記帯域から充分に離して、静磁
波素子の共振特性の劣化を改善することができた。これ
は、前記フェリ磁性薄膜のマイクロ波伝搬方向の電気長
を前記フェリ磁性薄膜を含む空間を伝搬するマイクロ波
の波長の4分の1以下にしたことによって、前記寄生共
振の周波数を最高使用周波数の倍以上の周波数にしたた
めと考えられる。
According to the magnetostatic wave resonator of the present invention, the frequency of the parasitic resonance due to the structure is sufficiently separated from the band to such an extent that the resonance characteristics of the operating frequency band are not affected, and the resonance characteristics of the magnetostatic wave element are improved. Deterioration could be improved. This is because the electric length of the ferrimagnetic thin film in the microwave propagation direction is set to not more than one-fourth of the wavelength of the microwave propagating in the space including the ferrimagnetic thin film. It is considered that the frequency was set to be twice or more than that of.

【0006】[0006]

【実施例】以下本発明を実施例に基づいて詳しく説明す
る。 (実施例1)図1は本発明の一実施例を示す。先ず、図
1(b)に示すようにGGG単結晶基板2上に液相エピ
タキシャル成長法により約40μm厚のYIG膜3を形
成した。次にYIG膜上に厚さ1.5μmのAu膜を真
空蒸着法で作製し、写真蝕刻法により部分的にAu膜を
除去することによって図1(b)に示すような、幅30
μm、長さ1mm、の電極指5を5本及びその両側にパ
ッド電極4a、4bを作製した。その後、ダイヤモンド
ブレ−ドを有するダイサ−により長さ(l1)2mm、
幅(w1)1mm、厚さ(t)0.5mmの静磁波共振
子6をウェハから切り出した。両側の導体板で誘電体1
4を挟む構造のマイクロストリップライン15にエッチ
ングにより静磁波共振子6の長さ(l1)よりも大なる
ギャップg1を形成し、負性抵抗回路への接続端となる
銅製の導体板11と、長さ(l2)、幅(w3)のインピ
−ダンス整合用スタブ7を作製した。このギャップg1
の部分に静磁波共振子6を固定し、パッド電極4aと導
体板11を銅製の接続板12aで、またパッド電極4b
とスタブ7を銅製の接続板12bでハンダ接合し、静磁
波素子1を作製した。ここで、14はポリテトラフルオ
ロエチレン樹脂の誘電体、13はマイクロストリップラ
イン15の銅製の接地用導体板、g11・g12はそれぞれ
間隔0.5mmで作製されたギャップである。バイアス
磁界Hoを印加していない時の、この静磁波素子1の通
過特性をネットワ−クアナライザで測定したところ、図
2に示したように周波数5〜13GHzの範囲で、通過
損失の落ち込みが見られない特性を示した。また、バイ
アス磁界Hoを印加することによりこの静磁波素子1の
共振周波数を約9GHzとして、この静磁波素子1の通
過特性を測定したところ、図3に示したように静磁波共
振の最低次モ−ドは劣化せず良好な特性を示した。ま
た、バイアス磁界Hoを徐々に変化させて静磁波共振の
最低次モ−ドの周波数を5〜13GHzまで変化させた
ところ、5〜13GHzの範囲では前記モ−ドは劣化せ
ず、共振の尖鋭度Qが大きい特性を示した。ここで11
GHzにおけるマイクロストリップラインを伝搬するマ
イクロ波の波長は16.2mmである。また本実施例に
おける共振子の長さ2mmを電気長に換算すると3.8
mmとなり、これは前記波長の4分の1より小さい値で
ある。 (実施例2)本実施例では、実施例1に示した静磁波素
子6と同様に、GGG単結晶基板2上にYIG膜3を形
成した。その後、ダイヤモンドブレ−ドを有するダイサ
−により長さ(l1)2mm、幅(w1)1mm、厚さ
(t)0.5mmの磁性基板17をウェハから切り出し
た。また両側の導体板で誘電体14を挟む構造のマイク
ロストリップライン15にエッチングにより幅30μ
m、長さ1mm、の電極指10を5本形成し、負性抵抗
回路への接続端となる銅製の導体板11と、幅(w3
のインピ−ダンス整合用スタブ7を形成した別の基板
(第2の基板)9を作製した。この電極指10を形成し
た部分に前記磁性基板17を固定し、静磁波素子18を
作製した。バイアス磁界Hoを印加していない時の、こ
の静磁波素子18の通過特性をネットワ−クアナライザ
で測定したところ、図2と同様に周波数5〜13GHz
の範囲で、通過損失の落ち込みが見られない特性を示し
た。また、バイアス磁界Hoを印加することにより、こ
の静磁波素子18の共振周波数を約9GHzとして、こ
の静磁波素子18の通過特性を測定したところ、図3と
同様に静磁波共振の最低次モ−ドは劣化せず良好な特性
を示した。また、バイアス磁界を徐々に変化させて静磁
波共振の最低次モ−ドの周波数を5〜13GHzまで変
化させたところ、5〜13GHzまでは前記モ−ドは劣
化されず、共振の尖鋭度Qが大きい特性を示した。同様
に11GHzにおけるマイクロストリップラインを伝搬
するマイクロ波の波長は16.2mmであり、本実施例
における共振子の長さ2mmを電気長に換算した3.8
mmは前記波長の4分の1より小さい値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. (Embodiment 1) FIG. 1 shows an embodiment of the present invention. First, as shown in FIG. 1B, a YIG film 3 having a thickness of about 40 μm was formed on a GGG single crystal substrate 2 by a liquid phase epitaxial growth method. Next, an Au film having a thickness of 1.5 μm is formed on the YIG film by a vacuum deposition method, and the Au film is partially removed by a photolithography method to thereby obtain a 30 μm-thick film as shown in FIG.
Five electrode fingers 5 having a size of 1 μm and a length of 1 mm were formed, and pad electrodes 4a and 4b were formed on both sides thereof. Then, the length (l 1 ) is 2 mm by a dicer having a diamond blade,
A magnetostatic wave resonator 6 having a width (w 1 ) of 1 mm and a thickness (t) of 0.5 mm was cut out from the wafer. Dielectric 1 with conductor plates on both sides
The length of 4 magnetostatic wave resonator 6 by etching the micro strip line 15 of the structure sandwiching the (l 1) Large comprising forming a gap g 1 than, copper conductive plate 11 to become a connecting end to the negative resistance circuit And a stub 7 for impedance matching having a length (l 2 ) and a width (w 3 ). This gap g 1
, The magnetostatic wave resonator 6 is fixed to the pad electrode 4a and the conductor plate 11 with a copper connection plate 12a, and the pad electrode 4b
And the stub 7 were soldered together with a copper connection plate 12b to produce the magnetostatic wave element 1. Here, 14 dielectric polytetrafluoroethylene resin, 13 copper ground conductor plate of a microstrip line 15, g 11 · g 12 is the gap made by the spacing 0.5mm, respectively. When the pass characteristic of the magnetostatic wave device 1 when the bias magnetic field Ho was not applied was measured by a network analyzer, a drop in the pass loss was observed in the frequency range of 5 to 13 GHz as shown in FIG. Unique properties were shown. Further, the pass frequency of the magnetostatic wave element 1 was measured by applying a bias magnetic field Ho to set the resonance frequency of the magnetostatic wave element 1 to about 9 GHz. As shown in FIG. The negative electrode showed good characteristics without deterioration. Also, when the bias magnetic field Ho was gradually changed to change the lowest mode frequency of the magnetostatic wave resonance from 5 to 13 GHz, the mode did not deteriorate in the range of 5 to 13 GHz, and the resonance was sharp. The degree Q was large. Where 11
The wavelength of the microwave propagating through the microstrip line at GHz is 16.2 mm. Further, when the length of the resonator in this embodiment is 2 mm, which is converted into an electrical length, it is 3.8.
mm, which is less than a quarter of the wavelength. (Embodiment 2) In this embodiment, a YIG film 3 was formed on a GGG single crystal substrate 2 in the same manner as in the magnetostatic wave element 6 shown in Embodiment 1. Thereafter, a magnetic substrate 17 having a length (l 1 ) of 2 mm, a width (w 1 ) of 1 mm and a thickness (t) of 0.5 mm was cut out from the wafer by a dicer having a diamond blade. The microstrip line 15 having a structure in which the dielectric 14 is sandwiched between the conductor plates on both sides is etched by a width of 30 μm.
Five electrode fingers 10 each having a length of m and a length of 1 mm are formed, a copper conductive plate 11 serving as a connection end to a negative resistance circuit, and a width (w 3 )
Another substrate (second substrate) 9 on which the impedance matching stub 7 was formed was manufactured. The magnetic substrate 17 was fixed to the portion where the electrode fingers 10 were formed, and a magnetostatic wave element 18 was manufactured. When the pass characteristics of the magnetostatic wave element 18 when the bias magnetic field Ho was not applied were measured by a network analyzer, the frequency was 5 to 13 GHz as in FIG.
In the range, the characteristic where no decrease in the passage loss was observed. Further, by applying the bias magnetic field Ho and setting the resonance frequency of the magnetostatic wave element 18 to about 9 GHz and measuring the pass characteristics of the magnetostatic wave element 18, the lowest order mode of the magnetostatic wave resonance was measured as in FIG. The metal did not deteriorate and showed good characteristics. When the frequency of the lowest order mode of the magnetostatic wave resonance is changed from 5 to 13 GHz by gradually changing the bias magnetic field, the mode is not deteriorated from 5 to 13 GHz, and the sharpness Q of the resonance is increased. Showed large characteristics. Similarly, the wavelength of the microwave propagating through the microstrip line at 11 GHz is 16.2 mm, and the length of the resonator of this embodiment, 2 mm, is converted into an electrical length of 3.8.
mm is a value smaller than a quarter of the wavelength.

【0007】[0007]

【発明の効果】本発明によれば、マイクロ波により静磁
波を励振する手段と、前記静磁波が伝搬するフェリ磁性
薄膜とからなる静磁波共振子において、前記フェリ磁性
薄膜のマイクロ波伝搬方向の電気長を前記フェリ磁性薄
膜を含む空間を伝搬する最高使用周波数におけるマイク
ロ波の波長の4分の1以下にすることにより、使用周波
数帯域の共振特性に影響を与えない程度まで、構造によ
る寄生共振の周波数を前記帯域から充分に離して、静磁
波素子の共振特性の劣化を改善することができる。
According to the present invention, in a magnetostatic wave resonator comprising means for exciting a magnetostatic wave with a microwave and a ferrimagnetic thin film through which the magnetostatic wave propagates, the magnetostatic wave resonator has a magnetic wave propagating direction in which the ferrimagnetic thin film propagates. By setting the electrical length to less than or equal to one-fourth of the wavelength of the microwave at the highest operating frequency propagating in the space including the ferrimagnetic thin film, the parasitic resonance due to the structure can be reduced to the extent that the resonance characteristics of the operating frequency band are not affected. Can be sufficiently separated from the above-mentioned band to improve the deterioration of the resonance characteristics of the magnetostatic wave element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施例を示した図、(b)
は本発明の静磁波共振子の説明図である。
FIG. 1A is a diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is an explanatory diagram of a magnetostatic wave resonator of the present invention.

【図2】磁界無印加時の本発明の一実施例の通過特性の
実測値を示した図である。
FIG. 2 is a diagram showing measured values of transmission characteristics of one embodiment of the present invention when no magnetic field is applied.

【図3】バイアス磁界を印加したときの本発明の一実施
例の通過特性の実測値を示した図である。
FIG. 3 is a diagram showing actually measured values of transmission characteristics of one embodiment of the present invention when a bias magnetic field is applied.

【図4】(a)は静磁波素子の一例を示した図、(b)
は静磁波共振子の説明図である。
FIG. 4A is a diagram showing an example of a magnetostatic wave element, and FIG.
FIG. 3 is an explanatory diagram of a magnetostatic wave resonator.

【図5】磁界無印加時の静磁波素子の一例の通過特性の
実測値を示した図である。
FIG. 5 is a diagram showing measured values of transmission characteristics of an example of a magnetostatic wave element when no magnetic field is applied.

【図6】バイアス磁界を印加したときの静磁波素子の一
例の通過特性の実測値を示した図である。
FIG. 6 is a diagram showing measured values of transmission characteristics of an example of a magnetostatic wave element when a bias magnetic field is applied.

【図7】本発明の他の実施例を示す説明図である。FIG. 7 is an explanatory view showing another embodiment of the present invention.

【図8】静磁波共振子のマイクロ波伝搬方向の長さと構
造による寄生共振の落ち込み量との関係を示した図であ
る。
FIG. 8 is a diagram showing the relationship between the length of a magnetostatic wave resonator in the microwave propagation direction and the amount of parasitic resonance drop due to the structure.

【符号の説明】[Explanation of symbols]

1 静磁波素子 2 GGG基板 3 YIG膜 4a パッド電極 4b パッド電極 5 電極指 6 静磁波共振子 7 インピ−ダンス整合用スタブ 8 従来の静磁波共振子 9 別の基板 10 別の基板に形成した電極 11 接続用導体板 12a 接続版 12b 接続板 13 接地用導体板 14 誘電体 15 マイクロストリップライン 16 従来の静磁波素子 17 磁性基板 18 別の基板に電極指を形成した静磁波素子 DESCRIPTION OF SYMBOLS 1 Magnetostatic wave element 2 GGG board 3 YIG film 4a Pad electrode 4b Pad electrode 5 Electrode finger 6 Magnetostatic wave resonator 7 Impedance matching stub 8 Conventional magnetostatic wave resonator 9 Another substrate 10 Electrode formed on another substrate DESCRIPTION OF SYMBOLS 11 Conductor plate for connection 12a Connection plate 12b Connection plate 13 Conductor plate for grounding 14 Dielectric 15 Microstrip line 16 Conventional magnetostatic wave element 17 Magnetic substrate 18 Magnetostatic wave element having electrode fingers formed on another substrate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01P 1/215 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01P 1/215 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マイクロ波により静磁波を励振する手段
と、前記静磁波が伝搬するフェリ磁性薄膜とからなる静
磁波共振子において、前記フェリ磁性薄膜のマイクロ波
伝搬方向の電気長を前記フェリ磁性薄膜を含む空間を伝
搬するマイクロ波の波長の4分の1以下にすることを特
徴とする静磁波共振子。
1. A magnetostatic wave resonator comprising: means for exciting a magnetostatic wave by a microwave; and a ferrimagnetic thin film through which the magnetostatic wave propagates, wherein an electric length of the ferrimagnetic thin film in a microwave propagation direction is determined by the ferrimagnetic property. A magnetostatic wave resonator characterized in that it has a wavelength equal to or less than a quarter of a wavelength of a microwave propagating in a space including a thin film.
【請求項2】 前記静磁波を励振する手段として、前記
フェリ磁性薄膜上に形成された電極にマイクロ波電流を
流す方法を用いることを特徴とする請求項1に記載の静
磁波共振子。
2. The magnetostatic wave resonator according to claim 1, wherein the means for exciting the magnetostatic wave uses a method of flowing a microwave current to an electrode formed on the ferrimagnetic thin film.
【請求項3】 前記静磁波を励振する手段として、マイ
クロストリップライン上に形成された電極を用いること
を特徴とする請求項1に記載の静磁波共振子。
3. The magnetostatic wave resonator according to claim 1, wherein an electrode formed on a microstrip line is used as means for exciting the magnetostatic wave.
JP7952392A 1992-04-01 1992-04-01 Magnetostatic wave resonator Expired - Lifetime JP2755320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7952392A JP2755320B2 (en) 1992-04-01 1992-04-01 Magnetostatic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7952392A JP2755320B2 (en) 1992-04-01 1992-04-01 Magnetostatic wave resonator

Publications (2)

Publication Number Publication Date
JPH05283909A JPH05283909A (en) 1993-10-29
JP2755320B2 true JP2755320B2 (en) 1998-05-20

Family

ID=13692350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7952392A Expired - Lifetime JP2755320B2 (en) 1992-04-01 1992-04-01 Magnetostatic wave resonator

Country Status (1)

Country Link
JP (1) JP2755320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540717B (en) * 2021-09-15 2021-12-03 成都威频科技有限公司 Adjustable band-pass filter

Also Published As

Publication number Publication date
JPH05283909A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
CN114976543B (en) Interdigital YIG resonant structure and resonator
US4743874A (en) Magnetostatic wave tunable resonator
EP0836276B1 (en) Magnetostatic-wave device
US4992760A (en) Magnetostatic wave device and chip therefor
JPH0575202B2 (en)
JP2755320B2 (en) Magnetostatic wave resonator
US4983937A (en) Magnetostatic wave band-pass-filter
JP2909363B2 (en) Magnetostatic microwave device
JP2798148B2 (en) Magnetostatic wave element
US5053734A (en) Magnetostatic wave device
JP2636580B2 (en) Magnetostatic wave device
JP2619410B2 (en) Magnetostatic wave variable resonator
US5189383A (en) Circuit element utilizing magnetostatic wave
US5192928A (en) Circuit element having ferrimagnetic film with deviated end surfaces for suppressing spurious magnetostatic wave resonance modes
JPH0685507A (en) Magnetstatic microwave device
EP0713290B1 (en) Magnetostatic wave device having disk shape
JPS62224101A (en) Magnetostatic wave filter bank
Daniel et al. A linearly dispersive magnetostatic delay line at X-band
Sajin et al. Microwave straight edge resonator (SER) on silicon membrane
JP2595716B2 (en) Magnetostatic device
Tsutsumi et al. On the YIG film waveguides
JPH06177643A (en) Magnetostatic wave oscillation circuit
Adam Out of band suppression in MSW filters
JPH02189002A (en) Magnetostatic wave device
JP2003046307A (en) Two-terminal pair isolator