JPH068507B2 - Method for producing coated cemented carbide tool - Google Patents

Method for producing coated cemented carbide tool

Info

Publication number
JPH068507B2
JPH068507B2 JP61300717A JP30071786A JPH068507B2 JP H068507 B2 JPH068507 B2 JP H068507B2 JP 61300717 A JP61300717 A JP 61300717A JP 30071786 A JP30071786 A JP 30071786A JP H068507 B2 JPH068507 B2 JP H068507B2
Authority
JP
Japan
Prior art keywords
cemented carbide
vapor deposition
chemical vapor
layer
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61300717A
Other languages
Japanese (ja)
Other versions
JPS63156623A (en
Inventor
仁 堀江
順治 小島
晴彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP61300717A priority Critical patent/JPH068507B2/en
Publication of JPS63156623A publication Critical patent/JPS63156623A/en
Publication of JPH068507B2 publication Critical patent/JPH068507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は工具寿命を一段と改善した被覆超硬合金工具
に関するものである。
TECHNICAL FIELD The present invention relates to a coated cemented carbide tool with a further improved tool life.

〔従来技術および発明が解決しようとする問題点〕[Problems to be Solved by Prior Art and Invention]

一般に、元素周期表の4a、5aおよび6a族金属の炭
化物、窒化物および炭窒化物のうちの1種または2種以
上と、Co,Ni,およびFeのうちの1種または2種
以上とを含有する組成をもった超硬合金工具は公知であ
り、さらに前記超硬合金工具の表面に、前記4a,5a
および6a族金属の炭化物、炭窒化物、窒化物、酸化
物、酸炭化物、酸窒化物、および酸炭窒化物,ならびに
アルミニウム酸化物のうちの1種からなる単層または2
種以上からなる複層の硬質層を被覆して、工具寿命の延
命化をはかった被覆超硬合金工具も提案されている。
Generally, one or more of carbides, nitrides and carbonitrides of metals of groups 4a, 5a and 6a of the Periodic Table of the Elements and one or more of Co, Ni and Fe are selected. A cemented carbide tool having a composition containing is known, and further, on the surface of the cemented carbide tool, the above-mentioned 4a, 5a
And a single layer of one of the following: Group 6a metal carbides, carbonitrides, nitrides, oxides, oxycarbides, oxynitrides, and oxycarbonitrides, and aluminum oxides.
A coated cemented carbide tool has also been proposed, which is intended to extend the life of the tool by coating a multi-layer hard layer composed of at least one kind.

しかしながら、上記超硬合金工具においては、上記硬質
層が上記超硬合金基体に比して脆いために、前記基体自
体のもつ靱性が前記硬質層によって相殺されてしまい、
この結果前記工具の表面部の靱性は低いものとなること
から所望の工具寿命の延命化をはかることはできない。
However, in the cemented carbide tool, since the hard layer is more brittle than the cemented carbide substrate, the toughness of the substrate itself is offset by the hard layer,
As a result, the toughness of the surface portion of the tool becomes low, so that the desired tool life cannot be extended.

また、このようなことから硬さの低い超硬合金基体を採
用して靱性を付与した被覆超硬合金工具が提案された
が、この場合耐熱塑性変形性および耐摩耗性が劣化した
ものとなるので、工具寿命の延命をはかることは難し
い。一方、逆に硬さの高い超硬合金基体を採用して耐熱
塑性変形性および耐摩耗性を改善し、工具寿命の延命化
をはかった被覆超硬合金工具においては、靱性がより一
層低下したものとなるために靱性不足から早期に欠損
し、工具寿命に到る場合が多く、このため切削工具とし
ての使用用途が著しく限定されてしまうのが現状であ
る。
In addition, a coated cemented carbide tool with a cemented carbide substrate of low hardness and toughness has been proposed from the above, but in this case, the heat plastic deformation and wear resistance are deteriorated. Therefore, it is difficult to extend the tool life. On the other hand, on the other hand, the toughness was further reduced in the coated cemented carbide tool, which adopted a cemented carbide substrate with high hardness to improve the heat plastic deformation and wear resistance and prolong the life of the tool. As a result, the toughness of the cutting tool often results in a loss of the tool at an early stage, leading to the end of the tool life. For this reason, the usage of the cutting tool is considerably limited under the present circumstances.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上述のような被覆超硬合金工具のもつ問題
点を解決した被覆超硬合金工具を提供するもので、元素
周期律表の4a、5aおよび6a族金属の炭化物,窒化
物,および炭窒化物のうちの1種または2種以上と、C
o,Ni,およびFeのうちの1種または2種以上とを
含有する超硬合金基体の表面に、超硬合金基体より靱性
に富むと共に軟質な層を設け、しかも前記中間層側から
前記超硬合金基体側に向かって硬さが連続的に増加する
硬さ勾配をもった中間層を介在させた被覆超硬合金にお
いて、被覆層が4a、5a,および6a族金属の炭化
物,窒化物,炭窒化物,酸化物,酸炭化物,酸窒化物,
および酸炭窒化物,ならびにアルミニウム酸化物のうち
の1種からなる単層または2種以上からなり、かつその
蒸着法が700℃〜900℃で被覆処理する化学蒸着法
及び950℃〜1050℃で被覆処理する化学蒸着法の
双方または前者により単層又は複層の被覆層を被覆した
ことを特徴とする被覆超硬合金工具である。上記超硬合
金基体に700℃〜900℃で被覆処理する化学蒸着法
の被覆層を形成させる事により、中間層の生成に伴う被
覆時の主として脱炭層による強度の低下を防いだ事を特
長とし、中間層は超硬合金基体より靱性に富むと共に軟
質で、しかも前記中間層側から前記超硬合金基体側に向
かって硬さが連続的に増加する硬さ勾配を有しており、
前記被覆後における前記超硬合金基体において、いずれ
もビッカース硬さで、 前記超硬合金基体の表面硬さ…… ……900〜1100kg/mm2、 同表面より深さ15μm位置の硬さ…… ……1100〜1300kg/mm2、 同表面より深さ60μm位置の硬さ…… ……1300〜1600kg/mm2、 同表面より深さ500μm位置の硬さ…… ……1400kg/mm2以上 の硬さ勾配をもつことによって、すぐれた耐熱塑性変
形,耐摩耗性,および靱性を付与する。被覆工具として
は中間層を介在させた強度の向上と中間層側の被覆に伴
う強度の低下を少なくする事により、工具寿命の一層の
延命化をはかったことに特徴を有するものである。
The present invention provides a coated cemented carbide tool that solves the problems of the coated cemented carbide tools described above, and includes carbides, nitrides, and carbides of metals of groups 4a, 5a and 6a of the Periodic Table of Elements. One or more carbonitrides, and C
On the surface of a cemented carbide substrate containing one or more of o, Ni, and Fe, a layer having a toughness and a softness higher than that of the cemented carbide substrate is provided. In a coated cemented carbide having an intermediate layer having a hardness gradient in which the hardness continuously increases toward the hard alloy substrate side, the coating layer has carbides, nitrides of group 4a, 5a, and 6a metals, Carbonitride, oxide, oxycarbide, oxynitride,
And oxycarbonitride, and a chemical vapor deposition method comprising a single layer consisting of one or more of aluminum oxide and two or more kinds, and the vapor deposition method is a coating treatment at 700 ° C. to 900 ° C. and 950 ° C. to 1050 ° C. A coated cemented carbide tool characterized in that a coating layer of a single layer or multiple layers is coated by both or the former of the chemical vapor deposition method of coating treatment. By forming a coating layer of a chemical vapor deposition method for performing a coating treatment at 700 ° C. to 900 ° C. on the above cemented carbide substrate, it is possible to prevent a decrease in strength mainly due to a decarburized layer at the time of coating accompanying the formation of the intermediate layer. , The intermediate layer is tougher and softer than the cemented carbide substrate, and has a hardness gradient in which the hardness continuously increases from the intermediate layer side to the cemented carbide substrate side,
In the cemented carbide base material after the coating, all have Vickers hardness, the surface hardness of the cemented carbide base material is 900 to 1100 kg / m 2 , and the hardness at a depth of 15 μm from the surface. ...... 1100~1300kg / mm 2, hardness ...... ...... 1300~1600kg / mm 2 of depth 60μm position than the surface hardness of the depth 500μm position than the surface ...... ...... 1400kg / mm 2 or more Having a hardness gradient imparts excellent heat plastic deformation, wear resistance, and toughness. The coated tool is characterized in that the life of the tool is further extended by improving the strength with the intermediate layer interposed and reducing the decrease in the strength due to the coating on the intermediate layer side.

〔作用〕[Action]

以下にこの発明の被覆超硬合金工具において、被覆層及
び中間層の硬さ勾配を望ましい範囲として上述のように
限定した理由を説明する。
In the coated cemented carbide tool of the present invention, the reason why the hardness gradients of the coating layer and the intermediate layer are limited as described above as the desirable range will be described below.

被覆層 化学蒸着法による炭窒化チタン,窒化チタン被覆処理は
四塩化チタン,水素,有機CN化合物及び/又は窒素か
らなる混合ガス中で行い、有機CN化合物の分圧は四塩
化チタンの分圧より低くし、かつ水素分圧の1/10以
下が適している。
Coating layer Titanium carbonitride and titanium nitride coating by chemical vapor deposition is performed in a mixed gas consisting of titanium tetrachloride, hydrogen, organic CN compound and / or nitrogen, and the partial pressure of the organic CN compound is less than that of titanium tetrachloride. It is suitable that the pressure is made low and the hydrogen partial pressure is 1/10 or less.

上記条件で表面に結合相を富化した超硬合金基体の中間
層に炭窒化チタン被覆を施すと、被覆処理温度が低いた
め炭素の拡散が少なく、脱炭層が生成しずらく被覆工具
の強度としては基体と同等のレベルまで向上する。
When the titanium carbonitride coating is applied to the intermediate layer of the cemented carbide substrate with the binder phase enriched on the surface under the above conditions, the diffusion of carbon is small due to the low coating temperature and the decarburized layer is hard to form. As a result, it is improved to the same level as the substrate.

中間層 (a)表面硬さ その硬さを900kg/mm2未満にすると、靱性向上と
いう点では良いが、耐塑性変形性の劣化が著しく、一方
その硬さが1100kg/mm2を越えると、硬質層にお
けるクラック伝播を阻止することができなくなり、工具
の強度が不足するため前記900〜1100kg/mm2
とした。
Intermediate layer (a) Surface hardness If the hardness is less than 900 kg / mm 2 , it is good in terms of toughness improvement, but plastic deformation resistance is significantly deteriorated, while if the hardness exceeds 1100 kg / mm 2 , It is impossible to prevent crack propagation in the hard layer, and the strength of the tool becomes insufficient, so that 900 to 1100 kg / mm 2
And

(b)深さ15〜60μm位置の硬さ その硬さをそれぞれ1100および1300kg/mm2
未満にすると、靱性向上という点では良いが、耐塑性変
形性の劣化が著しく、一方それぞれ1300および16
00kg/mm2を越えた硬さにすると所望の靱性が確保
できなくなることから、その硬さをそれぞれ1100〜
1300kg/mm2および1300〜1600kg/m
m2とした。
(B) Hardness at a depth of 15 to 60 μm The hardness is 1100 and 1300 kg / mm 2 respectively.
If it is less than 1, the toughness is improved, but the plastic deformation resistance is significantly deteriorated.
If the hardness exceeds 00 kg / mm 2 , the desired toughness cannot be ensured.
1300 kg / mm 2 and 1300 to 1600 kg / m
m 2

(c)500μm位置の硬さ 工具の靱性向上に最も大きな影響をもたらす部分は超硬
合金基体表面より約100μm深さ位置までの範囲であ
ると考えられ、これ以上の深さ位置になると靱性よりは
むしろ耐塑性変形性の向上に影響し、しかもこの深さ位
置部分の硬さは工具の使用目的に応じて決定されるもの
であり、500μm位置の硬さの下限値を耐塑性変形性
を確保することができる1400kg/mm2とした。
(C) Hardness at 500 μm position It is considered that the part that has the greatest effect on improving the toughness of the tool is the range up to a depth of about 100 μm from the surface of the cemented carbide substrate. Rather influences the improvement of plastic deformation resistance, and the hardness at this depth position is determined according to the purpose of use of the tool, and the lower limit of the hardness at 500 μm position is set as the plastic deformation resistance. It was 1400 kg / mm 2 which can be secured.

以下実施例により詳細に説明する。This will be described in detail below with reference to examples.

実施例1. 炭化タングステン 75.5%,炭化チタン 5%,窒
化チタン 0.5%,炭化タンタル 10%,コバルト
9%(以上 重量%)からなる組成を持ったチップ
(SNM432)を真空度2×10-2torrの真空中、焼
結温度1400℃に60分間保持して焼結し、その後冷
却速度0.05℃/minで除冷し、チップを制作し
た。上記チップの表面部の断面組織を観察したところ、
いずれもビッカース硬さで表面1050kg/mm2,深
さ15μm位置1260kg/mm2,深さ60μm位置
1520kg/mm2及び深さ500μm位置1540k
g/mm2の硬さ勾配を示し、その表面より深くなるにつ
れて結合金属の量が少なくなっていた。一方比較の目的
で除冷しない以外は上記実施例と同様に製作したチップ
は表面近くの硬さは1520kg/mm2と深さ500μ
m位置1540kg/mm2と変化がなかった。
Example 1. A chip (SNM432) having a composition of 75.5% tungsten carbide, 5% titanium carbide, 0.5% titanium nitride, 10% tantalum carbide, and 9% cobalt (above wt%) was vacuumed to 2 × 10 -2. In a vacuum of torr, the sintering temperature was maintained at 1400 ° C. for 60 minutes for sintering, and then cooled at a cooling rate of 0.05 ° C./min to produce chips. When observing the cross-sectional structure of the surface portion of the chip,
Surface 1050 kg / mm 2 in both Vickers hardness, depth 15μm position 1260 kg / mm 2, the depth 60μm position 1520kg / mm 2 and a depth 500μm position 1540k
A hardness gradient of g / mm 2 was exhibited, and the amount of bound metal decreased as the depth became deeper than the surface. On the other hand, for the purpose of comparison, a chip manufactured in the same manner as in the above example except that it was not cooled was 1520 kg / mm 2 in hardness near the surface and 500 μ in depth.
There was no change at the m position of 1540 kg / mm 2 .

この中間層を有するチップと比較チップについて有機C
N化合物を用いた化学蒸着法により反応温度850℃、
反応式 2TiC+2R・CN+3H2→2Ti(CN)+6
HC+2R・C に基づき膜厚8μmのTiCN皮膜を蒸着した。また化
学蒸着法により反応温度1030℃、反応式 2TiC+2CH4+N2+H→2TiCN+8HC
l+H2 に基づき膜厚8μmのTiCN皮膜を蒸着した。次に上
記本発明のチップと比較チップについて 被削材 ;SNCM−8(HS50)(4ッ溝入り) 切削速度;120m/min 送り量 ;0.3mm/rev 切削時間;10min チップ数;10ケ の条件で断続切削試験を実施した。
Organic C for chips with this intermediate layer and for comparative chips
A reaction temperature of 850 ° C. by a chemical vapor deposition method using an N compound,
Reaction formula 2TiC 4 + 2R · CN + 3H 2 → 2Ti (CN) +6
A TiCN film having a film thickness of 8 μm was deposited on the basis of HC + 2R · C. Also, the reaction temperature was 1030 ° C. and the reaction formula was 2TiC 4 + 2CH 4 + N 2 + H 2 → 2TiCN + 8HC by chemical vapor deposition.
A TiCN film having a film thickness of 8 μm was vapor-deposited on the basis of 1 + H 2 . Next, regarding the above-mentioned chip of the present invention and the comparative chip, the work material: SNCM-8 (HS50) (with 4 grooves) cutting speed; 120 m / min feed amount; 0.3 mm / rev cutting time; 10 min number of chips; 10 pieces An intermittent cutting test was performed under the conditions.

本発明チップは1/10ケ、中間層なしで有機CN化合
物による化学蒸着法の比較チップは5/10ケ、中間層
があり、CH4ガス及びN2ガスによる化学蒸着法の比較チ
ップは4/10ケ、中間層なしでCH4ガス及びN2ガスに
よる化学蒸着法の比較チップは6/10ケの欠損を示し
た。化学蒸着方法による強度への影響も相当大きな要因
であり、本発明チップは他の3例と比較して優れた耐衝
撃性を持つ事が明らかである。
The chip of the present invention is 1/10, the comparative chip of the chemical vapor deposition method using the organic CN compound without the intermediate layer is 5/10, and the comparative chip has the intermediate layer, and the comparative chip of the chemical vapor deposition method using CH 4 gas and N 2 gas is 4 chips. The comparative chip of the chemical vapor deposition method using the CH 4 gas and the N 2 gas without the intermediate layer showed 6/10 defects. The influence of the chemical vapor deposition method on the strength is also a considerable factor, and it is clear that the chip of the present invention has superior impact resistance as compared with the other three examples.

更に上記チップを用いて 被削材 ;SNCM−8(HS50) 切削速度;200m/min 切り込み深さ;1.5mm 送り量 ;0.3mm/rev の条件で長手連続切削試験を実施した。Further, using the above chips, a continuous longitudinal cutting test was carried out under the following conditions: Work material: SNCM-8 (HS50) Cutting speed: 200 m / min Cutting depth: 1.5 mm Feed rate: 0.3 mm / rev.

本発明チップは30分切削後VB=0.25mmで正常摩
耗を示していたのに対し、中間層なしで有機CN化合物
による化学蒸着法の比較チップは30分切削後VB=0.
23mmで皮膜の一部が脱落したためバリが見られた。
中間層がありCH4ガス及びN2ガスによる化学蒸着法の比
較チップは30分切削後VB=0.45mmでチッピング
を伴う欠損により寿命となった。中間層なしでCH4ガス
及びN2ガスによる化学蒸着法の比較チップは30分切削
後VB=0.40mmで皮膜の一部が脱落したためバリが
見られた。化学蒸着方法による耐摩耗性への影響はPV
D法とCVD法のような差は無く、四塩化チタン及び有
機CN化合物による化学蒸着法では同等の優れた耐摩耗
性を持つ事が明らかである。
The chip of the present invention showed normal wear at VB = 0.25 mm after cutting for 30 minutes, whereas the comparative chip of the chemical vapor deposition method using the organic CN compound without the intermediate layer showed VB = 0.30 after cutting for 30 minutes.
Burrs were observed because part of the coating fell off at 23 mm.
The comparative chip, which has an intermediate layer and is compared with the chemical vapor deposition method using CH 4 gas and N 2 gas, has a life of VB = 0.45 mm after cutting for 30 minutes because of chipping accompanied by chipping. A burr was observed in the comparative chip of the chemical vapor deposition method using the CH 4 gas and the N 2 gas without the intermediate layer, because VB = 0.40 mm after cutting for 30 minutes and a part of the film fell off. The effect of chemical vapor deposition on wear resistance is PV
There is no difference between the D method and the CVD method, and it is clear that the chemical vapor deposition method using titanium tetrachloride and the organic CN compound has the same excellent wear resistance.

実施例2 炭化タングステン 71%,炭化チタン 9%,窒化チ
タン 0.5%,炭化タンタル 10%,コバルト 9.5%
(以上 重量%)からなるJIS P30相当の合金組
成を持ったチップ(SPC432)を真空度2×10-2
torrの真空中焼結温度1400℃に60分間保持して焼
結し、その後冷却速度0.05℃/minで除冷し、チ
ップを制作した。上記チップの表面部の断面組織を観察
したところ、いずれもビッスース硬さで表面950kg
/mm2,深さ15μm位置1150kg/mm2,深さ6
0μm位置1480kg/mm2及び深さ500μm位置
1430kg/mm2の硬さ勾配を示し、その表面より深
くなるにつれて結合金属の量が少なくなっていた。一方
比較の目的で除冷しない以外は上記実施例と同様に製作
したチップは、表面近くの硬さは1460kg/mm2
深さ500μm位置1430kg/mm2と変化がなかっ
た。
Example 2 Tungsten carbide 71%, titanium carbide 9%, titanium nitride 0.5%, tantalum carbide 10%, cobalt 9.5%
A chip (SPC432) having an alloy composition equivalent to JIS P30 consisting of (above wt%) is 2 × 10 -2 vacuum degree.
Sintering temperature was maintained at 1400 ° C. in vacuum for 60 minutes for sintering, and then cooled at a cooling rate of 0.05 ° C./min to produce chips. Observation of the cross-sectional structure of the surface of the above chips showed that the surface had a Vissoth hardness of 950 kg.
/ M m 2 , depth 15 μm position 1150 kg / m m 2 , depth 6
Shows the hardness gradient of 0μm position 1480kg / mm 2 and a depth 500μm position 1430kg / mm 2, the amount of bound metal had become less as they become deeper than the surface. On the other hand, for the purpose of comparison, the chips manufactured in the same manner as in the above example except that they were not cooled did not change the hardness near the surface to 1460 kg / m 2 and the depth of 500 μm to 1430 kg / mm 2 .

この結果得られた中間層を有するチップと比較チップに
ついて化学蒸着法により反応温度850℃、反応式 2TiC+2R/CN+3H2→2Ti(CN)+6
HC+2RC に基づき膜厚2μmのTiCN皮膜を蒸着した。膜厚2
μmとしたのはフライス用として十分な強度が要求され
るためである。また化学蒸着法により反応温度1030
℃、反応式 2TiC+2CH4+N2+H2→2Ti(CN)+8H
C+H2 に基づき膜厚2μmのTiCN皮膜を蒸着した。次に上
記本発明のチップと比較チップについて 被削材 ;SCM440(HS50) 切削速度;100m/min 送り量 ;0.5mm/rev 切削時間;10min カッター;DP(コーナー角25°) チップ数;10ケ の条件でフライス試験を実施した。
The chip having the intermediate layer thus obtained and the comparative chip were subjected to a chemical vapor deposition method at a reaction temperature of 850 ° C. and a reaction formula of 2TiC 4 + 2R / CN + 3H 2 → 2Ti (CN) +6.
A TiCN film having a thickness of 2 μm was deposited on the basis of HC + 2RC. Film thickness 2
The reason for selecting μm is that sufficient strength is required for milling. The reaction temperature is 1030 by the chemical vapor deposition method.
℃, reaction formula 2TiC 4 + 2CH 4 + N 2 + H 2 → 2Ti (CN) + 8H
A TiCN film having a film thickness of 2 μm was deposited on the basis of C + H 2 . Next, regarding the above-described tip of the present invention and the comparative tip Work material: SCM440 (HS50) Cutting speed: 100 m / min Feed rate: 0.5 mm / rev Cutting time: 10 min Cutter; DP (corner angle 25 °) Number of tips: 10 pieces The milling test was carried out under the conditions.

本発明チップは0/10ケ、中間層なしで有機CN化合
物による化学蒸着法の比較チップは2/10ケ、中間層
がありCH4ガス及びN2ガスによる化学蒸着法の比較チッ
プは8/10ケ、中間層なしでCH4ガス及びN2ガスによ
る化学蒸着法の比較チップは7/10ケの欠損を示し
た。フライスの様に切刃の食いつきに伴う衝撃によるチ
ッピング等は旋削以上に複雑な要因を含むが、本発明チ
ップは優れた耐衝撃性を持つ事が明らかである。
The chip of the present invention is 0/10, the comparative chip of the chemical vapor deposition method using an organic CN compound without the intermediate layer is 2/10, and the comparative chip of the chemical vapor deposition method with the CH 4 gas and the N 2 gas is 8 / 10 chips, the comparative chips of the chemical vapor deposition method using CH 4 gas and N 2 gas without the intermediate layer showed 7/10 defects. It is clear that the chip of the present invention has excellent impact resistance, although chipping due to impact caused by biting of the cutting edge such as a milling cutter includes more complicated factors than turning.

更に上記チップを用いて 被削材 ;SCM440(HS50) 切削速度;200m/min 切り込み深さ;1.5mm 送り量 ;0.2mm/rev の条件で寿命試験を実施した。Further, using the above chips, a life test was carried out under the following conditions: Work material: SCM440 (HS50) Cutting speed: 200 m / min Cutting depth: 1.5 mm Feed rate: 0.2 mm / rev.

本発明チップは60分切削後で正常摩耗を示していたの
に対し、中間層なしで有機CN化合物による化学蒸着法
の比較チップは60分切削後皮膜の一部が脱落したため
バリが見られた。中間層がありCH4ガス及びN2ガスによ
る化学蒸着法の比較チップは、10分切削後チッピング
を伴う欠損により寿命となった。中間層なしでCH4ガス
及びN2ガス四塩化チタンによる化学蒸着法の比較チップ
は初期より皮膜の一部が脱落し、5分切削後欠損した。
化学蒸着法による耐摩耗性,耐衝撃性への影響はPVD
法とCVD法の強度の差のように皮膜の密着性,皮膜の
粒度と密接な関係があり有機CN化合物を使用した化学
蒸着法では、PVDと同等の優れた耐衝撃性を持つと同
時に耐摩耗性,密着性ではCVDに近い性能を持ってい
る事は明らかである。
The chip of the present invention showed normal wear after cutting for 60 minutes, whereas the comparative chip of the chemical vapor deposition method using the organic CN compound without the intermediate layer showed burrs because a part of the coating film fell off after cutting for 60 minutes. . The comparative chip having the intermediate layer and using the chemical vapor deposition method using CH 4 gas and N 2 gas reached the end of its life due to chipping and chipping after 10 minutes of cutting. A comparison chip of the chemical vapor deposition method using CH 4 gas and N 2 gas titanium tetrachloride without an intermediate layer had a part of the film dropped off from the beginning and was chipped after cutting for 5 minutes.
The effect of chemical vapor deposition on wear resistance and impact resistance is PVD
The chemical vapor deposition method using an organic CN compound has the same excellent impact resistance as PVD and at the same time has the same resistance as the PVD method and the CVD method. It is clear that it has performance similar to CVD in terms of wear and adhesion.

〔発明の効果〕〔The invention's effect〕

本願被覆超硬合金工具は表面に中間層を設け、低温化学
蒸着法により脱炭層を少なくする事により優れた耐衝撃
性,耐チッピング性を有し、工具として安定した長い工
具寿命を示すものである。
The coated cemented carbide tool of the present application has an excellent impact resistance and chipping resistance by providing an intermediate layer on the surface and reducing the decarburization layer by low temperature chemical vapor deposition, and shows a stable and long tool life as a tool. is there.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】元素周期率表の4a、5a及び6a族の炭
化物、炭窒化物及び窒化物のうちの1種または2種以上
と、鉄族金属からなる超硬合金基体の表面に、超硬合金
基体より靱性に富むと共に軟質でしかも前記超硬合金基
体側に向かって硬さが連続的に増加する硬さ勾配をもっ
た中間層を介在させた被覆超硬合金の製造方法におい
て、被覆層が4a、5a及び6a族の炭化物、炭窒化
物、窒化物、酸化物、酸炭化物、酸窒化物、酸炭窒化物
及びアルミニウム酸化物のうちの1種からなる単層また
は2種以上からなり、かつその蒸着法が有機CN化合物
を反応ガスとする700℃〜900℃で被覆処理する中
温化学蒸着法と、950℃〜1050℃で被覆処理する
高温化学蒸着法の双方により単層または複層の被覆層を
1〜20ミクロン被覆したことを特徴とする被覆超硬合
金工具の製造方法。
1. A surface of a cemented carbide substrate made of an iron group metal and one or more kinds of carbides, carbonitrides and nitrides of groups 4a, 5a and 6a of the periodic table of elements, and In a method for producing a cemented carbide, which has a toughness and is softer than that of the cemented carbide substrate, and an intermediate layer having a hardness gradient in which the hardness continuously increases toward the cemented carbide substrate is interposed. A layer consisting of one or more of 4a, 5a and 6a carbides, carbonitrides, nitrides, oxides, oxycarbides, oxynitrides, oxycarbonitrides and aluminum oxides of group 4a, 5a and 6a In addition, the vapor deposition method is a single-layer or double-layer method using both a medium temperature chemical vapor deposition method in which a coating treatment is performed at 700 ° C. to 900 ° C. using an organic CN compound as a reaction gas and a high temperature chemical vapor deposition method in which a coating treatment is performed at 950 ° C. to 1050 ° C. 1-20 micron coating layer Method for producing a coated cemented carbide tool, characterized in that the.
JP61300717A 1986-12-16 1986-12-16 Method for producing coated cemented carbide tool Expired - Lifetime JPH068507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300717A JPH068507B2 (en) 1986-12-16 1986-12-16 Method for producing coated cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300717A JPH068507B2 (en) 1986-12-16 1986-12-16 Method for producing coated cemented carbide tool

Publications (2)

Publication Number Publication Date
JPS63156623A JPS63156623A (en) 1988-06-29
JPH068507B2 true JPH068507B2 (en) 1994-02-02

Family

ID=17888251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300717A Expired - Lifetime JPH068507B2 (en) 1986-12-16 1986-12-16 Method for producing coated cemented carbide tool

Country Status (1)

Country Link
JP (1) JPH068507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386403A (en) * 1989-08-29 1991-04-11 Hitachi Tool Eng Ltd Surface coated throw away tip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826428B2 (en) * 1977-04-23 1983-06-02 三菱マテリアル株式会社 Coated cemented carbide tools
JPS5713168A (en) * 1980-06-25 1982-01-23 Toshiba Tungaloy Co Ltd Multilayer coated hard alloy

Also Published As

Publication number Publication date
JPS63156623A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
JP2007528941A (en) Coated body and method for coating substrate
JP3382781B2 (en) Multi-layer coated hard tool
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3658949B2 (en) Coated cemented carbide
KR20000005021A (en) Substrate having hard coating containing boron and nitrogzn and its manufactwring mathod
JP3658948B2 (en) Coated cemented carbide
JPH11124672A (en) Coated cemented carbide
JP2012144766A (en) Coated member
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2002160105A (en) Cutting tool made of surface coating cemented carbide having high chipping resistance
JPS6117909B2 (en)
JPS6119367B2 (en)
JPH11197936A (en) Milling tool excellent in wear resistance
JP3893804B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JPS5826428B2 (en) Coated cemented carbide tools
JPS586969A (en) Surface clad sintered hard alloy member for cutting tool
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JPH068507B2 (en) Method for producing coated cemented carbide tool
JP3460571B2 (en) Milling tool with excellent wear resistance
JP3460565B2 (en) Milling tool with excellent wear resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2648718B2 (en) Manufacturing method of coated cemented carbide tool
JPH07314207A (en) Cutting tool made of surface covered wc group cemented carbide alloy
JP2000246509A (en) Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer