JPH06177643A - Magnetostatic wave oscillation circuit - Google Patents

Magnetostatic wave oscillation circuit

Info

Publication number
JPH06177643A
JPH06177643A JP33028292A JP33028292A JPH06177643A JP H06177643 A JPH06177643 A JP H06177643A JP 33028292 A JP33028292 A JP 33028292A JP 33028292 A JP33028292 A JP 33028292A JP H06177643 A JPH06177643 A JP H06177643A
Authority
JP
Japan
Prior art keywords
magnetostatic wave
oscillation circuit
magnetostatic
transistor
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33028292A
Other languages
Japanese (ja)
Inventor
Yasuhide Murakami
安英 邑上
Toshio Numata
敏男 沼田
Shigeru Takeda
茂 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP33028292A priority Critical patent/JPH06177643A/en
Publication of JPH06177643A publication Critical patent/JPH06177643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To prevent oscillation characteristic from being deteriorated by increasing an interval of discontinuous points of an oscillated frequency to sweep the oscillating frequency continuously over a broad band. CONSTITUTION:An epoxy resin group adhesives is applied to other major side opposite to one major side of a GGG single crystal substrate on which a YIG film of a magnetostatic wave resonator 1 is formed, the resonator is fixed to a gap, a pad electrode and a conductor plate are connected by a copper-made connecting plate and the pad electrode and a stub are connected by a copper- made connecting plate to form the magnetostatic wave element. The magnetostatic wave element obtained in this way is mounted on an oscillation circuit employing a common base emitter coupling transistor (TR) 2. Then a DC bias magnetic field is applied perpendicularly to the YIG film and its magnitude is changed. In the oscillating frequency characteristic of the magnetostatic wave oscillation circuit, the continuous variable band of the oscillating frequency is 4.0 to 6.5GHz.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GGG(ガドリウム・
ガリウム・ガーネット)等の非磁性基板上に形成したY
IG(イットリウム・鉄・ガーネット)等の磁性薄膜の
磁気スピン共鳴を利用した静磁波発振回路に関わり、広
帯域に使用可能ならしめるための発振回路構造に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to GGG (Gadolinium
Y formed on a non-magnetic substrate such as gallium / garnet)
The present invention relates to a magnetostatic wave oscillation circuit using magnetic spin resonance of a magnetic thin film such as IG (yttrium, iron, garnet), etc., and relates to an oscillation circuit structure for enabling wideband use.

【0002】[0002]

【従来の技術】マイクロ波帯域等に使用される発振回路
としてGGG(ガドリニウム・ガリウム・ガーネット)
非磁性基板上に、液相エピタキシャル法によりYIG
(イットリウム・鉄・ガ−ネット)薄膜を形成し、前記
薄膜の上に複数本の導体膜電極とパッド電極を形成した
静磁波共振子を導体板上に配置し、前記パッド電極と下
部導体を接続し、前記薄膜の面方向にバイアス磁界を印
加し、前記静磁波共振子が誘導性リアクタンスとなる領
域で、高周波電気信号を発生させる発振回路が提案され
ている。(特開昭63−228802号公報参照)。こ
のフェリ磁性薄膜共鳴発振回路は、マイクロ波帯で共振
特性のQが高いこと、マイクロ波伝送線路(エッチング
法で形成した電極指など)に磁気的に結合されたフェリ
磁性薄膜に直流バイアス磁界を与えて、その磁界強度に
よって共鳴周波数を可変できることなどの特徴を有す
る。
2. Description of the Related Art GGG (gadolinium gallium garnet) is used as an oscillation circuit used in a microwave band or the like.
YIG on non-magnetic substrate by liquid phase epitaxial method
(Yttrium / iron / garnet) A thin film is formed, and a magnetostatic wave resonator having a plurality of conductor film electrodes and pad electrodes formed on the thin film is arranged on a conductor plate, and the pad electrode and the lower conductor are arranged. An oscillating circuit has been proposed which is connected and applies a bias magnetic field in the surface direction of the thin film to generate a high frequency electric signal in a region where the magnetostatic wave resonator has an inductive reactance. (See JP-A-63-228802). This ferrimagnetic thin film resonance oscillator circuit has a high resonance characteristic Q in the microwave band, and applies a DC bias magnetic field to the ferrimagnetic thin film magnetically coupled to the microwave transmission line (such as an electrode finger formed by an etching method). It is characterized in that the resonance frequency can be varied depending on its magnetic field strength.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記の静磁波
発振回路の発振周波数特性を直流バイアス磁界を変化さ
せて測定した場合、しばしば発振周波数がある磁界強度
において不連続となる特性を示すことがあった。そのた
め、連続可変周波数帯域幅が狭くなるという問題点があ
った。従って、本発明の目的は、前記発振周波数の不連
続点が生じる間隔を大きくして広帯域に発振周波数を連
続掃引できるようにし、静磁波発振回路の発振特性の劣
化を改善することができる構造を有する静磁波発振回路
を提供することである。
However, when the oscillation frequency characteristic of the magnetostatic wave oscillation circuit is measured by changing the DC bias magnetic field, the oscillation frequency often shows discontinuity at a certain magnetic field strength. there were. Therefore, there is a problem that the continuously variable frequency bandwidth becomes narrow. Therefore, an object of the present invention is to increase the interval at which the discontinuity point of the oscillation frequency is generated so that the oscillation frequency can be continuously swept in a wide band, and to improve the deterioration of the oscillation characteristic of the magnetostatic wave oscillation circuit. It is to provide a magnetostatic wave oscillation circuit having.

【0004】[0004]

【課題を解決するための手段】本発明は、非磁性基板の
一主面上に静磁波が伝搬する媒体が形成され、上記媒体
上に複数本の導体膜電極指とパッド電極を形成した静磁
波共振子を導体板上に配置し、前記媒体と直交方向にバ
イアス磁界を印加して発振させる静磁波発振回路におい
て、トランジスタのベース端子を接地し、エミッタ端子
に静磁波素子を結合させたこと(以後ベース接地エミッ
タ結合と呼ぶこととする)を特徴とする静磁波発振回路
である。更に、本発明においては、トランジスタとして
バイポーラに限定されるものではなく、HEMT(高速
電子移動トランジスタ)、FET(電界効果トランジス
タ)、SIT(静電誘導トランジスタ)も使用すること
ができる。この場合、トランジスタのゲート端子を接地
し、ソース端子に静磁波素子を結合させた(以後ゲート
接地ソース結合と呼ぶこととする)静磁波発振回路であ
る。なお、本発明において非磁性基板上にフェリ磁性薄
膜を形成し、前記フェリ磁性薄膜上に電極を形成し、該
電極により前記フェリ磁性薄膜に静磁波を励起し伝搬さ
せる構造としてもよいし、或いは、第1の非磁性基板上
にフェリ磁性薄膜を形成し、第2の非磁性基板に形成し
た電極により前記フェリ磁性薄膜に静磁波を励起し伝搬
させる構造としてもよい。
According to the present invention, a medium in which a magnetostatic wave propagates is formed on one main surface of a non-magnetic substrate, and a plurality of conductor film electrode fingers and pad electrodes are formed on the medium. In a magnetostatic wave oscillation circuit in which a magnetic wave resonator is arranged on a conductor plate and a bias magnetic field is applied in a direction orthogonal to the medium to oscillate, the base terminal of the transistor is grounded, and the magnetostatic wave element is coupled to the emitter terminal. (Hereinafter referred to as grounded-base emitter coupling) is a magnetostatic wave oscillation circuit. Furthermore, in the present invention, the transistor is not limited to bipolar, and HEMT (high-speed electron transfer transistor), FET (field effect transistor), and SIT (static induction transistor) can also be used. In this case, the magnetostatic wave oscillation circuit is one in which the gate terminal of the transistor is grounded and the magnetostatic wave element is coupled to the source terminal (hereinafter referred to as gate ground source coupling). In the present invention, a ferrimagnetic thin film may be formed on a non-magnetic substrate, an electrode may be formed on the ferrimagnetic thin film, and the structure may be such that a magnetostatic wave is excited and propagated in the ferrimagnetic thin film by the electrode, or A structure may be adopted in which a ferrimagnetic thin film is formed on the first nonmagnetic substrate and a magnetostatic wave is excited and propagated in the ferrimagnetic thin film by the electrodes formed on the second nonmagnetic substrate.

【0005】[0005]

【作用】本発明者は、従来の発振回路を詳細に解析した
結果、前記問題点がトランジスタとしてベース接地コレ
クタ結合を採用しているためであることを知見した。更
に詳細に説明する。トランジスタ(2SC3587)の
単体特性の複素反射率をコレクタ−エミッタ間電圧:V
ce=6Vで一定、コレクタ−エミッタ間電流:Ice
=3、4、5mAの場合と、Ice=4mAで一定、V
cE=4、6、8Vの場合について測定した結果を図
2、図3に各々示す。図2及び図3において、それぞれ
(a)はベース接地エミッタ結合、(b)はベース接地
コレクタ結合の場合を示している。図2の(b)、図3
の(b)で示すベース接地コレクタ結合の場合には、利
得が大きく位相まわりがそれほど大きくなくて位相整合
可能であるが、Vce、Iceを変化させても特性変化
が小さく整合条件の調整は共振回路側で行う必要がある
ことがわかる。他方、本発明に係る図2の(a)、図3
の(a)で示すベース接地エミッタ結合の場合には負性
抵抗領域の利得は若干小さいが、位相まわりがそれほど
大きくなく、Iceによって負性抵抗特性が大きく変化
するために、位相整合の調整が発振回路側で容易に行
え、位相整合できる周波数範囲を広くできると考えられ
る。
As a result of detailed analysis of the conventional oscillation circuit, the present inventor has found that the problem is due to the use of the base-grounded collector coupling as the transistor. Further details will be described. The complex reflectance of the transistor (2SC3587) alone is measured by the collector-emitter voltage: V
constant at ce = 6V, collector-emitter current: Ice
= 3, 4, 5 mA and Ice = 4 mA, V
The results measured for cE = 4, 6, and 8 V are shown in FIGS. 2 and 3, respectively. 2 and 3, (a) shows the case where the base-grounded emitter is coupled, and (b) shows the case where the base-grounded collector is coupled. 2B and FIG.
In the case of the base-grounded collector coupling shown in (b), the gain is large and the phase circumference is not so large, and thus phase matching is possible, but the characteristic change is small even if Vce and Ice are changed, and the adjustment of the matching condition requires resonance. It turns out that it is necessary to do it on the circuit side. On the other hand, FIG. 2A and FIG.
In the case of the grounded-grounded emitter coupling shown in (a), the gain in the negative resistance region is slightly small, but the phase rotation is not so large and the negative resistance characteristic largely changes depending on Ice. It is considered that this can be easily performed on the oscillator circuit side and the frequency range in which phase matching can be performed can be widened.

【0006】[0006]

【実施例】以下、実施例により本発明を詳述する。 (実施例1)図1は本発明の一実施例を示す。静磁波共
振子1の製造方法は下記の通りである。即ち、GGG単
結晶基板の一主面上に液相エピタキシャル成長法により
約40μm厚のYIG膜を形成した。次にYIG膜上に
厚さ1.5μmのAu膜をイオンプレ−ティング法で作
製し、写真蝕刻法により部分的にAu膜を除去すること
によって幅30μm、長さ3mm、の電極指を5本及び
その両側にパッド電極を作製した。その後、ダイヤモン
ドブレ−ドを有するダイサ−により長さ5mm、幅2m
m、厚さ0.5mmの静磁波共振子1をウェハから切り
出した。両側の導体板で誘電体を挟む構造のマイクロス
トリップラインにエッチングにより静磁波共振子1の長
さよりも大なるギャップを形成し、負性抵抗回路への接
続端となる銅製の導体板と、長さ(l)、幅(w)のイ
ンピ−ダンス整合用スタブを作製した。前記静磁波共振
子1のYIG膜を形成したGGG単結晶基板の一主面と
は反対側のもう一方の主面にエポキシ樹脂系接着剤を1
0μm塗布して、共振子をこのギャップの部分に固定
し、パッド電極と導体板を銅製の接続板で、またパッド
電極とスタブを銅製の接続板でハンダ接合し、静磁波素
子を作製した。このようにして得られた静磁波素子を図
1に示すベース接地エミッタ結合を形成するトランジス
タ(2SC3587)2を用いた発振回路に実装した。
そして、直流バイアス磁界をYIG膜面に垂直に印加
し、その大きさを変化させて、この静磁波発振回路の発
振周波数特性をスペクトラムアナライザで測定したとこ
ろ、発振周波数の連続可変帯域は4.0〜6.5GHz
となった。 (比較例)実施例1に示した静磁波共振子1と同様に作
製した静磁波共振子を準備し、トランジスタを従来のベ
ース接地コレクタ結合で形成した発振回路に実装した。
直流バイアス磁界をYIG膜面に垂直に印加し、その大
きさを変化させて、この静磁波発振回路の発振周波数特
性をスペクトラムアナライザで測定したところ、発振周
波数の連続可変帯域は4.7〜6.0GHzとなった。 (実施例2)トランジスタをHEMTとして9GHz帯
発振回路を形成したが、同様に本発明の効果が確認され
た。
EXAMPLES The present invention will be described in detail below with reference to examples. (Embodiment 1) FIG. 1 shows an embodiment of the present invention. The method of manufacturing the magnetostatic wave resonator 1 is as follows. That is, a YIG film having a thickness of about 40 μm was formed on one main surface of the GGG single crystal substrate by the liquid phase epitaxial growth method. Next, an Au film having a thickness of 1.5 μm was formed on the YIG film by an ion plating method, and the Au film was partially removed by a photo-etching method to form five electrode fingers having a width of 30 μm and a length of 3 mm. And pad electrodes were formed on both sides thereof. Then, using a dicer equipped with a diamond blade, the length is 5 mm and the width is 2 m.
A magnetostatic wave resonator 1 having a thickness of 0.5 mm and a thickness of 0.5 mm was cut out from the wafer. A gap larger than the length of the magnetostatic wave resonator 1 is formed by etching in a microstrip line having a structure in which a dielectric is sandwiched between conductor plates on both sides, and a copper conductor plate serving as a connection end to a negative resistance circuit A thickness (l) and width (w) impedance matching stub was prepared. An epoxy resin adhesive was applied to the other main surface of the magnetostatic wave resonator 1 opposite to the one main surface of the GGG single crystal substrate on which the YIG film was formed.
A magnetostatic wave device was produced by applying a coating of 0 μm and fixing the resonator in this gap, soldering the pad electrode and the conductor plate with a copper connecting plate, and the pad electrode and the stub with a copper connecting plate. The magnetostatic wave device thus obtained was mounted in an oscillation circuit using a transistor (2SC3587) 2 forming a base-grounded emitter coupling shown in FIG.
Then, a DC bias magnetic field was applied perpendicularly to the surface of the YIG film, its magnitude was changed, and the oscillation frequency characteristic of this magnetostatic wave oscillation circuit was measured by a spectrum analyzer. The continuous variable band of the oscillation frequency was 4.0. ~ 6.5 GHz
Became. (Comparative Example) A magnetostatic wave resonator manufactured in the same manner as the magnetostatic wave resonator 1 shown in Example 1 was prepared, and the transistor was mounted on an oscillation circuit formed by conventional base-grounded collector coupling.
A DC bias magnetic field was applied perpendicularly to the surface of the YIG film, its magnitude was changed, and the oscillation frequency characteristic of this magnetostatic wave oscillation circuit was measured by a spectrum analyzer. The continuous variable band of the oscillation frequency was 4.7 to 6. It became 0.0 GHz. (Example 2) A 9 GHz band oscillation circuit was formed by using a transistor as a HEMT, and the effect of the present invention was similarly confirmed.

【0007】[0007]

【発明の効果】本発明によれば、非磁性基板の一主面上
に静磁波が伝搬する媒体が形成されてなる静磁波発振回
路において、発振周波数の不連続点が生じる間隔を大き
くして広帯域に発振周波数を連続掃引できるようにし、
静磁波発振回路の発振特性の劣化を改善することができ
る。
According to the present invention, in a magnetostatic wave oscillation circuit in which a medium through which a magnetostatic wave propagates is formed on one main surface of a non-magnetic substrate, the interval at which the discontinuity of the oscillation frequency occurs is increased. It is possible to continuously sweep the oscillation frequency in a wide band,
It is possible to improve the deterioration of the oscillation characteristics of the magnetostatic wave oscillation circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構造図である。FIG. 1 is a structural diagram showing an embodiment of the present invention.

【図2】トランジスタ単体特性の複素反射率の測定結果
を示す図である。(a)は本発明のもの、(b)は従来
のものを示す図である。
FIG. 2 is a diagram showing measurement results of complex reflectance of transistor characteristics. (A) is a figure of the present invention, (b) is a figure showing a conventional thing.

【図3】トランジスタ単体特性の複素反射率の測定結果
を示す図である。(a)は本発明のもの、(b)は従来
のものを示す図である。
FIG. 3 is a diagram showing measurement results of complex reflectance of transistor characteristics. (A) is a figure of the present invention, (b) is a figure showing a conventional thing.

【符号の説明】[Explanation of symbols]

1 静磁波共振子 2 トランジスタ 1 Magnetostatic wave resonator 2 Transistor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板の一主面上に静磁波が伝搬す
る媒体と、マイクロ波により静磁波を励振する手段を有
し、前記媒体にバイアス磁界を印加して発振させる静磁
波発振回路において、トランジスタのベース端子を接地
し、エミッタ端子に前記手段を結合させることを特徴と
する静磁波発振回路。
1. A magnetostatic wave oscillation circuit having a medium on which a magnetostatic wave propagates on one main surface of a non-magnetic substrate and a means for exciting the magnetostatic wave by a microwave, and applying a bias magnetic field to the medium to oscillate. 2. A magnetostatic wave oscillation circuit according to claim 1, wherein the base terminal of the transistor is grounded, and the means is coupled to the emitter terminal.
【請求項2】 非磁性基板の一主面上に静磁波が伝搬す
る媒体と、マイクロ波により静磁波を励振する手段を有
し、前記媒体にバイアス磁界を印加して発振させる静磁
波発振回路において、トランジスタのゲート端子を接地
し、ソース端子に前記手段を結合させることを特徴とす
る静磁波発振回路。
2. A magnetostatic wave oscillation circuit having a medium on which a magnetostatic wave propagates on one main surface of a non-magnetic substrate and a means for exciting the magnetostatic wave by a microwave, and applying a bias magnetic field to the medium to oscillate. 2. A magnetostatic wave oscillation circuit according to claim 2, wherein the gate terminal of the transistor is grounded and the source terminal is coupled to the means.
【請求項3】 前記静磁波を励振する手段として、前記
媒体上に形成された複数本の導体膜電極にマイクロ波電
流を流す方法を用いることを特徴とする請求項1及び請
求項2に記載の静磁波発振回路。
3. The method according to claim 1, wherein as a means for exciting the magnetostatic wave, a method of flowing a microwave current through a plurality of conductor film electrodes formed on the medium is used. Magnetostatic wave oscillator circuit.
【請求項4】 前記静磁波を励振する手段として、マイ
クロストリップライン上に形成された複数本の導体電極
を用いることを特徴とする請求項1及び請求項2に記載
の静磁波発振回路。
4. The magnetostatic wave oscillation circuit according to claim 1 or 2, wherein a plurality of conductor electrodes formed on a microstrip line are used as means for exciting the magnetostatic wave.
JP33028292A 1992-12-10 1992-12-10 Magnetostatic wave oscillation circuit Pending JPH06177643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33028292A JPH06177643A (en) 1992-12-10 1992-12-10 Magnetostatic wave oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33028292A JPH06177643A (en) 1992-12-10 1992-12-10 Magnetostatic wave oscillation circuit

Publications (1)

Publication Number Publication Date
JPH06177643A true JPH06177643A (en) 1994-06-24

Family

ID=18230912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33028292A Pending JPH06177643A (en) 1992-12-10 1992-12-10 Magnetostatic wave oscillation circuit

Country Status (1)

Country Link
JP (1) JPH06177643A (en)

Similar Documents

Publication Publication Date Title
CA1268827A (en) Tuned oscillator
JPH0537287A (en) Ultra-high-frequency oscillator/resonator
CN114976543B (en) Interdigital YIG resonant structure and resonator
JP2646594B2 (en) Tuned oscillator
US5801591A (en) Microwave linear oscillator/amplifier utilizing a multicoupled ferrite resonator
JPS62245704A (en) Magnetostatic wave variable resonator
US4992760A (en) Magnetostatic wave device and chip therefor
US4392115A (en) Volume magnetostatic wave device
JPH06177643A (en) Magnetostatic wave oscillation circuit
JP2666910B2 (en) Magnetostatic wave element
US5512868A (en) Magnetostatic microwave device having large impedance change at resonance
US5371482A (en) Magnetostatic wave device containing acoustic wave absorbing layer
JP2619410B2 (en) Magnetostatic wave variable resonator
JP2523600B2 (en) Magnetostatic wave oscillator
JP2522579B2 (en) Magnetostatic microwave oscillator for PLL control
JP2755320B2 (en) Magnetostatic wave resonator
US5192928A (en) Circuit element having ferrimagnetic film with deviated end surfaces for suppressing spurious magnetostatic wave resonance modes
US5189383A (en) Circuit element utilizing magnetostatic wave
CN107919517A (en) Planarize the adjustable magnetostatic wave resonator of high q-factor
KR20000068615A (en) Magnetostatic wave device
JPS62224101A (en) Magnetostatic wave filter bank
JPH0685507A (en) Magnetstatic microwave device
JP2658306B2 (en) Ferrimagnetic thin film filter
JPH0213101A (en) Ferrimagnetic thin film resonator element
Ito et al. Voltage controlled oscillators with planar MSW resonators