JPH0684533A - Humidifying means for solid high polymer type fuel cell - Google Patents
Humidifying means for solid high polymer type fuel cellInfo
- Publication number
- JPH0684533A JPH0684533A JP4257152A JP25715292A JPH0684533A JP H0684533 A JPH0684533 A JP H0684533A JP 4257152 A JP4257152 A JP 4257152A JP 25715292 A JP25715292 A JP 25715292A JP H0684533 A JPH0684533 A JP H0684533A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- polymer electrolyte
- water
- high polymer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は燃料電池に関するもの
で、特に、固体高分子型燃料電池の加湿手段に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a humidifying means for a polymer electrolyte fuel cell.
【0002】[0002]
【従来の技術】従来より、燃料電池において酸素と水素
を用いて電流を発生することが知られている。従来より
用いられている燃料電池の1つに高分子電解質膜を用い
た燃料電池がある。この種の燃料電池ユニットは、複数
の燃料電池で構成されている。各燃料電池は、高分子電
解質膜と、これを両側から挟むようにして触媒を含む電
極とからなっている。2. Description of the Related Art Conventionally, it has been known to generate an electric current by using oxygen and hydrogen in a fuel cell. One of the fuel cells conventionally used is a fuel cell using a polymer electrolyte membrane. This type of fuel cell unit is composed of a plurality of fuel cells. Each fuel cell comprises a polymer electrolyte membrane and electrodes containing a catalyst so as to sandwich the polymer electrolyte membrane from both sides.
【0003】この高分子電解質膜は常に湿潤状態に維持
する必要がある。従って、高分子電解質膜を健全な状態
を維持するには、常に水分の補給が必要である。This polymer electrolyte membrane must always be kept in a wet state. Therefore, in order to keep the polymer electrolyte membrane in a healthy state, it is always necessary to supply water.
【0004】この高分子電解質膜形式の燃料電池におけ
る、電力発生のメカニズムは周知の通りである。すなわ
ち、例えば、水素ガス等の燃料は、アノード側の電極へ
噴射され、カソード側の電極には酸素ガス等の強酸化性
物質が噴射される。The mechanism of electric power generation in this polymer electrolyte membrane type fuel cell is well known. That is, for example, fuel such as hydrogen gas is injected to the electrode on the anode side, and strong oxidizing substance such as oxygen gas is injected to the electrode on the cathode side.
【0005】このアノード及びカソードは主にフルオロ
カーボンを結着材として触媒を担持した導電材によって
構成されている。なお、触媒としては主に白金が用いら
れている。The anode and the cathode are mainly composed of a conductive material carrying a catalyst with fluorocarbon as a binder. Incidentally, platinum is mainly used as the catalyst.
【0006】通常の固体高分子型燃料電池においては、
周知のように、アノード内の高分子電解質膜表面の触媒
が燃料をイオン化して、イオンと自由電子を発生する。
この自由電子は、適当な手段によって燃料電池の1つの
ターミナルから、カソードに接続された他方のターミナ
ルに流れ、このカソードを通って、酸素ガス等の酸化性
物質の還元に用いられる。In a normal polymer electrolyte fuel cell,
As is well known, the catalyst on the surface of the polymer electrolyte membrane in the anode ionizes the fuel to generate ions and free electrons.
These free electrons flow by suitable means from one terminal of the fuel cell to the other terminal connected to the cathode, through which they are used for the reduction of oxidizing substances such as oxygen gas.
【0007】[0007]
【発明が解決しようとする課題】一方、イオンは高分子
電解質膜を透過して高分子電解質膜の反対側に設置され
たカソードに送られる。このイオンの移動にともなって
数分子量の水分子が輸送される。イオンによる水の輸送
は、電気浸透またはプロトニックポンプ(protonic pum
p)と呼ばれている。従って、高分子電解質膜のアノード
側においては水の輸送に伴い乾燥が進む。これを防ぐた
め一般にはアノード内に噴射する燃料ガスを加湿してい
る。しかしながら、ガスの加湿により供給される水以上
に、カソード側に輸送される水が多くなるような、電流
が大きな領域では高分子電解質膜の乾燥が進み、膜抵抗
が増大し電池性能が低下し、燃料電池の高出力密度化に
対し問題となっていた。そのため、高分子電解質膜の乾
燥を防ぎつつ高出力密度化を達成する方法が望まれてい
る。On the other hand, the ions permeate the polymer electrolyte membrane and are sent to the cathode provided on the opposite side of the polymer electrolyte membrane. Along with the movement of the ions, water molecules of several molecular weight are transported. Transport of water by ions is carried out by electroosmotic or protonic pumps.
p). Therefore, on the anode side of the polymer electrolyte membrane, drying progresses as water is transported. In order to prevent this, the fuel gas injected into the anode is generally humidified. However, in a high current region where more water is transported to the cathode side than the water supplied by humidifying the gas, the polymer electrolyte membrane dries, increasing the membrane resistance and decreasing the battery performance. However, there has been a problem in increasing the power density of the fuel cell. Therefore, a method for achieving high power density while preventing the polymer electrolyte membrane from drying is desired.
【0008】そこで、本発明の目的は燃料電池の高分子
電解質膜の乾燥を防ぎつつ高出力密度化を達成する方法
により、燃料電池の小型化・軽量化を達成しうる固体高
分子型燃料電池を提供する事にある。Therefore, an object of the present invention is to reduce the size and weight of a fuel cell by a method of increasing the power density while preventing the polymer electrolyte membrane of the fuel cell from drying. To provide.
【0009】[0009]
【課題を解決するための手段】高分子電解質膜と触媒を
有する電極とからなる固体高分子型燃料電池において親
水性樹脂または親水化処理を施した多孔質膜を電極内ま
たは電極周辺部または膜面上に設置し、多孔質膜を介し
て水を供給することを特徴とする固体高分子型燃料電池
の加湿手段である。親水性樹脂としては、官能基に−C
OOH、−C−O−C−、−OH、−RNR’、−SO
3 Hなどを持つ樹脂であれば良く、親水化処理について
も同様な官能基を付着させれば良い。Means for Solving the Problems In a polymer electrolyte fuel cell comprising a polymer electrolyte membrane and an electrode having a catalyst, a hydrophilic resin or a hydrophilized porous membrane is used in or around an electrode or a membrane. It is a humidifying means for a polymer electrolyte fuel cell, which is installed on a surface and supplies water through a porous membrane. As a hydrophilic resin, -C is added to the functional group.
OOH, -COC-, -OH, -RNR ', -SO
Any resin having 3 H or the like may be used, and the same functional group may be attached to the hydrophilic treatment.
【0010】[0010]
【作用】前記手段を講じると燃料電池の高分子電解質膜
の乾燥を防ぎつつ高出力密度化を達成できる理由は以下
の通りである。The reason why the high power density can be achieved while preventing the drying of the polymer electrolyte membrane of the fuel cell by the above measures is as follows.
【0011】アノードに図1のように親水性樹脂製また
は親水化処理を施した多孔質膜を組み込み、そのフィル
ムに水を浸透または毛細管現象により通すことにより、
アノード側に水を供給することが可能となり、水素ガス
が加湿され高分子電解質膜の乾燥を防止することが可能
となる。As shown in FIG. 1, a porous membrane made of a hydrophilic resin or subjected to a hydrophilization treatment is incorporated into the anode, and water is permeated or passed through the film by a capillarity.
Water can be supplied to the anode side, and the hydrogen gas can be humidified to prevent the polymer electrolyte membrane from drying.
【0012】[0012]
【実施例】以下、この発明の実施例を添付図面に基づい
て説明する。実際の電池としては、これらのセルを積層
化した構造である。Embodiments of the present invention will be described below with reference to the accompanying drawings. An actual battery has a structure in which these cells are laminated.
【0013】実施例1)図1はこの発明に係る一部の単
セル構造を示す。高分子電解質膜105(Nafion(登録
商標)117:Dupont社製)の両側に白金触媒を担持したア
ノード電極103(導電性カーボン及びポリテトラフル
オロエチレンの混合物)及びカソード電極104(導電
性カーボン及びポリテトラフルオロエチレンの混合物)
を配置し、溝の付いた集電板102を配置する。このア
ノード電極内に親水性樹脂101を埋め込む。Embodiment 1) FIG. 1 shows a part of a single cell structure according to the present invention. Anode electrode 103 (a mixture of conductive carbon and polytetrafluoroethylene) and a cathode electrode 104 (conductive carbon and poly) which carry a platinum catalyst on both sides of a polymer electrolyte membrane 105 (Nafion (registered trademark) 117: manufactured by DuPont). Mixture of tetrafluoroethylene)
And a current collector plate 102 with a groove is arranged. A hydrophilic resin 101 is embedded in this anode electrode.
【0014】集電板102は圧縮、焼結、黒鉛化された
カーボン粒子及び固着材の混合物から形成されている。
101の親水性樹脂はエチレンとメタクリル酸の共重合
樹脂のフィルムであり、形状を図4に示す。The current collector plate 102 is formed of a mixture of compressed, sintered, graphitized carbon particles and a fixing material.
The hydrophilic resin 101 is a film of a copolymer resin of ethylene and methacrylic acid, and its shape is shown in FIG.
【0015】また、親水性樹脂に水を供給する方法とし
ては図1のように、アノード電極の周辺部にOリング1
11で独立させ、水を満たした室を設け、この部分よ
り、浸透により水を供給させる。As a method of supplying water to the hydrophilic resin, as shown in FIG. 1, an O-ring 1 is provided around the anode electrode.
A chamber filled with water is provided by 11 and water is supplied from this portion by permeation.
【0016】この構造の固体高分子型燃料電池をセル温
度55℃にて水素1気圧、酸素1気圧にて1A/cm2
の電流密度で発電した。結果、1時間後も出力低下は見
られなかった。尚図中106は加湿水、107は水素入
口、108は酸素入口、109は水素出口、110は酸
素出口である。A polymer electrolyte fuel cell having this structure was used at a cell temperature of 55 ° C. at 1 atm of hydrogen and 1 atm of oxygen at 1 A / cm 2
Power was generated at the current density of. As a result, the output was not reduced even after 1 hour. In the figure, 106 is humidifying water, 107 is a hydrogen inlet, 108 is an oxygen inlet, 109 is a hydrogen outlet, and 110 is an oxygen outlet.
【0017】実施例2)図2はこの発明に係る一部の単
セル構造を示す。高分子電解質膜105(Nafion(登録
商標)117:Dupont社製)の両側に白金触媒を担持したア
ノード電極103(導電性カーボン及びポリテトラフル
オロエチレンの混合物)及びカソード電極104(導電
性カーボン及びポリテトラフルオロエチレンの混合物)
を配置し、溝の付いた集電体102を配置する。このア
ノード電極側に親水性の多孔性フィルム101を接触さ
せる。Embodiment 2) FIG. 2 shows a part of a single cell structure according to the present invention. Anode electrode 103 (a mixture of conductive carbon and polytetrafluoroethylene) and a cathode electrode 104 (conductive carbon and poly) which carry a platinum catalyst on both sides of a polymer electrolyte membrane 105 (Nafion (registered trademark) 117: manufactured by DuPont). Mixture of tetrafluoroethylene)
And a current collector 102 with a groove is arranged. The hydrophilic porous film 101 is brought into contact with this anode electrode side.
【0018】集電体102は圧縮、焼結、黒鉛化された
カーボン粒子及び固着材の混合物から形成されている。The current collector 102 is formed from a mixture of compressed, sintered, graphitized carbon particles and a fixing material.
【0019】図1,図2において、101はフッ素樹脂
多孔膜(住友電気工業株式会社製ポアフロン(商標登録
済み))表面にポリビニルアルコールを電子線グラフト
重合法により担持し、表面を親水化処理したものであ
る。これを幅3mmに切り出し、図1,図2のように固
体高分子電解質膜表面に圧着し、この親水化処理多孔膜
を介して水を補給しながら、燃料電池の作動を試験し
た。なお、高分子電解質膜表面の一部のみを親水化処理
多孔質膜を被覆した系では、高分子電解質膜表面の露出
率が90%になるよう全て統一した。In FIGS. 1 and 2, reference numeral 101 denotes a fluororesin porous membrane (Poreflon (registered trademark) manufactured by Sumitomo Electric Industries, Ltd.), on which polyvinyl alcohol is carried by an electron beam graft polymerization method to make the surface hydrophilic. It is a thing. This was cut out into a width of 3 mm, pressed onto the surface of the solid polymer electrolyte membrane as shown in FIGS. 1 and 2, and the operation of the fuel cell was tested while supplying water through the hydrophilized porous membrane. In the system in which only a part of the surface of the polymer electrolyte membrane was coated with the hydrophilized porous film, the exposure rate of the surface of the polymer electrolyte membrane was unified to 90%.
【0020】この構造の固体高分子型燃料電池を水素1
気圧、酸素1気圧にて1A/cm2の電流密度で発電し
た。結果、1時間運転後も出力低下は見られなかった。A polymer electrolyte fuel cell having this structure is used for hydrogen 1
Power was generated at a current density of 1 A / cm 2 at atmospheric pressure and 1 atm of oxygen. As a result, the output was not reduced even after running for 1 hour.
【0021】実施例3)図1,図2はこの発明に係る一
部の単セル構造を示す。イオン交換膜105(Nafion
(登録商標)117:Dupont社製)の両側に白金触媒を担持
したアノード電極103(導電性カーボン及びポリテト
ラフルオロエチレンの混合物)及びカソード電極104
(導電性カーボン及びポリテトラフルオロエチレンの混
合物)を配置し、溝の付いた集電板102を配置する。Embodiment 3) FIGS. 1 and 2 show a part of a single cell structure according to the present invention. Ion exchange membrane 105 (Nafion
(Registered trademark) 117: manufactured by Dupont Co., Ltd., and an anode electrode 103 (a mixture of conductive carbon and polytetrafluoroethylene) and a cathode electrode 104 carrying platinum catalysts on both sides.
(A mixture of conductive carbon and polytetrafluoroethylene) is arranged, and a current collector plate 102 having a groove is arranged.
【0022】集電板102は圧縮、焼結、黒鉛化された
カーボン粒子及び固着材の混合物から形成されている。The current collector plate 102 is formed from a mixture of compressed, sintered, graphitized carbon particles and a fixing material.
【0023】実施例2.で用いた101の表面親水化多
孔膜に替えて、親水性樹脂である部分的にアセタール化
したポリビニルアルコールを固体電解質膜表面に担持
し、この樹脂を介して水を補給しながら、発電開始時か
らの起電力の経時変化、および水素ガス、酸素ガスの利
用率の経時変化を記した。なお使用したポリビニルアル
コール樹脂のアセタール化比率は10%,25%,50
%と変化させた。Example 2. In place of the surface-hydrophilized porous membrane 101 used in step 1, a partially acetalized polyvinyl alcohol, which is a hydrophilic resin, is supported on the surface of the solid electrolyte membrane, and water is supplied through this resin while starting power generation. The change with time of the electromotive force and the change with time of the utilization rates of hydrogen gas and oxygen gas are described. The acetalization ratio of the polyvinyl alcohol resin used was 10%, 25%, 50%.
% And changed.
【0024】表1に示すように、比較例1に比べ起電力
の低下が抑制されていることが認められるが、アセター
ル化比率10%のものにもわずかながら起電力の低下が
認められる。これは、アセタール化比率の低いポリビニ
ルアルコールは、水への溶解性が強く、電池を動作させ
ている間に、この樹脂が高分子電解質膜全体を覆いつく
し、ガスの供給が行われ難くなったためと考えられる。As shown in Table 1, the decrease in electromotive force is suppressed as compared with Comparative Example 1, but a slight decrease in electromotive force is also observed for the acetalization ratio of 10%. This is because polyvinyl alcohol, which has a low acetalization ratio, has strong solubility in water, and this resin covered the entire polymer electrolyte membrane while the battery was operating, making it difficult to supply gas. it is conceivable that.
【0025】[0025]
【表1】 [Table 1]
【0026】比較例1)図3はこの発明の比較例に係る
一部の単セル構造を示す。イオン交換膜105(Nafion
(登録商標)117:Dupont社製)の両側に白金触媒を担持
したアノード電極103(導電性カーボン及びポリテト
ラフルオロエチレンの混合物)及びカソード電極104
(導電性カーボン及びポリテトラフルオロエチレンの混
合物)を配置し、溝の付いた集電板102を配置する。Comparative Example 1) FIG. 3 shows a part of a single cell structure according to a comparative example of the present invention. Ion exchange membrane 105 (Nafion
(Registered trademark) 117: manufactured by Dupont Co., Ltd., and an anode electrode 103 (a mixture of conductive carbon and polytetrafluoroethylene) and a cathode electrode 104 carrying platinum catalysts on both sides.
(A mixture of conductive carbon and polytetrafluoroethylene) is arranged, and a current collector plate 102 having a groove is arranged.
【0027】集電板102は圧縮、焼結、黒鉛化された
カーボン粒子及び固着材の混合物から形成されている。The current collector plate 102 is formed of a mixture of compressed, sintered, graphitized carbon particles and a fixing material.
【0028】このセル温度55℃のセルへ70℃の飽和
水蒸気で加湿した水素1気圧及び酸素1気圧を供給し
た。結果、運転開始後90秒後に出力電圧が0V以下に
なった。1 atm of hydrogen and 1 atm of oxygen moistened with saturated steam at 70 ° C. were supplied to the cell having a cell temperature of 55 ° C. As a result, the output voltage became 0 V or less 90 seconds after the start of operation.
【0029】[0029]
【発明の効果】上記の如く、本発明は、親水性樹脂また
は親水化処理を施した多孔質膜を電極内または電極周辺
部または膜面上に設置し、親水性樹脂または多孔質膜を
介して水を供給するようにしたので、高分子電解質膜の
乾燥を防ぎ、高出力密度比を達成し、燃料電池の性能を
低下させずに除湿し、オーバーヒートの防止と共に、燃
料電池の小型化・軽量化を達成するものである。As described above, according to the present invention, a hydrophilic resin or a hydrophilized porous membrane is installed in the electrode or in the periphery of the electrode or on the membrane surface, and the hydrophilic resin or the porous membrane is interposed between the hydrophilic resin and the porous membrane. Water is supplied to prevent the polymer electrolyte membrane from drying, achieve a high power density ratio, dehumidify without degrading the performance of the fuel cell, prevent overheating, and reduce the size of the fuel cell. It achieves weight reduction.
【図1】この発明に係る実施例1の単セル構造の断面
図。FIG. 1 is a cross-sectional view of a single cell structure according to a first embodiment of the present invention.
【図2】同上の実施例2の単セル構造の断面図。FIG. 2 is a sectional view of a single cell structure of Example 2 of the above.
【図3】同上の比較例1の単セル構造の断面図。FIG. 3 is a cross-sectional view of the single cell structure of Comparative Example 1 above.
【図4】この発明に用いる親水性樹脂の拡大平面図。FIG. 4 is an enlarged plan view of a hydrophilic resin used in the present invention.
101 親水性樹脂 102 集電板 103 アノード電極 104 カソード電極 105 高分子電解質膜 106 加湿水 107 水素入口 108 酸素入口 109 水素出口 110 酸素出口 101 Hydrophilic Resin 102 Current Collector Plate 103 Anode Electrode 104 Cathode Electrode 105 Polymer Electrolyte Membrane 106 Humidifying Water 107 Hydrogen Inlet 108 Oxygen Inlet 109 Hydrogen Outlet 110 Oxygen Outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏木 亨 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 花房 幸司 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Kashiwagi 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Electric Industries, Ltd. Osaka Factory (72) Inventor Koji Hanafusa 1-chome, Shimaya, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works
Claims (1)
らなる固体高分子型燃料電池において親水性樹脂または
親水化処理を施した多孔質膜を電極内または電極周辺部
または膜面上に設置し、親水性樹脂または親水化処理を
施した多孔質膜を介して水を供給することを特徴とする
固体高分子型燃料電池の加湿手段。1. In a polymer electrolyte fuel cell comprising a polymer electrolyte membrane and an electrode having a catalyst, a hydrophilic resin or a hydrophilized porous membrane is installed in the electrode, in the periphery of the electrode or on the membrane surface. And supplying water through a hydrophilic resin or a porous membrane that has been subjected to a hydrophilization treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4257152A JPH0684533A (en) | 1992-08-31 | 1992-08-31 | Humidifying means for solid high polymer type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4257152A JPH0684533A (en) | 1992-08-31 | 1992-08-31 | Humidifying means for solid high polymer type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0684533A true JPH0684533A (en) | 1994-03-25 |
Family
ID=17302439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4257152A Pending JPH0684533A (en) | 1992-08-31 | 1992-08-31 | Humidifying means for solid high polymer type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684533A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872907A1 (en) * | 1997-04-11 | 1998-10-21 | Sanyo Electric Co., Ltd. | Fuel cell |
WO1999057778A3 (en) * | 1998-04-30 | 2000-03-02 | Emitec Emissionstechnologie | Method for wetting at least one of the surfaces of an electrolyte in a fuel cell |
JP2006522434A (en) * | 2003-01-31 | 2006-09-28 | ソシエテ ビック | Fuel cartridge for fuel cell |
-
1992
- 1992-08-31 JP JP4257152A patent/JPH0684533A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0872907A1 (en) * | 1997-04-11 | 1998-10-21 | Sanyo Electric Co., Ltd. | Fuel cell |
US6083638A (en) * | 1997-04-11 | 2000-07-04 | Sanyo Electric Co., Ltd. | Fuel cell |
WO1999057778A3 (en) * | 1998-04-30 | 2000-03-02 | Emitec Emissionstechnologie | Method for wetting at least one of the surfaces of an electrolyte in a fuel cell |
US6630258B1 (en) | 1998-04-30 | 2003-10-07 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Process for wetting at least one of the surfaces of an electrolyte in a fuel cell |
JP2006522434A (en) * | 2003-01-31 | 2006-09-28 | ソシエテ ビック | Fuel cartridge for fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2842150B2 (en) | Polymer electrolyte fuel cell | |
JP2002124270A (en) | Fuel cell | |
JP2002367655A (en) | Fuel cell | |
JP3141619B2 (en) | Solid polymer electrolyte fuel cell power generator | |
JP3358222B2 (en) | Activation method of polymer electrolyte fuel cell | |
JP2003178780A (en) | Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell | |
JP5093640B2 (en) | Solid oxide fuel cell and manufacturing method thereof | |
JP5310730B2 (en) | Fuel cell | |
JPH08167416A (en) | Cell for solid high polymer electrolyte fuel cell | |
WO2010084753A1 (en) | Fuel cell | |
JP2002015758A (en) | Operating method of phosphoric acid fuel cell | |
JP2002164057A (en) | Solid high molecular fuel cell and method of manufacturing the same | |
JP2000003718A (en) | Method for activating high molecular electrolyte fuel cell | |
JP4534423B2 (en) | Fuel cell control method | |
JP4880131B2 (en) | Gas diffusion electrode and fuel cell using the same | |
US20240234747A9 (en) | Method for producing catalyst layers for fuel cells | |
JPH0684533A (en) | Humidifying means for solid high polymer type fuel cell | |
JP2009043688A (en) | Fuel cell | |
JP2002319421A (en) | Starting method and manufacturing method of solid polymer fuel cell | |
JP2006221970A (en) | Operation method of direct methanol fuel cell | |
JP2741574B2 (en) | Solid polymer electrolyte fuel cell | |
JPH0684532A (en) | Solid high polymer type fuel cell | |
JP2007051369A (en) | Passive-type hydrogen production device and package-type fuel cell power generator using the same | |
JP2003142121A (en) | Solid high polymer type fuel cell | |
WO2011052650A1 (en) | Fuel cell |