JPH0684851B2 - Operating method of air conditioner using heat pump - Google Patents

Operating method of air conditioner using heat pump

Info

Publication number
JPH0684851B2
JPH0684851B2 JP61028888A JP2888886A JPH0684851B2 JP H0684851 B2 JPH0684851 B2 JP H0684851B2 JP 61028888 A JP61028888 A JP 61028888A JP 2888886 A JP2888886 A JP 2888886A JP H0684851 B2 JPH0684851 B2 JP H0684851B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage tank
outside air
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61028888A
Other languages
Japanese (ja)
Other versions
JPS62153658A (en
Inventor
敏男 加瀬
雅 田中
敬介 笠原
忠吉 佐伯
育夫 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Chubu Electric Power Co Inc
Publication of JPS62153658A publication Critical patent/JPS62153658A/en
Publication of JPH0684851B2 publication Critical patent/JPH0684851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、潜熱蓄熱(含む蓄冷)可能な蓄熱槽を、各種
ヒートポンプサイクル中に介在させる事により、単段圧
縮機を用いて夜間と昼間に等間差をもたして二段階の圧
縮運転を行い得るようにした空調装置の運転方法に係
り、特に深夜電力を利用して得られた蓄冷・蓄熱源を昼
間の冷暖房運転の熱エネルギーとして利用し、冷暖房コ
ストの低減を図ったヒートポンプを用いた空調装置の運
転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention uses a single-stage compressor at night and daytime by interposing a heat storage tank capable of storing latent heat (including cold storage) in various heat pump cycles. It relates to the operating method of an air conditioner that enables two-stage compression operation with an equal difference between the two, and in particular, the cold energy storage source obtained by using midnight power is used as the heat energy for daytime cooling and heating operation. The present invention relates to a method for operating an air conditioner using a heat pump, which is used as a heat pump to reduce heating and cooling costs.

「従来技術及びその問題点」 従来より深夜電力利用による動力コストの低減を図りつ
つ、単段圧縮機と顕熱利用による蓄熱槽を用いて時間差
運転による実質的な二段階圧縮運転を行い、低い圧縮比
で冷暖房運転を可能にした、冷暖房装置の運転方法は、
本出願人等が先に提案している。
"Conventional technology and its problems" Compared with the conventional method, the power cost is reduced by using the late-night electricity, and the two-stage compression operation by the time difference operation is performed using the single-stage compressor and the sensible heat storage tank. The operation method of the cooling and heating device that enables the cooling and heating operation at the compression ratio is
The applicant has previously proposed.

しかしながら前記先願技術に用いられる蓄熱槽は暖房時
は顕熱利用である為に、昼間暖房運転に必要な蓄熱量を
得る為に相当大なる容積を必要とし、而もこのような大
容積の蓄熱槽を設置する為には強度上及び保温の面より
機械設備と隔離した地下設置となる為に、地下タンクを
設ける為の建築コストが大になるのみならず、圧縮機そ
の他の機械設備とを接続する為の配管工事費が相当大に
なり易いという問題が派生する。
However, since the heat storage tank used in the above-mentioned prior art uses sensible heat during heating, it requires a considerably large volume in order to obtain the amount of heat storage required for daytime heating operation. In order to install a heat storage tank, because it will be installed underground from the mechanical equipment in terms of strength and heat retention, not only will the construction cost for installing an underground tank be large, but it will also be necessary to install a compressor and other mechanical equipment. The problem arises that the cost of plumbing for connecting to is likely to be quite large.

又、本出願人は先に、冬期暖房時において、先ず外気熱
源を利用して夜間にヒートポンプの一次圧縮運転を行
い、その熱エネルギーを15〜25℃付近の潜熱として前記
蓄熱槽に貯えられ、昼間に前記潜熱エネルギーを熱源と
してヒートポンプを負荷熱交換用の目的温度である50℃
付近までの二次圧縮運転を行い、実質的に時間差をもっ
た二段圧縮運転と類似する運転方法により暖房システム
を構成し、一方、夏期冷房時においては冷凍機により主
として夜間運転により氷潜熱による蓄冷を行い、昼間冷
房時に、その蓄冷した熱エネルギーを冷房負荷と熱交換
させる事により、冷房を行うようにした冷暖戻システム
を提案している。
Further, the applicant previously, during the winter heating, first performs the primary compression operation of the heat pump at night by using the outside air heat source, the thermal energy is stored in the heat storage tank as latent heat of 15 ~ 25 ℃, In the daytime, the heat pump uses the latent heat energy as a heat source, and the target temperature for load heat exchange is 50 ° C.
By performing secondary compression operation up to the vicinity, a heating system is configured by an operation method that is substantially similar to the two-stage compression operation with a time difference, while during summer cooling, the refrigerator mainly operates at night and the ice latent heat We have proposed a cooling and warming system that performs cooling by performing heat storage and exchanging the stored heat energy with the cooling load during daytime cooling.

しかしながらかかる冷暖房システムにおいては、15〜25
℃付近の蓄熱を蓄熱する蓄熱槽と、氷蓄熱として蓄冷す
る蓄熱槽と2つ又は2区分の蓄熱槽を必要とし、而も各
蓄熱槽は夏期又は冬期のいずれか一方のシーズンしか使
用しない為に、極めて非効率であり且つ蓄熱槽の設置面
積が約2倍必要となるという問題を有す。
However, in such an air conditioning system, 15-25
A heat storage tank for storing heat storage near ℃ and a heat storage tank for storing cold as ice heat storage are required, or two or two categories of heat storage tanks, and each heat storage tank is used only in either the summer or winter seasons. In addition, there is a problem that it is extremely inefficient and the installation area of the heat storage tank is required to be approximately doubled.

かかる欠点を解消する為に本出願人は前記潜熱蓄熱剤を
カプセル化し、単一の蓄熱槽内に氷潜熱蓄熱剤と、15〜
25℃付近の融点を有する潜熱蓄熱剤を混在積層して収納
させているが、このような構成を取っても蓄熱槽が大型
化と複雑になるという欠点は解消し得ない。
In order to eliminate such drawbacks, the present applicant encapsulates the latent heat storage agent, and the ice latent heat storage agent in a single heat storage tank,
Although latent heat storage agents having a melting point of around 25 ° C are mixed and stored, the disadvantage that the heat storage tank becomes large and complicated cannot be solved even with such a configuration.

又、前記冷暖房システムにおいては、夏期冷房時におい
ては安価な深夜電力を利用しつつも効率のよい時間差に
よる実質的な二段圧縮運転と類似する運転を行わず、約
30℃前後の温度を有する外気熱源を用いて蓄熱槽内に、
0℃以下の氷潜熱として蓄冷する単段圧縮運転の構成を
取る為に、冷媒の凝縮温度と蒸発温度との温度差Δtが
40〜50℃前後となり、その圧縮比が相当大きくなり、こ
れに比例して動力消費も大になってしまうという問題を
派生する。
Further, in the cooling and heating system, during summer cooling, an operation similar to a substantial two-stage compression operation due to an efficient time difference is performed while using inexpensive late-night power, and
In the heat storage tank using the outside air heat source having a temperature of around 30 ℃,
In order to take the configuration of the single-stage compression operation in which cold is stored as ice latent heat of 0 ° C or less, the temperature difference Δt between the condensation temperature and the evaporation temperature of the refrigerant is
The temperature is around 40 to 50 ° C, the compression ratio becomes considerably large, and the power consumption increases in proportion to this.

本発明が解決しようとする技術的課題は、潜熱蓄熱(含
む蓄冷)可能な蓄熱槽と単段圧縮機を用いて時間差を有
する二段圧縮運転と類似するヒートポンプサイクルによ
る二段圧縮運転を行う事により、効果的な熱エネルギー
利用を図った、冷暖房システムとして適用されるヒート
ポンプを用いた空調装置の運転方法を提案する事を目的
とする。
A technical problem to be solved by the present invention is to perform a two-stage compression operation by a heat pump cycle similar to a two-stage compression operation with a time difference using a heat storage tank capable of storing latent heat (including cold storage) and a single-stage compressor. Therefore, it is an object of the present invention to propose an operation method of an air conditioner using a heat pump applied as a cooling and heating system, which effectively utilizes heat energy.

又本発明の他の目的は、夏期冷房及び冬期暖房のいずれ
においても時間差による実質的的な二段圧縮運転と共に
共通の蓄熱槽の利用を可能にし、この結果、深夜電力利
用と共に低圧縮比での運転を可能にし、動力コスト及び
動力消費の低減を図りつつも、冷房及び暖房時のいずれ
にも共通の蓄熱槽を利用することにより、小容積化と共
に建設コストの大幅低減を図った冷暖房システムとして
適用されるヒートポンプを用いた空調装置の運転方法を
提供することを目的とする。
Another object of the present invention is to enable the use of a common heat storage tank together with a substantial two-stage compression operation due to a time difference in both summer cooling and winter heating, and as a result, it is possible to use a midnight power and a low compression ratio. By using a common heat storage tank for both cooling and heating, the cooling and heating system achieves a large volume reduction and construction cost reduction. It is an object of the present invention to provide an operating method of an air conditioner using a heat pump applied as above.

「問題点を解決しようとする手段」 本発明はかかる技術的課題を達成する為に、冷媒圧縮用
の単段圧縮機と、外気熱源若しくは負荷を取入れて冷媒
の蒸発若しくは凝縮を行う蒸発器と凝縮器と、夜間若し
くは昼間の外気熱源温度と、負荷との熱交換用の目的温
度のほぼ中間に位置する略15℃から25℃の中間温度域を
融点として潜熱蓄熱可能な蓄熱槽を具えてなる、冷暖房
システムを構成する空調装置を用い、 冷房サイクル時において、夜間の外気熱源を凝縮器側に
導き、一方蒸発器側で前記蓄熱槽と熱交換させながら、
夜間の外気熱源を利用して略前記中間温度域までの一次
圧縮運転を行いその中間温度域の15〜25℃付近の融点を
有する潜熱として前記蓄熱槽に貯えた後、昼間に前記潜
熱を凝縮器側に導き、一方蒸発器側で負荷と熱交換させ
ながら二次圧縮運転を行い、冷房用熱エネルギーを得、
一方暖房サイクル時において、夜間の外気熱源を蒸発器
側に導き、一方凝縮器側で前記蓄熱槽と熱交換させなが
ら、夜間の外気熱源を利用して略前記中間温度域までの
一次圧縮運転を行いその中間温度域の15〜25℃付近の融
点を有する熱エネルギーを潜熱として前記蓄熱槽に貯え
た後、昼間に前記潜熱を蒸発器側に導き、一方凝縮器側
で負荷と熱交換させながらいて二次圧縮運転を行い、暖
房用熱エネルギーを得るようにした事を特徴とするヒー
トポンプを用いた空調装置の運転方法を提案する。
[Means for Solving Problems] In order to achieve the technical problem, the present invention provides a single-stage compressor for refrigerant compression, and an evaporator that takes in an external air heat source or load to evaporate or condense the refrigerant. Equipped with a condenser and a heat storage tank that can store latent heat with an intermediate temperature range of approximately 15 to 25 ° C, which is located approximately midway between the temperature of the outside air heat source at night or day and the target temperature for heat exchange with the load, as the melting point. Using an air conditioner that constitutes a heating / cooling system, during the cooling cycle, the outside air heat source at night is guided to the condenser side, while the evaporator side heat-exchanges with the heat storage tank,
After performing primary compression operation to approximately the intermediate temperature range using the outside air heat source at night and storing it in the heat storage tank as latent heat having a melting point near 15 to 25 ° C in the intermediate temperature range, the latent heat is condensed in the daytime. On the other hand, while performing secondary compression operation while exchanging heat with the load on the evaporator side, obtaining heat energy for cooling,
On the other hand, during the heating cycle, the outside air heat source at night is guided to the evaporator side, while the condenser side is performing heat exchange with the heat storage tank, while using the outside air heat source at night to perform the primary compression operation up to about the intermediate temperature range. After the heat energy having a melting point near 15 to 25 ° C in the intermediate temperature range is stored in the heat storage tank as latent heat, the latent heat is guided to the evaporator side during the daytime, while the heat is exchanged with the load on the condenser side. We propose a method of operating an air conditioner using a heat pump, which is characterized in that the secondary compression operation is performed to obtain heat energy for heating.

そしてかかる技術手段において、二段圧縮における中間
温度の融点を有する潜熱蓄熱剤を封入した樹脂系又は熱
伝導性の良い金属で形成された円筒状、球形又はその他
のカプセルを積層して蓄熱槽を形成すると共に、該カプ
セルに封入する潜熱蓄熱剤の融点を略15℃から25℃の間
で異ならせ複数の融点を潜熱蓄熱を可能ならしめる事に
より、前記熱エネルギー蓄熱の際に蓄熱剤が外部に流出
する事もなく、且つその交換が容易であり、而も単一固
定温度ではなく複数連続温度域を融点とする潜熱蓄熱槽
を形成する事が出来、熱効率の面からも有利である。
And in such technical means, a heat storage tank is formed by stacking cylindrical, spherical or other capsules formed of a resin system or a metal having good thermal conductivity in which a latent heat storage agent having a melting point at an intermediate temperature in two-stage compression is filled. Along with forming the latent heat storage agent enclosed in the capsule, the melting point of the latent heat storage agent is varied from approximately 15 ° C to 25 ° C to enable latent heat storage of a plurality of melting points. It is also advantageous from the standpoint of thermal efficiency that it is possible to form a latent heat storage tank whose melting point is not in a single fixed temperature but in a plurality of continuous temperature ranges, and which can be easily exchanged.

「作用」 即ち、かかる作用効果を第5図のモリエ線図を用いて具
体的に数字でもって説明すると A,夏期冷房時 例えば昼間外気温度が約40℃前後の外気熱源を利用して
単段圧縮運転で昼間冷房(負荷冷水温度5〜7℃)を行
った場合、冷媒(R−22)の凝縮温度が約50℃、蒸発温
度が約0℃前後となる為に、第5図(A)の点線で示す
ようにその圧縮比は3.9〜4.0前後になる。
"Action" That is, the action and effect will be described in terms of numbers using the Mollier diagram of Fig. 5. A. During summer cooling For example, a single stage using an outside air heat source with an outside air temperature of around 40 ° C during the day When daytime cooling (load chilled water temperature of 5 to 7 ° C) is performed in the compression operation, the condensing temperature of the refrigerant (R-22) is about 50 ° C, and the evaporation temperature is about 0 ° C. The compression ratio is around 3.9-4.0 as shown by the dotted line in).

又、夜間の外気熱源(外気温度が約30℃前後)を利用し
て氷潜熱による蓄冷を行い、昼間冷房時に、その蓄冷し
た熱エネルギーを冷房負荷と熱交換させるように構成し
た場合は、冷媒(R−22)の凝縮温度が約40℃、蒸発温
度が約−5〜−10℃前後となる為に、その圧縮比は3.9
〜4.4前後となり、前記従来技術と運転効率の面で優位
差が出ない。
In addition, if the outside heat source at night (outside air temperature is around 30 degrees Celsius) is used to store cold by ice latent heat and the stored heat energy is exchanged with the cooling load during daytime cooling, Since the condensation temperature of (R-22) is about 40 ° C and the evaporation temperature is about -5 to -10 ° C, its compression ratio is 3.9.
It is around 4.4, and there is no significant difference in operating efficiency from the conventional technology.

一方、本技術手段によれば、夜間の外気熱源(外気温度
が約30℃前後)を利用して15℃前後の潜熱蓄熱を行う場
合は、その第1段階の圧縮運転(二段圧縮機の高段側圧
縮運転に相当する)により冷媒(R−22)の凝縮温度が
約40℃、蒸発温度が約5〜10℃前後となる為に、第5図
(A)の二重線で示すようにその圧縮比は2.3〜2.7前後
となり、そして昼間に前記潜熱を凝縮器側に導いて第2
段階目の圧縮運転(二段圧縮機の低段側圧縮運転に相当
する)を行う場合の圧縮比は、冷媒(R−22)の凝縮温
度が約20℃、蒸発温度が約0℃前後となる為に、第5図
(A)の実線で示すようにその圧縮比は1.8〜1.9前後と
なり、前記いずれの従来技術に比しても極めて低圧縮比
で足り、而も少ない動力消費で且つ夜間電力の有効利用
を図りながら所望温度の冷房用熱エネルギーを得る事が
出来る。
On the other hand, according to the present technical means, when the latent heat storage of about 15 ° C. is performed using the outside air heat source (the outside air temperature is about 30 ° C.) at night, the compression operation of the first stage (of the two-stage compressor) Due to the high-stage side compression operation), the condensation temperature of the refrigerant (R-22) is about 40 ° C, and the evaporation temperature is about 5-10 ° C, so it is shown by the double line in Fig. 5 (A). The compression ratio is around 2.3-2.7, and the latent heat is guided to the condenser side during the daytime.
The compression ratio when performing the compression operation of the stage (corresponding to the low-stage compression operation of the two-stage compressor) is such that the condensation temperature of the refrigerant (R-22) is about 20 ° C and the evaporation temperature is about 0 ° C. Therefore, as shown by the solid line in FIG. 5 (A), the compression ratio is around 1.8 to 1.9, which is extremely low as compared with any of the above-mentioned conventional techniques, and consumes less power. It is possible to obtain heat energy for cooling at a desired temperature while effectively utilizing nighttime electric power.

B,冬期暖房時 例えば昼間外気温度が約0℃前後の外気熱源を利用して
単段圧縮運転で昼間暖房(負荷温水温度約40℃)を行っ
た場合、冷媒(R−22)の蒸発温度が約−5〜−10℃前
後、凝縮温度が約50℃となる為に、第5図(B)の点線
で示すようにその圧縮比は4.6〜5.5前後になる。
B, During winter heating For example, when daytime heating (load hot water temperature of about 40 ° C) is performed by single-stage compression operation using an outside air heat source with an outside air temperature of about 0 ° C, the evaporation temperature of the refrigerant (R-22) Is about -5 to -10 ° C and the condensing temperature is about 50 ° C, the compression ratio is about 4.6 to 5.5 as shown by the dotted line in Fig. 5 (B).

一方、本技術手段によれば、夜間の外気熱源(外気温度
が約−5〜−10℃前後)を利用して15℃前後の潜熱蓄熱
を行う場合は、冷媒(R−22)の蒸発温度が約−10〜−
15℃前後、凝縮温度が約20℃、となる為に、第5図
(B)の実線で示すようにその圧縮比は約2.5〜3.1前後
となり、そして昼間に前記潜熱を蒸発器側に導いて二段
圧縮機の高段側圧縮運転に相当する2段階目の圧縮運転
を行う場合の圧縮比は、冷媒(R−22)の蒸発温度が乱
10℃、凝縮温度が約50℃前後となる為に、第5図(B)
の二重線で示すようにその圧縮比は2.6前後となり、前
記いずれの従来技術に比しても極めて低圧縮比で足り、
前記と同様に少ない動力消費で且つ夜間電力の有効利用
を図りながら所望温度の冷房用熱エネルギーを得る事が
出来る。
On the other hand, according to the present technical means, when the latent heat storage of about 15 ° C. is performed using the outside air heat source at night (outside air temperature is about −5 to −10 ° C.), the evaporation temperature of the refrigerant (R-22) Is about −10 to −
Since the condensation temperature is around 15 ° C and the condensation temperature is around 20 ° C, the compression ratio is around 2.5-3.1 as shown by the solid line in Fig. 5 (B), and the latent heat is conducted to the evaporator side during the daytime. The compression ratio when performing the second-stage compression operation corresponding to the high-stage compression operation of the two-stage compressor is such that the evaporation temperature of the refrigerant (R-22) is disturbed.
Since the condensing temperature is around 50 ℃ at 10 ℃, Fig. 5 (B)
As shown by the double line, the compression ratio is around 2.6, which is extremely low compared to any of the conventional techniques described above.
Similar to the above, it is possible to obtain the cooling thermal energy at a desired temperature while consuming less power and effectively utilizing the nighttime electric power.

即ち、本技術手段によれば、潜熱蓄熱層の融点を夜間若
しくは昼間の外気熱源温度と、負荷との熱交換用の目的
温度の間に位置する中間温度域を融点、言い換えれば二
段圧縮機の中間冷却器の温度域に相当する温度を中間温
度域に設定した為に、冷房及び暖房のいずれにおいて
も、時間差を介して単段圧縮機を二度使用する事によ
り、低圧縮比の効効率的な二段圧縮運転が可能となった
ものである。
That is, according to the present technical means, the melting point of the latent heat storage layer is the intermediate temperature range located between the nighttime or daytime outside air heat source temperature and the target temperature for heat exchange with the load, in other words, the two-stage compressor. Since the temperature equivalent to the temperature range of the intercooler is set to the intermediate temperature range, by using the single-stage compressor twice through the time difference in both cooling and heating, the effect of low compression ratio This enabled efficient two-stage compression operation.

而も本技術手段によれば、夏期冷房及び冬期暖房のいず
れにおいても共通の蓄熱槽の利用と共に、単段圧縮機を
利用して時間差による実質的な二段圧縮運転行い得、こ
の結果、深夜電力利用と共に低圧縮比での運転を行い
得、且つ冷房及び暖房時のいずれにも共通の蓄熱槽を利
用する事が出来、動力コスト及び動力消費の低減と、冷
暖房装置の小容積化と建設コストの大幅低減を図る事が
出来る。
Moreover, according to the present technical means, a common heat storage tank can be used in both summer cooling and winter heating, and a single stage compressor can be used to perform a substantial two-stage compression operation due to a time difference. It is possible to operate at a low compression ratio with the use of electric power, and it is possible to use a common heat storage tank for both cooling and heating, reducing power cost and power consumption, and reducing the volume and construction of cooling and heating equipment. The cost can be significantly reduced.

而も、本技術手段によれば、冷房時、暖房時に共通の且
つ同一融点温度の潜熱蓄熱槽を用いる事が出来る事は、
冷暖房装置の小容積化と共に、蓄冷熱槽が小型である故
に、ビルの屋上等に設置しても建築強度上何等問題とな
らず、建設費の大幅低減、、揚水を行うポンプ動力の不
要化、配管の簡略化等が達成出来、運転コスト及び保守
コストも大幅に低減が可能である。
Further, according to the present technical means, it is possible to use a latent heat storage tank having a common melting point temperature which is common during cooling and heating.
Along with the smaller volume of the cooling and heating equipment and the smaller size of the cold storage heat tank, there is no problem with the strength of the building even if it is installed on the roof of a building, etc., the construction cost is greatly reduced, and the pump power for pumping water is unnecessary. It is possible to achieve simplification of piping, etc., and it is possible to significantly reduce operating costs and maintenance costs.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention only thereto, but merely illustrative examples. Nothing more than.

第3図は本発明に使用される蓄冷熱熱槽6で、槽6内に
は略直径30〜80mmの球状ボール62を積層して充填すると
共に、槽6上部にスプレー部61を配置し、スプレー部61
より流下した清水又はブラインが前記球状ボール62内に
充填され潜熱蓄熱剤63と熱交換しながら後記する熱交換
器3,4間を循環するよう構成されている。
FIG. 3 shows a cold storage heat tank 6 used in the present invention, in which spherical balls 62 having a diameter of approximately 30 to 80 mm are stacked and filled in the tank 6, and a spray section 61 is arranged on the upper portion of the tank 6. Spray part 61
The fresh water or brine further flowing down is filled in the spherical balls 62 and is configured to circulate between the heat exchangers 3 and 4 described later while exchanging heat with the latent heat storage agent 63.

又、前記球状ボール62内には、Cacl26H2O等その他を成
分とする潜熱蓄熱剤63が封入されており、その融点を例
えば10〜30℃、好ましくは15〜25℃前後に設定してあ
る。
Further, in the spherical ball 62, a latent heat storage agent 63 containing Cacl 2 6H 2 O and other components is enclosed, and its melting point is set to, for example, 10 to 30 ° C., preferably about 15 to 25 ° C. There is.

尚、前記潜熱蓄熱剤63は単一種類のものを用いてもよ
く、又触媒を混入して融点が15〜18℃、19〜22℃、23〜
25℃になるように形成し、かかる潜熱剤を充填した球状
ボール62を順次積層して三段に分けて配置してもよい。
このように構成した方が熱交換効率が向上する。
Incidentally, the latent heat storage agent 63 may be a single type, or by mixing a catalyst, the melting point is 15-18 ° C, 19-22 ° C, 23-
The spherical balls 62 formed at 25 ° C. and filled with such a latent heat agent may be sequentially laminated and arranged in three stages.
With this structure, the heat exchange efficiency is improved.

第1A乃至第2B図はかかる蓄冷熱層6を用いた本発明の実
施例で、 1は冷媒を圧縮する単段圧縮機、3,4は熱交換器を内蔵
し凝縮器として又蒸発器として機能するする熱交換器
で、一の熱交換器3は分岐した配管を介して冷房及び暖
房用負荷と接続されている。5は外気熱源を取り入れて
冷媒と熱交換を行い、凝縮器として又蒸発器として機能
する外気熱源式熱交換器である。
FIGS. 1A to 2B show an embodiment of the present invention using such a cold storage layer 6, wherein 1 is a single-stage compressor for compressing a refrigerant, and 3 and 4 are built-in heat exchangers as condensers and evaporators. In the functioning heat exchanger, one heat exchanger 3 is connected to a cooling and heating load via a branched pipe. Reference numeral 5 denotes an outside air heat source type heat exchanger that takes in an outside air heat source and exchanges heat with the refrigerant, and functions as a condenser and an evaporator.

11〜17は三方切換弁、18は四方切換弁で、該切換弁11〜
18を適宜切り替える事により後記する冷房及び暖房サイ
クルを構成する。19,21は清水又は不凍液からなるブラ
インを循環させる循環ポンプ、21〜27は冷媒又はブライ
ン等の切換弁である。
11 to 17 are three-way switching valves, and 18 is a four-way switching valve.
By switching 18 as appropriate, the cooling and heating cycle described later is configured. Numerals 19 and 21 are circulation pumps for circulating brine composed of fresh water or antifreeze, and numerals 21 to 27 are switching valves for refrigerant or brine.

尚、7はソーラ温水器で、蓄熱槽6のスプレー部61と接
続させ、冬期の清水又はブライン加温時、圧縮機1と共
に該清水又はブラインををソーラ温水器7にて加温さ
せ、圧縮機1の負荷軽減と電力コストの低減を図る。
A solar water heater 7 is connected to the spray section 61 of the heat storage tank 6, and warms the fresh water or brine together with the compressor 1 in the solar water heater 7 during warming of the fresh water or brine in winter. The load on the machine 1 is reduced and the power cost is reduced.

次にかかる構成に基づく作用を夏期冷房時と冬期暖房時
に分けて説明する。尚、図中実線で示す矢印線が実際の
流れる管路を示す。
Next, the operation based on such a configuration will be described separately for summer cooling and winter heating. In addition, the arrow line shown by the solid line in the figure shows the actual flow path.

A)夏期冷房時 A−1)夜間の熱エネルギー蓄熱(第1A図参照) 先ず冷媒の循環経路について説明するに、圧縮機1によ
り圧縮された冷媒は、外気熱源式熱交換器5(凝縮器)
内に入り、ここで凝縮された後、膨張弁28を介して熱交
換器3(蒸発器)内で蒸発気化し、該熱交換器3と蓄熱
槽6間を循環する清水又はブラインを冷却し、圧縮機1
に戻り、以下これを繰り返す。
A) During summer cooling A-1) Thermal energy heat storage at night (see FIG. 1A) First, the circulation path of the refrigerant will be described. The refrigerant compressed by the compressor 1 is an outside air heat source heat exchanger 5 (condenser). )
After entering the inside and condensing there, it is evaporated and vaporized in the heat exchanger 3 (evaporator) through the expansion valve 28, and the fresh water or brine circulating between the heat exchanger 3 and the heat storage tank 6 is cooled. , Compressor 1
Return to and repeat this.

そして熱交換器3内で冷却された清水又はブラインは、
スプレー部61より蓄熱槽6内に循環散布され、球状ボー
ル62内の潜熱蓄熱剤63を冷却固化させる事により蓄熱槽
6内に前記15〜25℃前後の潜熱と顕熱を含む15〜25℃域
に冷エネルギーが蓄冷される。
And the fresh water or brine cooled in the heat exchanger 3 is
It is circulated and sprayed in the heat storage tank 6 from the spray section 61, and the latent heat storage agent 63 in the spherical balls 62 is cooled and solidified, so that the latent heat and sensible heat of about 15 to 25 degrees Celsius are included in the heat storage tank 6 at 15 to 25 degrees Celsius. Cold energy is stored in the area.

従ってかかる圧縮運転は、冷媒(R−22)の凝縮温度が
約40℃、蒸発温度が約5〜10℃前後となる為に、第5図
(A)の二重線で示すようにその圧縮比は2.3〜2.7前後
と二段圧縮機の高段側圧縮運転に相当する低圧圧縮運転
となり、圧縮運転効率が向上する。
Therefore, in such a compression operation, since the condensation temperature of the refrigerant (R-22) is about 40 ° C and the evaporation temperature is about 5-10 ° C, the compression is performed as shown by the double line in Fig. 5 (A). The ratio is around 2.3 to 2.7, which is a low-pressure compression operation equivalent to the high-stage compression operation of the two-stage compressor, and the compression operation efficiency is improved.

A−2)昼間の冷房運転(第1B図参照) 昼間は四方切換弁18を外気熱源式熱交換器5から熱交換
器4側に、又三方切換弁15,16を熱交換器3から熱交換
器4側に切り替えた後、下記のような冷房運転を行う。
A-2) Cooling operation during the daytime (see Fig. 1B) During the daytime, the four-way switching valve 18 is heated from the outside heat source heat exchanger 5 to the heat exchanger 4 side, and the three-way switching valves 15 and 16 are heated from the heat exchanger 3. After switching to the exchanger 4 side, the following cooling operation is performed.

先ず熱交換器3(蒸発器)内で冷房負荷2側の冷水と熱
交換された冷媒は圧縮機1により圧縮された後、熱交換
器4(凝縮器)内に入り、ここで、球形ボール62内の潜
熱を放出しながら該熱交換器4と蓄熱槽6間を循環する
清水又はブラインとの熱交換により外気熱源式熱交換器
5より低い凝縮温度で凝縮された後、膨張弁28を介して
熱交換器3(蒸発器)内で蒸発気化し、冷房負荷2側の
冷水を冷却し後、圧縮機1に戻り、以下これを繰り返
す。
First, the refrigerant that has exchanged heat with the cold water on the cooling load 2 side in the heat exchanger 3 (evaporator) is compressed by the compressor 1 and then enters the heat exchanger 4 (condenser) where the spherical balls After the latent heat in 62 is released, heat is exchanged with the fresh water or brine circulating between the heat exchanger 4 and the heat storage tank 6 to condense at a lower condensing temperature than that of the outside air heat source type heat exchanger 5, and then the expansion valve 28 is turned on. After evaporating and evaporating in the heat exchanger 3 (evaporator) to cool the cold water on the cooling load 2 side, the process returns to the compressor 1 and this is repeated thereafter.

この場合、蓄熱槽6内には15〜25℃の潜熱が蓄熱されて
いる為に、そして昼間の圧縮比は、冷媒(R−22)の凝
縮温度が約20℃、蒸発温度が約0℃前後となる為に、第
5図(A)の実線で示すようにその圧縮比は1.8〜1.9前
後となり、二段圧縮機の低段側圧縮運転に相当する低圧
縮比による冷凍サイクルが構成され、 この結果、前述したように実質的に時間差を有する二段
階圧縮が行われる事となり、而も基礎となるべき外気熱
源は昼間の外気熱源より大幅に低い夜間外気温度である
為に、昼間の外気熱源を利用して冷房を行う場合に比し
て圧縮比を単段圧縮運転の場合よりも勿論昼間の外気熱
源を用いて二段圧縮機による運転を行う場合よりも大幅
に低く設定出来る。
In this case, since the latent heat of 15 to 25 ° C is stored in the heat storage tank 6, and the compression ratio in the daytime is such that the condensation temperature of the refrigerant (R-22) is about 20 ° C and the evaporation temperature is about 0 ° C. Since it is before and after, the compression ratio is around 1.8 to 1.9 as shown by the solid line in FIG. 5 (A), and the refrigeration cycle with a low compression ratio corresponding to the low-stage compression operation of the two-stage compressor is constructed. As a result, as described above, the two-stage compression with a substantially time difference is performed, and since the outside air heat source that should be the basis is the night outside air temperature that is significantly lower than the daytime outside air heat source, The compression ratio can be set to be significantly lower than in the case of performing the cooling by using the outside air heat source than in the case of performing the operation by the two-stage compressor by using the outside air heat source during the day as well as in the case of the single-stage compression operation.

B)冬期暖房時 B−1)夜間の熱エネルギー蓄熱(第2A図参照) 冬期暖房時の夜間間運転時は、外気熱源式熱交換器5を
蒸発器として、又熱交換器3を凝縮器として機能すべ
く、夫々三方切換弁11〜14及び四方切換弁18を切り替え
ると共に、三方切換弁15,16により熱交換器3から蓄熱
槽6間を清水又はブラインが循環するよう構成した後、
下記のように蓄熱槽6内に中間温度である15〜25℃の潜
熱蓄熱を行う。
B) During winter heating B-1) Thermal energy heat storage at night (see Fig. 2A) During nighttime operation during winter heating, the outside heat source heat exchanger 5 is used as an evaporator and the heat exchanger 3 is used as a condenser. In order to function as, the three-way switching valves 11 to 14 and the four-way switching valve 18 are switched, respectively, and after the three-way switching valves 15 and 16 are configured to circulate fresh water or brine between the heat exchanger 3 and the heat storage tank 6,
Latent heat storage at an intermediate temperature of 15 to 25 ° C. is performed in the heat storage tank 6 as described below.

即ち、ヒートポンプ運転により圧縮機1が夜間運転さ
れ、外気熱源式熱交換器5(蒸発器)により吸熱された
冷媒は圧縮機1により圧縮された後、熱交換器3(凝縮
器)内で循環する積水又はブラインと熱交換し、凝縮用
熱エネルギーを放出する。
That is, the compressor 1 is operated at night by the heat pump operation, and the refrigerant absorbed by the outside air heat source type heat exchanger 5 (evaporator) is compressed by the compressor 1 and then circulated in the heat exchanger 3 (condenser). It exchanges heat with the accumulated water or brine to release condensation heat energy.

そして前記加温された清水又はブラインはスプレー部61
より散布されることにより、球状ボール62体に封入され
ている潜熱蓄熱剤に前記15〜25℃前後の潜熱と顕熱を含
む二段圧縮機における低段側の中間温度に相当する熱エ
ネルギーが蓄熱される。
Then, the warmed fresh water or brine is sprayed 61
By being sprayed more, the latent heat storage agent enclosed in the spherical balls 62 has thermal energy equivalent to the intermediate temperature on the low stage side in the two-stage compressor including latent heat and sensible heat of about 15 to 25 ° C. The heat is stored.

即ち外気温度が約−5〜−10℃前後の外気熱源を利用し
て15℃前後の潜熱蓄熱を行う為に、冷媒(R−22)の蒸
発温度が約−10〜−15℃前後、凝縮温度が約20℃とな
り、第5図(B)の実線で示すようにその圧縮比は約2.
5〜3.1前後となり、二段圧縮機の低段圧縮工程に相当す
る圧縮比で運転できる。
That is, in order to perform latent heat storage of about 15 ° C using an outside air heat source with an outside air temperature of about -5 to -10 ° C, the evaporation temperature of the refrigerant (R-22) is about -10 to -15 ° C The temperature reaches about 20 ℃, and the compression ratio is about 2. as shown by the solid line in Fig. 5 (B).
It will be around 5 to 3.1, and can be operated at a compression ratio equivalent to the low-stage compression process of a two-stage compressor.

B−2)昼間の暖房運転(第2B図参照) 昼は四方切換弁18を外気熱源式熱交換器5から熱交換器
4側に、又三方切換弁15,16を熱交換器3から熱交換器
4側に切り替えた後、下記のような暖房運転を行う。
B-2) Daytime heating operation (see Fig. 2B) In the daytime, the four-way switching valve 18 heats the outside heat source heat exchanger 5 to the heat exchanger 4 side, and the three-way switching valves 15 and 16 heats the heat exchanger 3. After switching to the exchanger 4 side, the following heating operation is performed.

先ずヒートポンプ運転により圧縮機1が暖房運転され、
熱交換器3(凝縮器)内で暖房負荷2側の温水と熱交換
された冷媒は、後膨張弁29を介して熱交換器4(凝縮
器)内で蒸発気化し、ここで、該熱交換器4と蓄熱槽6
間を循環する清水又はブラインを介して球形ボール62内
の潜熱を吸熱した後圧縮機1に戻り、以下これを繰り返
す。
First, the compressor 1 is heated by the heat pump operation,
The refrigerant that has exchanged heat with the hot water on the heating load 2 side in the heat exchanger 3 (condenser) is evaporated and vaporized in the heat exchanger 4 (condenser) via the post-expansion valve 29, where the heat Exchanger 4 and heat storage tank 6
After absorbing the latent heat in the spherical balls 62 through the fresh water or brine circulating between them, it returns to the compressor 1 and this is repeated thereafter.

これにより、前記夜間運転により蓄熱された15〜25℃前
後の潜熱と顕熱を含む熱エネルギーを熱源とし、熱交換
器3側の暖房負荷用温水を50℃前後まで加温するヒート
ポンプサイクルが構成され、そして昼間に二段圧縮機の
高段側圧縮運転に相当する2段階目の圧縮運転を行う事
が出来、その場合の圧縮比は、冷媒(R−22)の蒸発温
度が約10℃、凝縮温度が約50℃前後となる為に、第5図
(B)の二重線で示すようにその圧縮比は2.6前後とな
り低い圧力比による圧縮運転で暖房運転が可能となる。
As a result, a heat pump cycle that heats the hot water for heating load on the heat exchanger 3 side to about 50 ° C by using the heat energy including latent heat and sensible heat of about 15 to 25 ° C stored by the nighttime operation as a heat source is configured. The second stage compression operation, which corresponds to the high-stage compression operation of the two-stage compressor, can be performed during the day. The compression ratio in that case is that the evaporation temperature of the refrigerant (R-22) is about 10 ° C. Since the condensing temperature is around 50 ° C, the compression ratio is around 2.6 as shown by the double line in Fig. 5 (B), and the heating operation can be performed by the compression operation at a low pressure ratio.

第4図は三方切換弁を用いる事なく2つの四方切換弁の
切り替にて前記作用を営むぐうに構成し、冷媒及び清水
等の循環経路の簡略化及び部品点数の削減を図った冷暖
房システムの概略説明図を示し、前記実施例との差異を
中心に説明すると、1′は圧縮機、3′は空調器2′側
の循環水と熱交換される熱交換器(二次冷温水器)、
4′は潜熱蓄熱槽6′間を循環する清水又はブラインと
熱交換される熱交換器(一次冷温水器)、5′は外気熱
源式熱交換器、8′は受液器である。
FIG. 4 shows a cooling and heating system which is configured to perform the above-mentioned action by switching two four-way switching valves without using a three-way switching valve, and which simplifies the circulation path of the refrigerant and fresh water and reduces the number of parts. A schematic explanatory view is shown, and the difference from the above embodiment will be mainly described. 1'is a compressor, 3'is a heat exchanger (secondary chiller / heater) for exchanging heat with circulating water on the side of an air conditioner 2 '. ,
Reference numeral 4'denotes a heat exchanger (primary chiller / heater) for exchanging heat with fresh water or brine circulating between the latent heat storage tanks 6 ', 5'an outside air heat source type heat exchanger, and 8'a liquid receiver.

41〜44はいずれも開閉弁で、夜間のエネルギー蓄熱時、
外気熱源式熱交換器5′側が、又昼間の冷暖房運転時熱
交換器(二次冷温水器)3′側が夫々開放されるよう構
成する。45,46はいずれも四方切換弁で、冷房又は暖房
時に、該四方切換弁45,46を適宜切り替える事により、
外気熱源式熱交換器5′、熱交換器(二次冷温水器)
3′及び熱交換器(一次冷温水器)4′が夫々凝縮器と
して、又蒸発器として機能するよう構成する。
41-44 are all open / close valves, which are used to store energy at night.
The outside air heat source type heat exchanger 5'side and the heat exchanger (secondary chiller / heater) 3'side during cooling / heating operation during the daytime are opened. 45 and 46 are all four-way switching valves, and by appropriately switching the four-way switching valves 45 and 46 during cooling or heating,
Outside air heat source type heat exchanger 5 ', heat exchanger (secondary water heater)
3'and the heat exchanger (primary chiller / heater) 4'are configured to function as a condenser and an evaporator, respectively.

尚、47は膨張弁、48はポンプである。Incidentally, 47 is an expansion valve and 48 is a pump.

かかる構成においても前記第1実施例と同様な作用を行
い得ると共に、三方切換弁を用いる事なく且つ循環経路
の簡略化を図る事が出来る。
Even with this configuration, the same operation as in the first embodiment can be performed, and the circulation path can be simplified without using the three-way switching valve.

「発明の効果」 以上記載の如く本発明によれば、潜熱蓄熱可能な共通の
蓄熱槽を用い、而も該潜熱蓄熱温度を夜間若しくは昼間
の外気熱源温度と、負荷との熱交換用の目的温度の間に
位置する中間温度域に設定した為に、単段圧縮機を用い
て時間差を有する二段階圧縮運転を可能となり、効果的
な熱エネルギー利用を図る事が出来る。
"Effects of the Invention" As described above, according to the present invention, a common heat storage tank capable of storing latent heat is used, and the latent heat storage temperature is used for heat exchange between a nighttime or daytime outside air heat source temperature and a load. Since the temperature is set to an intermediate temperature range located between the temperatures, it is possible to perform a two-stage compression operation with a time difference using a single-stage compressor, and it is possible to effectively utilize heat energy.

特に本発明を冷暖房システムに適用する事により、深夜
電力利用と共に低圧縮比での運転を可能にし、動力コス
ト及び動力消費の低減、システム全体の小容積化と共に
建設コストの大幅低減を図る事が可能となる。
In particular, by applying the present invention to an air-conditioning system, it is possible to operate at a low compression ratio with the use of late-night electric power, reduce power cost and power consumption, reduce the volume of the entire system, and significantly reduce construction cost. It will be possible.

等の種々の著効を有す。It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

第1A図乃至第2B図はいずれも本発明の実施例に係る冷暖
房システムの概略説明図を示し、第1A図は夏期冷房時に
おける夜間の熱エネルギー蓄熱サイクル(高段圧縮運
転)、第1B図は昼間の冷房運転サイクル(低段圧縮運
転)、第2A図は冬期暖房時における夜間の熱エネルギー
蓄熱サイクル(低段圧縮運転)、第2B図は昼間の暖房運
転サイクル(高段圧縮運転)を夫々示す。第3図は前記
夫々の実施例に使用される蓄冷熱槽の概略断面図であ
る。 第4図は本発明の他の実施例に係る冷暖房システムの概
略説明図を示す。 第5図は本発明の作用を説明するモリエ線図を用いた作
用線図である。
FIGS. 1A to 2B each show a schematic explanatory view of an air conditioning system according to an embodiment of the present invention, and FIG. 1A shows a thermal energy heat storage cycle at night during summer cooling (high-stage compression operation), and FIG. 1B. Is the daytime cooling operation cycle (low-stage compression operation), Figure 2A is the nighttime heat energy storage cycle during winter heating (low-stage compression operation), and Figure 2B is the daytime heating operation cycle (high-stage compression operation). Show each. FIG. 3 is a schematic sectional view of the cold storage heat tank used in each of the above-mentioned embodiments. FIG. 4 is a schematic explanatory view of an air conditioning system according to another embodiment of the present invention. FIG. 5 is an action diagram using a Mollier diagram for explaining the action of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 敬介 東京都中野区白鷺3丁目6番11号 (72)発明者 佐伯 忠吉 宮城県仙台市荒町146番地 (72)発明者 笠原 育夫 岐阜県岐阜市中新町26番地 (56)参考文献 特開 昭58−133542(JP,A) 特開 昭58−193035(JP,A) 特開 昭53−55547(JP,A) 特公 昭57−36506(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keisuke Kasahara 3-6-11 Shirasagi, Nakano-ku, Tokyo (72) Inventor Tadakichi Saeki 146 Aramachi, Sendai City, Miyagi Prefecture (72) Ikuo Kasahara Gifu City, Gifu Prefecture 26, Nakashinmachi (56) Reference JP-A-58-133542 (JP, A) JP-A-58-193035 (JP, A) JP-A-53-55547 (JP, A) JP-B-57-36506 (JP , B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒圧縮用の単段圧縮機と、外気熱源若し
くは負荷を取入れて冷媒の蒸発若しくは凝縮を行う蒸発
器と凝縮器と、夜間若しくは昼間の外気熱源温度と、負
荷との熱交換用の目的温度のほぼ中間に位置する略15℃
から25℃の中間温度域を融点として潜熱蓄熱可能な蓄熱
槽を具えてなる、冷暖房サイクルを構成する空調装置を
用い、 冷房サイクル時において、夜間の外気熱源を凝縮器側に
導き、一方蒸発器側で前記蓄熱槽と熱交換させながら、
夜間の外気熱源を利用して略前記中間温度域までの一次
圧縮運転を行いその中間温度域の15〜25℃付近の融点を
有する潜熱として前記蓄熱槽に貯えた後、昼間に前記潜
熱を凝縮器側に導き、一方蒸発器側で負荷と熱交換させ
ながら二次圧縮運転を行い、冷房用熱エネルギーを得、 一方暖房サイクル時において、夜間の外気熱源を蒸発器
側に導き、一方凝縮器側で前記蓄熱槽と熱交換させなが
ら、夜間の外気熱源を利用して略前記中間温度域までの
一次圧縮運転を行いその中間温度域の15〜25℃付近の融
点を有する熱エネルギーを潜熱として前記蓄熱槽に貯え
た後、昼間に前記潜熱を蒸発器側に導き、一方凝縮器側
で負荷と熱交換させながらいて二次圧縮運転を行い、暖
房用熱エネルギーを得るようにした事を特徴とするヒー
トポンプを用いた空調装置の運転方法
1. A single-stage compressor for compressing a refrigerant, an evaporator and a condenser that take in an outside air heat source or a load to evaporate or condense the refrigerant, a nighttime or daytime outside air heat source temperature, and heat exchange with a load. Approximately 15 ℃, which is located approximately in the middle of the target temperature for
From an air conditioner that constitutes a cooling / heating cycle, which has a heat storage tank that can store latent heat with an intermediate temperature range of 25 ° C to While exchanging heat with the heat storage tank on the side,
After performing primary compression operation to approximately the intermediate temperature range using the outside air heat source at night and storing it in the heat storage tank as latent heat having a melting point near 15 to 25 ° C in the intermediate temperature range, the latent heat is condensed in the daytime. On the one hand, the secondary compression operation is carried out while exchanging heat with the load on the evaporator side to obtain heat energy for cooling, and on the other hand, during the heating cycle, the outside air heat source at night is guided to the evaporator side, and one condenser While exchanging heat with the heat storage tank on the side, the primary air compression operation is performed up to approximately the intermediate temperature range by utilizing the outside air heat source at night, and the heat energy having a melting point near 15 to 25 ° C in the intermediate temperature range is used as latent heat. After being stored in the heat storage tank, the latent heat is introduced to the evaporator side in the daytime, and the secondary compression operation is performed while the heat is exchanged with the load on the condenser side to obtain the heat energy for heating. Empty with a heat pump Apparatus method of operation
【請求項2】前記蓄熱槽が、前記中間温度域に融点を有
する潜熱蓄熱剤を封入した樹脂系又は熱伝導性の良い金
属で形成されたカプセルを積層して形成すると共に、該
カプセルに封入する潜熱蓄熱剤の融点を略15℃から25℃
の間で異ならせ複数の融点の潜熱蓄熱を可能ならしめた
蓄熱槽である請求項1記載のヒートポンプを用いた空調
装置の運転方法
2. The heat storage tank is formed by stacking capsules made of a resin system or a metal having good thermal conductivity, in which a latent heat storage agent having a melting point in the intermediate temperature range is sealed, and sealed in the capsule. The melting point of the latent heat storage agent
The method for operating an air conditioner using a heat pump according to claim 1, wherein the heat storage tank is a heat storage tank in which latent heat storage of a plurality of melting points is made possible by differentiating between them.
JP61028888A 1985-09-17 1986-02-14 Operating method of air conditioner using heat pump Expired - Lifetime JPH0684851B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-203402 1985-09-17
JP20340285 1985-09-17

Publications (2)

Publication Number Publication Date
JPS62153658A JPS62153658A (en) 1987-07-08
JPH0684851B2 true JPH0684851B2 (en) 1994-10-26

Family

ID=16473456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028888A Expired - Lifetime JPH0684851B2 (en) 1985-09-17 1986-02-14 Operating method of air conditioner using heat pump

Country Status (1)

Country Link
JP (1) JPH0684851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052719A (en) * 2009-10-30 2011-05-11 株式会社丰田自动织机 Air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010288A (en) * 2005-07-04 2007-01-18 Jfe Engineering Kk Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
DE102014202849A1 (en) * 2014-02-17 2015-08-20 Siemens Aktiengesellschaft Method and device for loading a thermal stratified storage tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355547A (en) * 1976-10-29 1978-05-20 Agency Of Ind Science & Technol Heat accumulator
JPS5736506A (en) * 1980-08-12 1982-02-27 Mitsubishi Electric Corp GASUZETSUENDENKISOCHI
JPS58133542A (en) * 1982-02-03 1983-08-09 Hitachi Ltd Heat pump type air conditioner
JPS58193035A (en) * 1982-05-07 1983-11-10 Takasago Thermal Eng Co Lts Space cooling and heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052719A (en) * 2009-10-30 2011-05-11 株式会社丰田自动织机 Air conditioner

Also Published As

Publication number Publication date
JPS62153658A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US6324860B1 (en) Dehumidifying air-conditioning system
CN102947653A (en) Refrigerating air-conditioning device
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
CN110682761A (en) Double-chamber external heat exchanger heat pump system
JP2001355941A (en) Heat pump system
JPH0522837B2 (en)
JPH0684851B2 (en) Operating method of air conditioner using heat pump
CN109808448B (en) Air conditioning system, control method thereof and automobile
CN206269414U (en) A kind of auxiliary hot enthalpy increasing heat pump system
JP2000240980A (en) Refrigerator/air conditioner
JP2678211B2 (en) Heat storage type cold / heat generator
CN212194990U (en) Air conditioning system of electric automobile
CN215490468U (en) Rail transit vehicle variable frequency heat pump air conditioner hot air defrosting system
JPH11132501A (en) Dehumidifying air conditioner system
KR100226361B1 (en) Double-cooling system type air conditioner
JP3297467B2 (en) Thermal storage type air conditioner
JPH0520661B2 (en)
JPS6143194Y2 (en)
JP2751695B2 (en) Heat storage type cooling device
JPH06101934A (en) Air-conditioning apparatus
JP2000179985A (en) Multifunction heat pump system
CN114623627A (en) Method and system for improving refrigerant compression heat pump of artificial environment chamber
JPH0585816B2 (en)
JPH02219933A (en) Cold storage system
JPS6018895B2 (en) Solar heat pump air conditioner