JPH0684270U - Capacitor for multi-stage refrigeration system - Google Patents

Capacitor for multi-stage refrigeration system

Info

Publication number
JPH0684270U
JPH0684270U JP3109293U JP3109293U JPH0684270U JP H0684270 U JPH0684270 U JP H0684270U JP 3109293 U JP3109293 U JP 3109293U JP 3109293 U JP3109293 U JP 3109293U JP H0684270 U JPH0684270 U JP H0684270U
Authority
JP
Japan
Prior art keywords
coil
condenser
shell
refrigerant liquid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109293U
Other languages
Japanese (ja)
Other versions
JP2550541Y2 (en
Inventor
博伸 倉良
和生 平城
Original Assignee
タバイエスペック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タバイエスペック株式会社 filed Critical タバイエスペック株式会社
Priority to JP3109293U priority Critical patent/JP2550541Y2/en
Publication of JPH0684270U publication Critical patent/JPH0684270U/en
Application granted granted Critical
Publication of JP2550541Y2 publication Critical patent/JP2550541Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】 【目的】 シェルアンドコイル型の多段冷凍システム用
コンデンサの熱交換性能を向上させる。 【構成】 コンデンサは、上部の入口管1から低温の飽
和冷媒液が導入される外側シェル2と、その中に設けら
れ高温の飽和冷媒蒸気が流され上下方向に配設された凝
縮コイル3と、上部4aが閉鎖され下部4bが開口し凝
縮コイル3内に配設された内側シェル4と、上部5aが
開口し内側シェル4内に配設され外側シェル2の外に導
かれる冷媒出口管5とを備えている。 【効果】 凝縮コイル3の各コイル列間で確実なカスケ
ード流れが得られ、コイル表面には常に流動状態にある
冷媒液が接触し、コイルの上部のみならず下部において
も、十分な流動と乱れのある沸騰現象が得られ、全体と
しての熱伝達率が大幅に向上する。
(57) [Summary] [Purpose] To improve the heat exchange performance of shell-and-coil type condensers for multistage refrigeration systems. A condenser comprises an outer shell 2 into which a low-temperature saturated refrigerant liquid is introduced from an upper inlet pipe 1, and a condensing coil 3 provided therein in which a high-temperature saturated refrigerant vapor is flowed and which is vertically arranged. , An inner shell 4 having an upper part 4a closed and a lower part 4b opened and arranged in the condenser coil 3, and a refrigerant outlet pipe 5 arranged in the inner shell 4 and opened to the outside of the outer shell 2. It has and. [Effect] A reliable cascade flow can be obtained between the coil rows of the condenser coil 3, and the refrigerant liquid in a fluid state is always in contact with the coil surface, so that sufficient fluidity and turbulence are obtained not only in the upper portion of the coil but also in the lower portion. A certain boiling phenomenon is obtained, and the heat transfer coefficient as a whole is significantly improved.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、冷媒液が導入される外筒内に冷媒蒸気が流されるコイルを上下方向 に配設した多段冷凍システム用コンデンサに関する。 The present invention relates to a condenser for a multistage refrigeration system in which a coil through which a refrigerant vapor is flown is vertically arranged in an outer cylinder into which a refrigerant liquid is introduced.

【0002】[0002]

【従来の技術】[Prior art]

例えば、低温側冷凍サイクルの冷媒蒸気を高温側冷凍サイクルの冷媒液で冷却 し、冷媒蒸気を液化させると共に冷媒液を蒸発させる二元冷凍システムに用いら れるコンデンサとしては、シェルアンドコイル型コンデンサ、二重管式コンデン サ、積層式コンデンサ等が従来から知られている。 For example, a condenser used in a dual refrigeration system that cools the refrigerant vapor of the low temperature side refrigeration cycle with the refrigerant liquid of the high temperature side refrigeration cycle to liquefy the refrigerant vapor and evaporate the refrigerant liquid is a shell-and-coil condenser, Double-tube capacitors, multilayer capacitors, etc. have been conventionally known.

【0003】 この中で、従来のシェルアンドコイル型コンデンサは、サイズが小さく、液返 りがなく、又価格も適当であるが、熱交換性能が悪いという欠点がある。このよ うなコンデンサとして、例えば図2に示すように、シェル2内に凝縮コイル3と 内管5とを配設し、入口管1から冷媒液を導入し、これによりコイル3内の冷媒 蒸気を冷却して液化させると共に、この熱交換により冷媒液を蒸発させて内管5 から排出するようにしたものがある。この構造のコンデンサでは、冷媒液の殆ど が凝縮コイル3に直接接触することなくシェル2内に溜る。このような状態にお いては、シェル2内に溜まった液の液面に近い部分では、その部分におけるコイ ル表面の冷媒液の沸騰現象に加えて、下部で沸騰した冷媒蒸気の気泡が上昇する ことにより、気泡による伝熱面の攪乱作用が激しいため、活発な沸騰現象が起こ り極めて高い熱伝達率が得られる。しかしながら、それより下方の部分では、沸 騰した気泡の上昇が次第に少なくなって液内の乱れと流動性が低下するため、コ イル表面で沸騰現象は起っても、上部に較べて熱伝達率は大幅に低下する。又液 面上では、凝縮コイル3が冷媒液の蒸発した蒸気で覆われ、気体と固体との間の 熱交換になるため、その熱伝達率は極めて低い。その結果、この構造のコンデン サは、全体として熱交換性能が悪いという問題がある。Among them, the conventional shell-and-coil type capacitor has a small size, no liquid return, and an appropriate price, but has a drawback of poor heat exchange performance. As such a condenser, for example, as shown in FIG. 2, a condenser coil 3 and an inner pipe 5 are arranged in a shell 2, and a refrigerant liquid is introduced from an inlet pipe 1, whereby a refrigerant vapor in the coil 3 is removed. There is one in which the refrigerant liquid is cooled and liquefied, and the refrigerant liquid is evaporated by this heat exchange and discharged from the inner pipe 5. In the condenser of this structure, most of the refrigerant liquid collects in the shell 2 without directly contacting the condenser coil 3. In such a state, in the portion close to the liquid surface of the liquid accumulated in the shell 2, in addition to the boiling phenomenon of the refrigerant liquid on the coil surface in that portion, the bubbles of the refrigerant vapor boiling in the lower portion rise. By doing so, since the bubble is strongly disturbed by the heat transfer surface, an active boiling phenomenon occurs and an extremely high heat transfer coefficient is obtained. However, in the lower part, the rise of boiling bubbles gradually decreases and the turbulence and fluidity in the liquid decreases, so even if boiling occurs on the coil surface, heat transfer is higher than in the upper part. The rate drops significantly. Further, on the liquid surface, the condenser coil 3 is covered with the vaporized vapor of the refrigerant liquid, and heat exchange is performed between the gas and the solid, so that the heat transfer coefficient is extremely low. As a result, the capacitor of this structure has a problem of poor heat exchange performance as a whole.

【0004】 一方、二重管式コンデンサは、熱交換性能が良く価格は安いものの、サイズが 大きいことと熱収支の状態変化により液返りが生じるという欠点を有する。更に 、積層式コンデンサは、サイズが極めて小さいという長所があるが、液返りがあ り、又非常に高価であることが最大の欠点である。On the other hand, the double-tube condenser has a good heat exchange performance and a low price, but has a drawback that it has a large size and causes liquid return due to a change in the state of heat balance. Further, although the multilayer capacitor has an advantage of being extremely small in size, its greatest drawback is that it has liquid reflow and is very expensive.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案は従来技術に於ける上記問題を解決し、小型で、液返りが無く、価格が 適当で熱交換性能の改善された多段冷凍システム用コンデンサを提供することを 課題とする。 An object of the present invention is to solve the above problems in the prior art and to provide a condenser for a multi-stage refrigeration system that is compact, has no liquid return, is suitable in price, and has improved heat exchange performance.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は上記課題を解決するために、冷媒液が導入される外筒内に冷媒蒸気が 流されるコイルを上下方向に配設した多段冷凍システム用コンデンサにおいて、 上部が閉鎖され下部が開口し前記コイル内側に沿って配設された内筒と、上部が 開口し前記内筒内に配設され前記外筒外に導かれる内管と、を有することを特徴 とする。 In order to solve the above problems, the present invention relates to a condenser for a multi-stage refrigeration system in which a coil through which a refrigerant vapor is flown is vertically arranged in an outer cylinder into which a refrigerant liquid is introduced, in which an upper part is closed and a lower part is opened. It is characterized by having an inner cylinder arranged along the inner side of the coil, and an inner pipe having an upper opening and arranged in the inner cylinder and guided to the outside of the outer cylinder.

【0007】[0007]

【作用】[Action]

本考案によれば、上部から冷媒液が導入される外筒内に冷媒蒸気が流されるコ イルを上下方向に配設し、上部が閉鎖され下部が開口した内筒をコイル内側に沿 って配設しているので、コイルは外筒の内面と内筒の外面との間隙部に立設され ていることになる。このため、外筒の上部から導入された冷媒液は、間隙部にお いて上下方向に立設されたコイルの各段を自重により順次カスケード状に流れ落 ちる。即ち、上部が閉鎖された内筒があるため、コイル部では、その各列におい て必然的にカスケード流れが得られ、冷媒液は常に流動状態でコイルに接触する 。その結果、コイルの上部のみならず下部においても、十分な流動と乱れのある 沸騰現象が得られ、全体的に熱伝達率の良い熱交換が行われ、熱交換性能が向上 する。そして、冷媒液は下方に流れ落ちつつ順次蒸発する。 According to the present invention, the coil through which the refrigerant vapor flows is arranged vertically in the outer cylinder into which the refrigerant liquid is introduced, and the inner cylinder with the upper part closed and the lower part opened along the inside of the coil. Since the coil is disposed, the coil is erected in the gap between the inner surface of the outer cylinder and the outer surface of the inner cylinder. For this reason, the refrigerant liquid introduced from the upper part of the outer cylinder sequentially flows down in cascade in the respective gaps of the coils vertically installed in the gap due to its own weight. That is, since there is an inner cylinder whose upper part is closed, a cascade flow is inevitably obtained in each row in the coil portion, and the refrigerant liquid always contacts the coil in a flowing state. As a result, a boiling phenomenon with sufficient flow and turbulence is obtained not only in the upper portion of the coil but also in the lower portion, heat exchange with a good heat transfer coefficient is performed overall, and heat exchange performance is improved. Then, the refrigerant liquid sequentially evaporates while flowing down.

【0008】 一方、コイル内に配設された内筒の下部が開口していると共に、内筒内に上部 が開口し外筒外に導かれる内管が設けられているので、蒸発した冷媒蒸気は、内 筒下部の開口から内筒内に入って上昇し、更に上部開口から内管に入り外筒の外 に送り出される。この場合、蒸発した蒸気が内筒内を上方に上昇して内管に入る ため、液返りが極めて良好に防止される。そして、このようなコンデンサはシェ ルアンドコイル型であるから、サイズは小さく価格も比較的安価である。On the other hand, since the lower part of the inner cylinder provided in the coil is open, and the upper part is opened in the inner cylinder and is guided to the outside of the outer cylinder, the evaporated refrigerant vapor is evaporated. Enters the inner cylinder through the opening in the lower part of the inner cylinder, rises, and then enters the inner pipe through the upper opening and is sent out of the outer cylinder. In this case, the vaporized vapor ascends upward in the inner cylinder and enters the inner pipe, so that liquid return is extremely well prevented. Since such a capacitor is a shell-and-coil type, it is small in size and relatively inexpensive in price.

【0009】 なお、外筒の内径、コイルの直径、内筒の外径等は、実際の設計において、冷 媒液の流量、交換熱量等により、冷媒液がコイル上をカスケード状に流れてほぼ 蒸発するように定められる。In the actual design, the inner diameter of the outer cylinder, the diameter of the coil, the outer diameter of the inner cylinder, etc. are almost the same as the refrigerant liquid flowing in a cascade shape on the coil depending on the flow rate of the cooling liquid, the heat exchange amount, etc. Determined to evaporate.

【0010】[0010]

【実施例】【Example】

図1は、実施例の多段冷凍システム用コンデンサとして、二元冷凍サイクルに 用いる二重構造シェルアンドコイル型カスケードコンデンサの構造例を示す。 二元冷凍サイクルでは、二次低温サイクル側で外部から熱を吸収して気化した 後圧縮された高温の飽和冷媒蒸気が、一次高温サイクル側で液化・減圧された低 温の飽和冷媒液により液化される。このような冷凍サイクルに用いられる本コン デンサは、上部の入口管1から低温の飽和冷媒液が導入される外筒としての外側 シェル2と、その中に設けられ高温の飽和冷媒蒸気が流され上下方向に配設され たコイルとしての凝縮コイル3と、上部4aが閉鎖され下部4bが開口し凝縮コ イル3内側に沿って配設された内筒としての内側シェル4と、上部5aが開口し 内側シェル4内に配設され外側シェル2の外に導かれる冷媒出口管5とを備えて いる。 FIG. 1 shows a structural example of a double-structure shell-and-coil type cascade capacitor used in a dual refrigeration cycle as a capacitor for a multi-stage refrigeration system of the embodiment. In the dual refrigeration cycle, the high temperature saturated refrigerant vapor that is compressed after absorbing heat from the outside on the secondary low temperature cycle side and liquefied is liquefied by the low temperature saturated refrigerant liquid that is liquefied and decompressed on the primary high temperature cycle side. To be done. The present condenser used in such a refrigeration cycle has an outer shell 2 as an outer cylinder into which a low temperature saturated refrigerant liquid is introduced from an upper inlet pipe 1, and a high temperature saturated refrigerant vapor provided therein. The condenser coil 3 as a coil arranged in the up-and-down direction, the inner shell 4 as an inner cylinder arranged along the inside of the condenser coil 3 with the upper portion 4a closed and the lower portion 4b opened, and the upper portion 5a opened. A refrigerant outlet pipe 5 is provided inside the inner shell 4 and guided to the outside of the outer shell 2.

【0011】 外側シェル2及び内側シェル4の直径は、それらの間に凝縮コイル3を配設し たときに、冷媒液及びその蒸発した蒸気の流れの抵抗が大きくなり過ぎることな く、冷媒液が自重でカスケード状に各コイル間を流れ落ち、且つ蒸発した冷媒蒸 気が下方に搬送されるように、冷媒液の流量、交換熱量、コイル巻き数等を考慮 して定められる。なお、必要によっては、コイル上部の空間部の間隙を狭くした り、上方から下方に向かって内外シェル間の間隙が広くなるような構造にしても よい。The diameters of the outer shell 2 and the inner shell 4 are such that when the condenser coil 3 is arranged between them, the resistance of the flow of the refrigerant liquid and its evaporated vapor does not become too large, and Is determined in consideration of the flow rate of the refrigerant liquid, the heat exchange amount, the number of coil windings, etc., so that the refrigerant flows down between the coils in a cascaded manner under its own weight and the evaporated refrigerant vapor is conveyed downward. If necessary, the gap in the space above the coil may be narrowed, or the gap between the inner and outer shells may be widened from the upper side to the lower side.

【0012】 このような構造のシェルアンドコイル型カスケードコンデンサでは、次のよう な動作及び熱交換が行われる。 入口管1から導入された飽和冷媒液は、内側シェル4の上部4a上に落下した 後放射状に拡散し、外側シェル2と内側シェル4との間から凝縮コイル3上に流 れ落ちる。そして、凝縮コイル3の各コイル部と内外シェルとの間隙が図示の如 く狭くなっているため、各コイル毎にこの部分で抵抗が生じ、冷媒液は各コイル の上下部分に回り込みながら流下し、十分なカスケード状流れが得られる。なお 、このように内側シェル4を設けることなく、上部邪魔板のみを設ける場合には 、各コイルに当たることなく流れ落ちる液流が多く発生し、十分なカスケード流 が得られない。In the shell-and-coil type cascade capacitor having such a structure, the following operation and heat exchange are performed. The saturated refrigerant liquid introduced from the inlet pipe 1 drops onto the upper portion 4 a of the inner shell 4, and then diffuses radially, and flows down between the outer shell 2 and the inner shell 4 onto the condensing coil 3. Since the gap between each coil portion of the condenser coil 3 and the inner and outer shells is narrow as shown in the figure, resistance is generated in this portion for each coil, and the refrigerant liquid flows down while flowing around the upper and lower portions of each coil. , Sufficient cascade flow is obtained. In addition, when only the upper baffle plate is provided without providing the inner shell 4 as described above, a large amount of liquid flow that does not hit each coil is generated, and a sufficient cascade flow cannot be obtained.

【0013】 低温の冷媒液は、凝縮コイル3の外表面を流れ落ちる間に内部を流れる高温の 冷媒蒸気と熱交換して順次蒸発し、凝縮コイル3の下部では殆どが冷媒蒸気とな る。この冷媒蒸気は、コイル上部が流れ落ちる冷媒液によりシールされているた め、内側シェル4の下部開口4bから内側シェル4内に流入し、この中を上昇し 、液分が十分分離され冷媒蒸気のみとなって内管5に入り、コンデンサの外に送 り出される。一方、高温の飽和冷媒蒸気は、凝縮コイル3の上部3aから導入さ れ、低温の冷媒液により冷却されて液化し、冷媒液となって凝縮コイル3の下部 3bから送り出される。The low-temperature refrigerant liquid exchanges heat with the high-temperature refrigerant vapor flowing inside while flowing down the outer surface of the condenser coil 3, and is sequentially evaporated, and most of the lower portion of the condenser coil 3 becomes refrigerant vapor. Since this refrigerant vapor is sealed by the refrigerant liquid flowing down from the upper part of the coil, it flows into the inner shell 4 through the lower opening 4b of the inner shell 4 and rises in it, so that the liquid content is sufficiently separated and only the refrigerant vapor is present. Becomes the inner tube 5 and is sent out of the condenser. On the other hand, the high-temperature saturated refrigerant vapor is introduced from the upper part 3a of the condenser coil 3, cooled by the low-temperature refrigerant liquid and liquefied, and becomes a refrigerant liquid and is sent out from the lower part 3b of the condenser coil 3.

【0014】 このような冷媒液の流れによれば、コイル表面には常に流動状態にある冷媒液 が接触することになるので、コイルの上部のみならず下部においても、十分な流 動と乱れのある沸騰現象が得られ、全体としての熱伝達率が大幅に向上する。According to such a flow of the refrigerant liquid, the refrigerant liquid in a flowing state is always in contact with the surface of the coil, so that sufficient flow and turbulence are generated not only in the upper portion of the coil but also in the lower portion thereof. A certain boiling phenomenon is obtained, and the heat transfer coefficient as a whole is significantly improved.

【0015】[0015]

【考案の効果】[Effect of device]

以上の如く本考案によれば、外筒内に内筒を設けた二重構造を採用することに より、多段冷凍システムに用いるシェルアンドコイル型コンデンサの熱交換性能 を大幅に向上させることができる。 As described above, according to the present invention, by adopting the double structure in which the inner cylinder is provided inside the outer cylinder, the heat exchange performance of the shell-and-coil type condenser used in the multi-stage refrigeration system can be significantly improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の多段冷凍システム用コンデンサの全体
構造を示す断面及び内部正面図である。
FIG. 1 is a cross-sectional view and an internal front view showing the overall structure of a condenser for a multistage refrigeration system of an example.

【図2】従来の多段冷凍システム用コンデンサの全体構
造を示す断面及び内部正面図である。
FIG. 2 is a cross-sectional view and an internal front view showing the overall structure of a conventional condenser for a multistage refrigeration system.

【符号の説明】[Explanation of symbols]

2 外側シェル(外筒) 3 凝縮コイル(コイル) 4 内側シェル(内筒) 5 内管 2 Outer shell (outer cylinder) 3 Condensing coil (coil) 4 Inner shell (inner cylinder) 5 Inner tube

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 冷媒液が導入される外筒内に冷媒蒸気が
流されるコイルを上下方向に配設した多段冷凍システム
用コンデンサにおいて、 上部が閉鎖され下部が開口し前記コイル内側に沿って配
設された内筒と、上部が開口し前記内筒内に配設され前
記外筒外に導かれる内管と、を有することを特徴とする
多段冷凍システム用コンデンサ。
1. A condenser for a multi-stage refrigeration system in which a coil through which a refrigerant vapor is flowed is vertically arranged in an outer cylinder into which a refrigerant liquid is introduced. A condenser for a multi-stage refrigeration system, comprising: an inner cylinder provided; and an inner pipe having an upper opening, which is arranged in the inner cylinder and guided to the outside of the outer cylinder.
JP3109293U 1993-05-17 1993-05-17 Condenser for multistage refrigeration system Expired - Lifetime JP2550541Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109293U JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109293U JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Publications (2)

Publication Number Publication Date
JPH0684270U true JPH0684270U (en) 1994-12-02
JP2550541Y2 JP2550541Y2 (en) 1997-10-15

Family

ID=12321764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109293U Expired - Lifetime JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Country Status (1)

Country Link
JP (1) JP2550541Y2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263670A (en) * 2006-03-28 2007-10-11 Central Res Inst Of Electric Power Ind Concentration separator and concentration/separation method
KR101007480B1 (en) * 2003-08-29 2011-01-12 한라공조주식회사 Heat Exchanging Accumulator
WO2018158843A1 (en) 2017-02-28 2018-09-07 株式会社巴商会 Heat exchanger
WO2023066118A1 (en) * 2021-10-22 2023-04-27 广东美的暖通设备有限公司 Tank-type heat exchanger and heat pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007480B1 (en) * 2003-08-29 2011-01-12 한라공조주식회사 Heat Exchanging Accumulator
JP2007263670A (en) * 2006-03-28 2007-10-11 Central Res Inst Of Electric Power Ind Concentration separator and concentration/separation method
WO2018158843A1 (en) 2017-02-28 2018-09-07 株式会社巴商会 Heat exchanger
WO2023066118A1 (en) * 2021-10-22 2023-04-27 广东美的暖通设备有限公司 Tank-type heat exchanger and heat pump system

Also Published As

Publication number Publication date
JP2550541Y2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US6161613A (en) Low pressure drop heat exchanger
KR20070087158A (en) Refrigerating system with economizing cycle
CN1127993A (en) Arrangement for reducing the humidity content of a gaseous medium
JPH0387572A (en) Heat exchanger
JP2000213826A (en) Refrigerant condenser integral with liquid receiver
JPH0684270U (en) Capacitor for multi-stage refrigeration system
JPS59113181U (en) Purge device for refrigeration equipment
JPH04187957A (en) Freezing cycle device
JPH07332810A (en) Oil mist separator for refrigerator
CN214949923U (en) Liquid-spraying heat-exchange type heat exchanger
US4020646A (en) Diffusion-absorption type refrigerating machine
JPS6298170A (en) Oil separator
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
JPH02293595A (en) Refrigerant condenser
CN215638141U (en) Grid type evaporator
JPS6014146Y2 (en) horizontal capacitor
KR0161092B1 (en) Absorber
JPS6136131Y2 (en)
JP3492590B2 (en) Absorption refrigerator / cooling / heating machine
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JP3248790B2 (en) Double effect absorption refrigerator
JPH038920Y2 (en)
RU2000022C1 (en) Microrefrigerator
JP2001099525A (en) Liquid receiver and freezing cycle device
JP3401299B2 (en) Vertical absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term