JP2550541Y2 - Condenser for multistage refrigeration system - Google Patents

Condenser for multistage refrigeration system

Info

Publication number
JP2550541Y2
JP2550541Y2 JP3109293U JP3109293U JP2550541Y2 JP 2550541 Y2 JP2550541 Y2 JP 2550541Y2 JP 3109293 U JP3109293 U JP 3109293U JP 3109293 U JP3109293 U JP 3109293U JP 2550541 Y2 JP2550541 Y2 JP 2550541Y2
Authority
JP
Japan
Prior art keywords
coil
condenser
shell
refrigerant
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3109293U
Other languages
Japanese (ja)
Other versions
JPH0684270U (en
Inventor
博伸 倉良
和生 平城
Original Assignee
タバイエスペック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タバイエスペック株式会社 filed Critical タバイエスペック株式会社
Priority to JP3109293U priority Critical patent/JP2550541Y2/en
Publication of JPH0684270U publication Critical patent/JPH0684270U/en
Application granted granted Critical
Publication of JP2550541Y2 publication Critical patent/JP2550541Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、冷媒液が導入される外
筒内に冷媒蒸気が流されるコイルを上下方向に配設した
多段冷凍システム用コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for a multistage refrigeration system in which a coil through which refrigerant vapor flows is disposed in an outer cylinder into which refrigerant liquid is introduced.

【0002】[0002]

【従来の技術】例えば、低温側冷凍サイクルの冷媒蒸気
を高温側冷凍サイクルの冷媒液で冷却し、冷媒蒸気を液
化させると共に冷媒液を蒸発させる二元冷凍システムに
用いられるコンデンサとしては、シェルアンドコイル型
コンデンサ、二重管式コンデンサ、積層式コンデンサ等
が従来から知られている。
2. Description of the Related Art For example, as a condenser used in a binary refrigeration system in which a refrigerant vapor of a low-temperature refrigeration cycle is cooled by a refrigerant liquid of a high-temperature refrigeration cycle, the refrigerant vapor is liquefied, and the refrigerant liquid is evaporated. 2. Description of the Related Art A coil type capacitor, a double tube type capacitor, a multilayer type capacitor and the like have been conventionally known.

【0003】この中で、従来のシェルアンドコイル型コ
ンデンサは、サイズが小さく、液返りがなく、又価格も
適当であるが、熱交換性能が悪いという欠点がある。こ
のようなコンデンサとして、例えば図2に示すように、
シェル2内に凝縮コイル3と内管5とを配設し、入口管
1から冷媒液を導入し、これによりコイル3内の冷媒蒸
気を冷却して液化させると共に、この熱交換により冷媒
液を蒸発させて内管5から排出するようにしたものがあ
る。この構造のコンデンサでは、冷媒液の殆どが凝縮コ
イル3に直接接触することなくシェル2内に溜る。この
ような状態においては、シェル2内に溜まった液の液面
に近い部分では、その部分におけるコイル表面の冷媒液
の沸騰現象に加えて、下部で沸騰した冷媒蒸気の気泡が
上昇することにより、気泡による伝熱面の攪乱作用が激
しいため、活発な沸騰現象が起こり極めて高い熱伝達率
が得られる。しかしながら、それより下方の部分では、
沸騰した気泡の上昇が次第に少なくなって液内の乱れと
流動性が低下するため、コイル表面で沸騰現象は起って
も、上部に較べて熱伝達率は大幅に低下する。又液面上
では、凝縮コイル3が冷媒液の蒸発した蒸気で覆われ、
気体と固体との間の熱交換になるため、その熱伝達率は
極めて低い。その結果、この構造のコンデンサは、全体
として熱交換性能が悪いという問題がある。
[0003] Among them, the conventional shell-and-coil type capacitor is small in size, has no liquid return, and is appropriate in price, but has a drawback that heat exchange performance is poor. As such a capacitor, for example, as shown in FIG.
A condenser coil 3 and an inner pipe 5 are provided in a shell 2, and a refrigerant liquid is introduced from an inlet pipe 1, whereby the refrigerant vapor in the coil 3 is cooled and liquefied. Some are evaporated and discharged from the inner tube 5. In the condenser having this structure, most of the refrigerant liquid accumulates in the shell 2 without directly contacting the condenser coil 3. In such a state, in the portion near the liquid surface of the liquid accumulated in the shell 2, in addition to the boiling phenomenon of the refrigerant liquid on the coil surface in that portion, the bubbles of the refrigerant vapor boiling at the lower portion rise. Since the heat transfer surface is strongly disturbed by the bubbles, an active boiling phenomenon occurs and an extremely high heat transfer coefficient is obtained. However, below that,
Since the rise of the boiling air bubbles gradually decreases and the turbulence and the fluidity in the liquid decrease, the heat transfer coefficient is greatly reduced as compared with the upper part even if the boiling phenomenon occurs on the coil surface. On the liquid level, the condensing coil 3 is covered with vaporized refrigerant liquid,
Because of the heat exchange between gas and solid, its heat transfer coefficient is very low. As a result, the capacitor having this structure has a problem that the heat exchange performance is poor as a whole.

【0004】一方、二重管式コンデンサは、熱交換性能
が良く価格は安いものの、サイズが大きいことと熱収支
の状態変化により液返りが生じるという欠点を有する。
更に、積層式コンデンサは、サイズが極めて小さいとい
う長所があるが、液返りがあり、又非常に高価であるこ
とが最大の欠点である。
[0004] On the other hand, the double-tube condenser has good heat exchange performance and is inexpensive, but has the disadvantage that it is large in size and liquid return occurs due to a change in the state of heat balance.
Further, the multilayer capacitor has the advantage of being extremely small in size, but the biggest drawback is that it has liquid return and is very expensive.

【0005】[0005]

【考案が解決しようとする課題】本考案は従来技術に於
ける上記問題を解決し、小型で、液返りが無く、価格が
適当で熱交換性能の改善された多段冷凍システム用コン
デンサを提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a compact, multi-stage refrigeration system condenser with no liquid return, suitable price and improved heat exchange performance. That is the task.

【0006】[0006]

【課題を解決するための手段】本考案は上記課題を解決
するために、冷媒液が導入される外筒内に冷媒蒸気が流
されるコイルを上下方向に配設した多段冷凍システム用
コンデンサにおいて、上部が閉鎖され下部が開口し前記
コイル内側に沿って配設された内筒と、上部が開口し前
記内筒内に配設され前記外筒外に導かれる内管と、を有
することを特徴とする。
According to the present invention, there is provided a condenser for a multi-stage refrigeration system in which a coil through which refrigerant vapor is flown in an outer cylinder into which a refrigerant liquid is introduced is vertically arranged. An upper end is closed, a lower end is opened, and an inner tube is arranged along the inside of the coil; and an upper end is opened, is arranged in the inner tube, and is guided to the outside of the outer tube. And

【0007】[0007]

【作用】本考案によれば、上部から冷媒液が導入される
外筒内に冷媒蒸気が流されるコイルを上下方向に配設
し、上部が閉鎖され下部が開口した内筒をコイル内側に
沿って配設しているので、コイルは外筒の内面と内筒の
外面との間隙部に立設されていることになる。このた
め、外筒の上部から導入された冷媒液は、間隙部におい
て上下方向に立設されたコイルの各段を自重により順次
カスケード状に流れ落ちる。即ち、上部が閉鎖された内
筒があるため、コイル部では、その各列において必然的
にカスケード流れが得られ、冷媒液は常に流動状態でコ
イルに接触する。その結果、コイルの上部のみならず下
部においても、十分な流動と乱れのある沸騰現象が得ら
れ、全体的に熱伝達率の良い熱交換が行われ、熱交換性
能が向上する。そして、冷媒液は下方に流れ落ちつつ順
次蒸発する。
According to the present invention, a coil through which refrigerant vapor flows is vertically arranged in an outer cylinder into which a refrigerant liquid is introduced from an upper part, and an inner cylinder having an upper part closed and a lower part opened is formed along the inner side of the coil. Since the coils are arranged in such a manner, the coils are erected in the gap between the inner surface of the outer cylinder and the outer surface of the inner cylinder. For this reason, the refrigerant liquid introduced from the upper part of the outer cylinder flows down the respective stages of the coils vertically set up in the gap in a cascade manner by its own weight. That is, since there is an inner cylinder whose upper part is closed, a cascade flow is inevitably obtained in each row in the coil section, and the refrigerant liquid always contacts the coil in a flowing state. As a result, a boiling phenomenon with sufficient flow and turbulence is obtained not only in the upper part but also in the lower part of the coil, and heat exchange with a good heat transfer rate is performed as a whole, and the heat exchange performance is improved. Then, the refrigerant liquid evaporates sequentially while flowing down.

【0008】一方、コイル内に配設された内筒の下部が
開口していると共に、内筒内に上部が開口し外筒外に導
かれる内管が設けられているので、蒸発した冷媒蒸気
は、内筒下部の開口から内筒内に入って上昇し、更に上
部開口から内管に入り外筒の外に送り出される。この場
合、蒸発した蒸気が内筒内を上方に上昇して内管に入る
ため、液返りが極めて良好に防止される。そして、この
ようなコンデンサはシェルアンドコイル型であるから、
サイズは小さく価格も比較的安価である。
On the other hand, the lower part of the inner cylinder provided in the coil is open, and the inner pipe is provided with the upper part open in the inner cylinder and guided to the outside of the outer cylinder. Enters the inner cylinder through the opening at the lower part of the inner cylinder, rises, and further enters the inner pipe through the upper opening and is sent out of the outer cylinder. In this case, the evaporated vapor rises upward in the inner cylinder and enters the inner pipe, so that liquid return is prevented very well. And since such a capacitor is a shell and coil type,
The size is small and the price is relatively low.

【0009】なお、外筒の内径、コイルの直径、内筒の
外径等は、実際の設計において、冷媒液の流量、交換熱
量等により、冷媒液がコイル上をカスケード状に流れて
ほぼ蒸発するように定められる。
In the actual design, the inner diameter of the outer cylinder, the diameter of the coil, the outer diameter of the inner cylinder, and the like are substantially determined by the flow of the refrigerant liquid, the amount of heat exchanged, and the like. It is determined to be.

【0010】[0010]

【実施例】図1は、実施例の多段冷凍システム用コンデ
ンサとして、二元冷凍サイクルに用いる二重構造シェル
アンドコイル型カスケードコンデンサの構造例を示す。
二元冷凍サイクルでは、二次低温サイクル側で外部から
熱を吸収して気化した後圧縮された高温の飽和冷媒蒸気
が、一次高温サイクル側で液化・減圧された低温の飽和
冷媒液により液化される。このような冷凍サイクルに用
いられる本コンデンサは、上部の入口管1から低温の飽
和冷媒液が導入される外筒としての外側シェル2と、そ
の中に設けられ高温の飽和冷媒蒸気が流され上下方向に
配設されたコイルとしての凝縮コイル3と、上部4aが
閉鎖され下部4bが開口し凝縮コイル3内側に沿って配
設された内筒としての内側シェル4と、上部5aが開口
し内側シェル4内に配設され外側シェル2の外に導かれ
る冷媒出口管5とを備えている。
FIG. 1 shows a structural example of a double-shell-and-coil cascade condenser used in a binary refrigeration cycle as a condenser for a multistage refrigeration system according to an embodiment.
In the binary refrigeration cycle, the high-temperature saturated refrigerant vapor compressed after absorbing heat from the outside and vaporizing on the secondary low-temperature cycle side is liquefied by the low-temperature saturated refrigerant liquid liquefied and decompressed on the primary high-temperature cycle side. You. The condenser used in such a refrigeration cycle includes an outer shell 2 as an outer cylinder into which a low-temperature saturated refrigerant liquid is introduced from an upper inlet pipe 1, and a high-temperature saturated refrigerant vapor provided in the outer shell 2. A condensing coil 3 as a coil disposed in the direction, an upper shell 4a as an inner cylinder disposed along the inside of the condensing coil 3 with the upper part 4a closed and a lower part 4b opened, and an inner shell with an upper part 5a opened A refrigerant outlet pipe 5 disposed in the shell 4 and led to the outside of the outer shell 2.

【0011】外側シェル2及び内側シェル4の直径は、
それらの間に凝縮コイル3を配設したときに、冷媒液及
びその蒸発した蒸気の流れの抵抗が大きくなり過ぎるこ
となく、冷媒液が自重でカスケード状に各コイル間を流
れ落ち、且つ蒸発した冷媒蒸気が下方に搬送されるよう
に、冷媒液の流量、交換熱量、コイル巻き数等を考慮し
て定められる。なお、必要によっては、コイル上部の空
間部の間隙を狭くしたり、上方から下方に向かって内外
シェル間の間隙が広くなるような構造にしてもよい。
The diameter of the outer shell 2 and the inner shell 4 is
When the condensing coil 3 is disposed between them, the refrigerant liquid flows down between the coils in a cascaded manner by its own weight without the resistance of the flow of the refrigerant liquid and the evaporated vapor being excessively increased, and the evaporated refrigerant The flow rate is determined in consideration of the flow rate of the refrigerant liquid, the amount of heat exchanged, the number of coil turns, and the like so that the vapor is conveyed downward. If necessary, the structure may be such that the gap in the space above the coil is narrowed or the gap between the inner and outer shells is increased from above to below.

【0012】このような構造のシェルアンドコイル型カ
スケードコンデンサでは、次のような動作及び熱交換が
行われる。入口管1から導入された飽和冷媒液は、内側
シェル4の上部4a上に落下した後放射状に拡散し、外
側シェル2と内側シェル4との間から凝縮コイル3上に
流れ落ちる。そして、凝縮コイル3の各コイル部と内外
シェルとの間隙が図示の如く狭くなっているため、各コ
イル毎にこの部分で抵抗が生じ、冷媒液は各コイルの上
下部分に回り込みながら流下し、十分なカスケード状流
れが得られる。なお、このように内側シェル4を設ける
ことなく、上部邪魔板のみを設ける場合には、各コイル
に当たることなく流れ落ちる液流が多く発生し、十分な
カスケード流が得られない。
The following operation and heat exchange are performed in the shell-and-coil cascade capacitor having such a structure. The saturated refrigerant liquid introduced from the inlet pipe 1 falls on the upper part 4 a of the inner shell 4, diffuses radially, and flows down onto the condensing coil 3 from between the outer shell 2 and the inner shell 4. Since the gap between each coil portion of the condensing coil 3 and the inner and outer shells is narrow as shown in the drawing, resistance is generated in this portion for each coil, and the refrigerant liquid flows down and over the upper and lower portions of each coil, A sufficient cascade flow is obtained. When only the upper baffle is provided without providing the inner shell 4 as described above, a large amount of liquid flow that flows down without hitting each coil is generated, and a sufficient cascade flow cannot be obtained.

【0013】低温の冷媒液は、凝縮コイル3の外表面を
流れ落ちる間に内部を流れる高温の冷媒蒸気と熱交換し
て順次蒸発し、凝縮コイル3の下部では殆どが冷媒蒸気
となる。この冷媒蒸気は、コイル上部が流れ落ちる冷媒
液によりシールされているため、内側シェル4の下部開
口4bから内側シェル4内に流入し、この中を上昇し、
液分が十分分離され冷媒蒸気のみとなって内管5に入
り、コンデンサの外に送り出される。一方、高温の飽和
冷媒蒸気は、凝縮コイル3の上部3aから導入され、低
温の冷媒液により冷却されて液化し、冷媒液となって凝
縮コイル3の下部3bから送り出される。
The low-temperature refrigerant liquid exchanges heat with the high-temperature refrigerant vapor flowing inside while flowing down the outer surface of the condensing coil 3 and evaporates sequentially, and almost the lower part of the condensing coil 3 becomes refrigerant vapor. Since the refrigerant vapor is sealed by the refrigerant liquid flowing down the upper part of the coil, the refrigerant vapor flows into the inner shell 4 from the lower opening 4b of the inner shell 4, and rises therein.
The liquid component is sufficiently separated, becomes only refrigerant vapor, enters the inner tube 5, and is sent out of the condenser. On the other hand, the high-temperature saturated refrigerant vapor is introduced from the upper portion 3a of the condensing coil 3, cooled by the low-temperature refrigerant liquid, liquefied, and sent out from the lower portion 3b of the condensing coil 3 as a refrigerant liquid.

【0014】このような冷媒液の流れによれば、コイル
表面には常に流動状態にある冷媒液が接触することにな
るので、コイルの上部のみならず下部においても、十分
な流動と乱れのある沸騰現象が得られ、全体としての熱
伝達率が大幅に向上する。
According to such a flow of the refrigerant liquid, the refrigerant liquid in a flowing state always comes into contact with the coil surface, so that not only the upper part but also the lower part of the coil have sufficient flow and turbulence. A boiling phenomenon is obtained, and the overall heat transfer coefficient is greatly improved.

【0015】[0015]

【考案の効果】以上の如く本考案によれば、外筒内に内
筒を設けた二重構造を採用することにより、多段冷凍シ
ステムに用いるシェルアンドコイル型コンデンサの熱交
換性能を大幅に向上させることができる。
[Effects of the Invention] As described above, according to the present invention, the heat exchange performance of the shell-and-coil type condenser used in the multistage refrigeration system is greatly improved by adopting the double structure in which the inner cylinder is provided inside the outer cylinder. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の多段冷凍システム用コンデンサの全体
構造を示す断面及び内部正面図である。
FIG. 1 is a cross-sectional view and an internal front view showing an entire structure of a condenser for a multistage refrigeration system according to an embodiment.

【図2】従来の多段冷凍システム用コンデンサの全体構
造を示す断面及び内部正面図である。
FIG. 2 is a sectional view and an internal front view showing the entire structure of a conventional condenser for a multistage refrigeration system.

【符号の説明】[Explanation of symbols]

2 外側シェル(外筒) 3 凝縮コイル(コイル) 4 内側シェル(内筒) 5 内管 2 outer shell (outer cylinder) 3 condensation coil (coil) 4 inner shell (inner cylinder) 5 inner tube

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 冷媒液が導入される外筒内に冷媒蒸気が
流されるコイルを上下方向に配設した多段冷凍システム
用コンデンサにおいて、 上部が閉鎖され下部が開口し前記コイル内側に沿って配
設された内筒と、上部が開口し前記内筒内に配設され前
記外筒外に導かれる内管と、を有することを特徴とする
多段冷凍システム用コンデンサ。
1. A condenser for a multistage refrigeration system in which a coil through which refrigerant vapor is flown is vertically arranged in an outer cylinder into which a refrigerant liquid is introduced, wherein the upper part is closed, the lower part is open, and the condenser is arranged along the inside of the coil. A condenser for a multistage refrigeration system, comprising: an inner tube provided; and an inner tube which is open in the upper portion, is disposed in the inner tube, and is guided outside the outer tube.
JP3109293U 1993-05-17 1993-05-17 Condenser for multistage refrigeration system Expired - Lifetime JP2550541Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109293U JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109293U JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Publications (2)

Publication Number Publication Date
JPH0684270U JPH0684270U (en) 1994-12-02
JP2550541Y2 true JP2550541Y2 (en) 1997-10-15

Family

ID=12321764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109293U Expired - Lifetime JP2550541Y2 (en) 1993-05-17 1993-05-17 Condenser for multistage refrigeration system

Country Status (1)

Country Link
JP (1) JP2550541Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007480B1 (en) * 2003-08-29 2011-01-12 한라공조주식회사 Heat Exchanging Accumulator
JP4818770B2 (en) * 2006-03-28 2011-11-16 財団法人電力中央研究所 Concentration separation apparatus and method
KR102294972B1 (en) 2017-02-28 2021-08-26 가부시키가이샤 도모에 쇼카이 heat exchanger
CN113847827B (en) * 2021-10-22 2023-12-19 广东美的暖通设备有限公司 Tank heat exchanger and heat pump system

Also Published As

Publication number Publication date
JPH0684270U (en) 1994-12-02

Similar Documents

Publication Publication Date Title
KR20070087158A (en) Refrigerating system with economizing cycle
US6161613A (en) Low pressure drop heat exchanger
JP2550541Y2 (en) Condenser for multistage refrigeration system
JPH0387572A (en) Heat exchanger
JP3204404B2 (en) Liquid receiver integrated condenser
JPS59113181U (en) Purge device for refrigeration equipment
JPH04187957A (en) Freezing cycle device
JP2000213826A (en) Refrigerant condenser integral with liquid receiver
US4020646A (en) Diffusion-absorption type refrigerating machine
CN209197226U (en) Gas-liquid separator and heat exchange equipment
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
CN215638141U (en) Grid type evaporator
JPS63116054A (en) Circulation type heat transfer device
JPS6014146Y2 (en) horizontal capacitor
CN220507334U (en) Gas-liquid separation device for heat exchange system and heat exchange system
JPS5843743Y2 (en) Air conditioner accumulator
JPS6298170A (en) Oil separator
JPS5912514Y2 (en) refrigeration cycle
JPH05164433A (en) Freezing cycle accumulator
KR0161092B1 (en) Absorber
JPS632858Y2 (en)
KR100473981B1 (en) Condensor for airconditioner
JP3252529B2 (en) Heat transfer device
JP2001099525A (en) Liquid receiver and freezing cycle device
JP2001227844A (en) Condenser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term