JP3492590B2 - Absorption refrigerator / cooling / heating machine - Google Patents

Absorption refrigerator / cooling / heating machine

Info

Publication number
JP3492590B2
JP3492590B2 JP2000116129A JP2000116129A JP3492590B2 JP 3492590 B2 JP3492590 B2 JP 3492590B2 JP 2000116129 A JP2000116129 A JP 2000116129A JP 2000116129 A JP2000116129 A JP 2000116129A JP 3492590 B2 JP3492590 B2 JP 3492590B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
low temperature
temperature regenerator
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000116129A
Other languages
Japanese (ja)
Other versions
JP2001304727A (en
Inventor
修藏 高畠
邦彦 中島
修 大石
富安 沖田
進 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2000116129A priority Critical patent/JP3492590B2/en
Publication of JP2001304727A publication Critical patent/JP2001304727A/en
Application granted granted Critical
Publication of JP3492590B2 publication Critical patent/JP3492590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、吸収冷凍機・冷温
水機の低温胴を構成する機器の構造や配置等を改良する
ことにより、性能の向上や構造の簡素化等を図ることが
できる吸収冷凍機・冷温水機に関するものである。 【0002】 【従来の技術】従来から、吸収剤として、例えば、臭化
リチウムを用い、冷媒として、例えば、水を用いる吸収
冷凍機・冷温水機が知られている。このような吸収冷凍
機・冷温水機、例えば、吸収冷温水機の構成としては、
一例として、図5に示すような構成が知られている。図
5に示す吸収冷温水機においては、低温再生器10、凝
縮器12、吸収器14、蒸発器16、高温再生器18、
低温熱交換器20、高温熱交換器22及びこれらの各機
器を接続する配管を備えており、吸収器14の稀液は、
低温ポンプ24により管路26、低温熱交換器20、管
路28を経て、低温再生器10に送られる。低温再生器
10の稀液は、高温再生器18の気液分離器30から管
路32を経て流入してきた高温の冷媒蒸気によって加熱
され、中間濃度まで濃縮される。 【0003】この中間濃度の液は二分される。二分され
た液の一方は、高温ポンプ34により管路36、38、
高温熱交換器22、管路40を経て高温再生器18に送
られる。高温再生器18の中間濃度液は、燃焼装置42
によって加熱され、熱回収器44を上昇して気液分離器
30に入り、冷媒蒸気と濃液とに分離される。気液分離
器30の濃液は、管路46、高温熱交換器22、管路4
8を経て、管路50からの中間濃度液(二分された中間
濃度の液の他方)と混合し、混合濃液となって低温熱交
換器20に導入された後、管路52を通って散布装置5
4により吸収器14の伝熱管上に散布される。一方、気
液分離器30で分離された冷媒蒸気は、管路32を経て
低温再生器10に入り、ここで液を加熱することで凝縮
・液化して凝縮器12に入る。低温再生器10において
稀液が中間濃度に濃縮されるときに発生した冷媒蒸気
は、凝縮器12に入って凝縮した後、蒸発器16に入
り、この凝縮した冷媒水が、冷媒ポンプ56により管路
58を経て、散布装置60により蒸発器16の伝熱管上
に散布される。なお、62は燃焼室、64は排気筒であ
る。 【0004】また、従来の吸収冷凍機・冷温水機の低温
胴は、一例として、図6に示すような構成である。すな
わち、低温胴の本体66内の底部に吸収器14が配置さ
れ、吸収器14の上側に蒸発器16が配置され、さらに
蒸発器16の上側に低温再生器10及び凝縮器12が配
置されている。吸収器14の伝熱管68には散布装置5
4から吸収液が散布される。また、吸収器14に集まっ
てくる非凝縮性ガスは抽気管70を通って排気される。
72は吸収液溜り、74は低温再生器液出口箱、76は
バッフルプレート、78は冷媒溜りである。また、蒸発
器16には冷媒フラッシュ管80が設けられており、冷
媒フラッシュ管80からの冷媒蒸気は上部の伝熱管82
へ、また、冷媒液は下部の冷媒溜り84へと送られる。
この冷媒液が散布装置60により蒸発器16の伝熱管8
2に散布され、蒸発した冷媒蒸気が蒸発器16の上部及
び蒸発器16側部のエリミネータ86から流出する。 【0005】 【発明が解決しようとする課題】従来の吸収冷凍機・冷
温水機の低温胴においては、図7に示すように、吸収器
14の伝熱管68の間に抽気管70を設置して、抽気管
70に設けた抽気口88から非凝縮性ガスを抽気してい
た。また、吸収器14には、伝熱管68の上側からのみ
冷媒蒸気が流入するという構成であった。なお、図7の
矢印は冷媒蒸気の流れを示している。しかし、管群内の
要所に抽気管を設置するという構成では、非凝縮性ガス
の滞留位置が必ずしも抽気管の抽気口位置と一致しない
ので、非凝縮性ガスを十分に排気できず吸収器の性能悪
化につながる場合があった。また、管群上部からのみ冷
媒蒸気が流入する構成では、管群入口部における冷媒蒸
気流速が高くなり、冷媒蒸気の圧力損失が大きく吸収器
性能の低下を招いていた。 【0006】また、従来の吸収冷凍機・冷温水機の低温
胴では、上述したように、蒸発器管群の側部の冷媒蒸気
出口部にエリミネータを配置している。これは、蒸発器
形状が縦長で、蒸発器で蒸発した冷媒蒸気を蒸発器の上
部のみより流出させると冷媒蒸気の流速が過大となっ
て、冷媒液のキャリーオーバーが起こったり、冷媒蒸気
の圧力損失が過大となるため、管群の側部からも冷媒蒸
気を流出させ、冷媒液のキャリーオーバー等を防止する
ためである。しかし、蒸発器の管群の側部にエリミネー
タを設置する構成では、蒸発器の構造が複雑であった。 【0007】また、従来の低温胴を構成する蒸発器、吸
収器、凝縮器、低温再生器の配置は、図6に示すよう
に、吸収器14の上側に蒸発器16を設け、蒸発器16
の上側に低温再生器10及び凝縮器12を並設するとい
う構成であり、凝縮器12を高温再生器側に配置してい
た。しかし、図8に示すように、凝縮器12を高温再生
器18側に配置する構成では、吸収器14から凝縮器1
2への冷却水連絡配管90、及び高温再生器18から低
温再生器10の冷媒蒸気ヘッダへの冷媒蒸気配管92が
複雑な配置となっていた。 【0008】また、従来の吸収冷凍機・冷温水機の低温
胴においては、図9に示すように、蒸発器の冷媒フラッ
シュ管80が、フラッシュ管94、上部バッフル96、
下部受け皿98で構成されている。この場合、凝縮器か
らの冷媒液がフラッシュ管94の孔100から上部バッ
フル96に噴出され、冷媒蒸気と冷媒液とが下部受け皿
98に流れて、冷媒蒸気は上部バッフル96の切欠10
2から上部管群へ流れ、冷媒液は下部受け皿98の孔1
04から下部冷媒溜りへ流れる。なお、図9の矢印は冷
媒の流れを示している。しかし、上記のような蒸発器冷
媒フラッシュ管の構造は複雑であった。 【0009】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、吸収冷凍機・冷温水機の低温胴を
構成する機器の構造や配置等を改良することにより、性
能の向上や構造の簡素化等を図ることができる吸収冷凍
機・冷温水機を提供することにある。 【0010】 【課題を解決するための手段】上記の目的を達成するた
めに、本発明の吸収冷凍機・冷温水機は、低温再生器、
凝縮器、吸収器、蒸発器、高温再生器、低温熱交換器、
高温熱交換器及びこれらの各機器を接続する配管を備え
た吸収冷凍機・冷温水機において、吸収器内に管群の一
部を囲うように上端が閉止するとともに下端が開口し、
側面に抽気口を備えた囲み部材を設けて抽気箱を形成さ
せ、抽気箱の上部に抽気管を接続して、抽気箱に非凝縮
性ガスを集めて抽気管から抽気するように構成されてい
る(図1、図2参照)。上記の吸収冷凍機・冷温水機に
おいて、抽気箱にガスが集まるように、吸収器内の管群
側部に冷媒蒸気通路を設けるとともに、この通路の側面
下部をバッフルで塞ぐようにすることが好ましい(図
1、図2参照)。 【0011】また、本発明の吸収冷凍機・冷温水機は、
低温再生器、凝縮器、吸収器、蒸発器、高温再生器、低
温熱交換器、高温熱交換器及びこれらの各機器を接続す
る配管を備えた吸収冷凍機・冷温水機において、蒸発器
の形状を横長として管群を配列するとともに、管群上部
の管ピッチを大きくとって、管群上部の冷媒蒸気通路を
拡大させ蒸発器上部のみから冷媒蒸気を流出させるよう
にしたことを特徴としている(図1参照)。 【0012】また、本発明の吸収冷凍機・冷温水機は、
低温再生器、凝縮器、吸収器、蒸発器、高温再生器、低
温熱交換器、高温熱交換器及びこれらの各機器を接続す
る配管を備えた吸収冷凍機・冷温水機において、低温胴
を構成する蒸発器、吸収器、凝縮器、低温再生器を、吸
収器の上側に蒸発器を設け、蒸発器の上側に低温再生器
を高温再生器側として凝縮器及び低温再生器を並設する
ように配置してなることを特徴としている(図1、図3
参照)。上記の吸収冷凍機・冷温水機において、低温再
生器の液出口箱を高温再生器と反対側の凝縮器側部に配
置し、低温胴内部に低温再生器と液出口箱とを接続する
連絡管を設けることが好ましい(図1参照)。 【0013】また、本発明の吸収冷凍機・冷温水機は、
低温再生器、凝縮器、吸収器、蒸発器、高温再生器、低
温熱交換器、高温熱交換器及びこれらの各機器を接続す
る配管を備えた吸収冷凍機・冷温水機において、蒸発器
の冷媒フラッシュ管をフラッシュ管と下部受け皿とで構
成し、フラッシュ管の下部受け皿側に冷媒を噴霧する孔
を設け、下部受け皿に冷媒液を冷媒溜りに導入するため
の孔を設けたことを特徴としている(図1、図4参
照)。なお、上述した本発明の構成を適宜組み合わせて
吸収冷凍機・冷温水機を構成することも勿論可能であ
る。 【0014】 【発明の実施の形態】以下、本発明の実施の形態を吸収
冷温水機の場合について説明するが、本発明は吸収冷温
水機の場合に限定されるものではなく、吸収冷凍機の場
合にも適用できるものである。図1は、本発明の実施の
形態による吸収冷温水機の低温胴を示している。図1に
示すように、低温胴の本体106内の底部に吸収器10
8が配置され、吸収器108の上側に蒸発器110が配
置され、さらに蒸発器110の上側に凝縮器112及び
低温再生器114が配置されている。図1では、低温再
生器114が高温再生器側に配置された構成となってい
る。また、低温再生器液出口箱116は凝縮器112側
に配置され、低温再生器114と液出口箱116とは連
絡管118で接続されている。120はバッフルプレー
ト、122は冷媒溜りである。 【0015】また、吸収器108には、管群の一部を囲
うように上端が閉止した囲み部材124が設けられ、非
凝縮性ガスの抽気箱126が形成されている。抽気箱1
26に集められた非凝縮性ガスは抽気管128を通って
排気される。130は抽気口である。また、吸収器10
8内の管群側部には冷媒蒸気通路132が設けられ、冷
媒蒸気通路132の側面下部がバッフル134で塞ぐよ
うに構成されている。136は吸収液の散布装置、13
8は吸収液溜りである。また、蒸発器110は、蒸発器
形状が横長となるように伝熱管140が配列され、上部
の伝熱管140の管ピッチが大きくなっている。管群上
部の冷媒蒸気通路を拡大させることで、蒸発器側部にエ
リミネータを設置する必要がなくなる。また、蒸発器1
10には冷媒フラッシュ管142(構造については後
述)が設けられており、冷媒フラッシュ管142からの
冷媒蒸気は上部の伝熱管140へ、また、冷媒液は下部
の冷媒溜り144へと送られる。この冷媒液が散布装置
146により蒸発器110の伝熱管140に散布され、
蒸発した冷媒蒸気が蒸発器110の上部から流出する。 【0016】図2は、図1に示す吸収器を拡大したもの
であり、本発明の実施の第1形態による吸収冷温水機の
低温胴における吸収器の構成を示している。図2に示す
ように、吸収器108内の伝熱管148の一部を囲うよ
うに上端が閉止した囲み部材124を設けて抽気箱12
6を形成させ、抽気箱126の上部に抽気管128を接
続して、抽気箱126に非凝縮性ガスを集めて抽気管1
28から抽気する。また、抽気箱126にガスが集まる
ように、吸収器108内の伝熱管148群の側部に冷媒
蒸気通路132を設けるとともに、冷媒蒸気通路132
の側面下部をバッフル134で塞ぐように構成する。な
お、図2の矢印は冷媒蒸気及びガスの流れを示してい
る。このように、管群の一部を囲って抽気箱とし、抽気
箱にガスを集めて抽気することにより、非凝縮性ガスが
確実に排気できるので、吸収器の性能が向上する。ま
た、管群側部にも冷媒蒸気通路を設けるとともに、この
通路の下部をバッフルにて塞ぐことにより、ガスが抽気
箱に集まりやすくなるだけでなく、管群上部及び側部か
ら冷媒蒸気が流入する構成となり、管群入口部における
冷媒蒸気流速が低くなって、冷媒蒸気の圧力損失が軽減
され吸収器の性能が向上する。 【0017】本発明の実施の第2形態は、エリミネータ
を省略できる蒸発器の構造である。前述の図1に示すよ
うに、蒸発器110の形状を横長として伝熱管140を
配列するとともに、上部の伝熱管140の縦及び横の管
ピッチを大きくとって、管群上部の冷媒蒸気通路を拡大
させ、蒸発器110の上部のみから冷媒蒸気を流出させ
るようにする。このように、管群上部の冷媒蒸気通路を
拡大させて冷媒蒸気の流速を抑え圧損を低減することに
より、管群の側部から冷媒蒸気を流出させる必要がなく
なり、冷媒液のキャリーオーバーを防止するためのエリ
ミネータを省略することができ、蒸発器の構造を簡素化
することができる。また、蒸発器形状が横長であるの
で、後述の図3からもわかるように、低温胴の高さが低
くなり、装置の設置高さを低くすることができる。 【0018】本発明の実施の第3形態は、低温胴を構成
する蒸発器、吸収器、凝縮器、低温再生器の配置であ
る。前述の図1に示すように、吸収器108の上側に蒸
発器110を設け、蒸発器110の上側に低温再生器1
14を高温再生器側として凝縮器112及び低温再生器
114を並設するように配置している。図3に示すよう
に、低温再生器114を高温再生器150側に配置する
構成とすることにより、吸収器108から凝縮器112
への冷却水連絡配管152、及び高温再生器150から
低温再生器114の冷媒蒸気ヘッダへの冷媒蒸気配管1
54が最短でシンプルとなる。また、この場合、前述の
図1に示すように、低温再生器液出口箱116を高温再
生器と反対側の凝縮器112側部に配置し、低温胴内部
に低温再生器114と液出口箱116とを接続する連絡
管118を設ける。上記のように、低温再生器を高温再
生器側に配置した場合、低温再生器液出口箱を低温再生
器の側部に設けると、低温胴と高温再生器の間に、液出
口箱に接続される配管のスペースが必要になるので、機
械幅寸法が大きくなる。そこで、この問題点を解決する
ため、低温再生器液出口箱を凝縮器側部に配置し、低温
胴内部に低温再生器から液出口箱までの連絡管を設置し
ている。 【0019】図4は、図1に示す蒸発器の冷媒フラッシ
ュ管の詳細を示す拡大図であり、本発明の実施の第4形
態による吸収冷温水機の低温胴における蒸発器冷媒フラ
ッシュ管の構成を示している。図4に示すように、蒸発
器の冷媒フラッシュ管142をフラッシュ管156と下
部受け皿158とで構成し、フラッシュ管156の下部
受け皿158側に冷媒を噴霧する孔160を設け、下部
受け皿158に冷媒液を冷媒溜りに導入するための孔1
62を設けている。この場合、凝縮器からの冷媒液がフ
ラッシュ管156の孔160から下部受け皿158に噴
出され、冷媒蒸気は上部管群へ流れ、冷媒液は下部受け
皿158の孔162から下部冷媒溜りへ流れる。なお、
図4の矢印は冷媒の流れを示している。このように、蒸
発器冷媒フラッシュ管をフラッシュ管と下部受け皿とで
構成することができ、構造が簡単なものとなる。なお、
上述した実施の第1形態〜第4形態の構成を適宜組み合
わせて吸収冷凍機・冷温水機を構成することが可能であ
る。 【0020】 【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 吸収器内の管群の一部を囲って抽気箱とし、
らに、抽気箱に抽気口を設け、この抽気箱にガスを集め
て抽気することにより、非凝縮性ガスが確実に排気でき
るので、吸収器の性能が向上する。また、管群側部にも
冷媒蒸気通路を設けるとともに、この通路の下部をバッ
フルにて塞ぐ場合は、ガスが抽気箱に集まりやすくなる
だけでなく、管群上部及び側部から冷媒蒸気が流入する
構成となり、管群入口部における冷媒蒸気流速が低くな
って、冷媒蒸気の圧力損失が軽減され吸収器の性能が向
上する。 (2) 蒸発器の形状を横長として管群を配列するとと
もに、管群上部の管ピッチを大きくとって、管群上部の
冷媒蒸気通路を広くすることにより、蒸発器の上部のみ
から冷媒蒸気を流出させる構成とすることができ、管群
側部にエリミネータを設置する必要がなくなる。これに
より、蒸発器の構造が簡素化される。 (3) 吸収冷凍機・冷温水機の低温胴において、低温
再生器を高温再生器側に配置する構成とすることによ
り、吸収器から凝縮器への冷却水連絡配管、及び高温再
生器から低温再生器の冷媒蒸気ヘッダへの冷媒蒸気配管
が最短でシンプルとなる。この場合、低温再生器液出口
箱を凝縮器側に配置し、低温胴内部に低温再生器から液
出口箱までの連絡管を設置しているので、低温胴と高温
再生器の間に、液出口箱に接続される配管のスペースを
設ける必要がなくなり、機械幅寸法が大きくなることは
ない。 (4) 蒸発器冷媒フラッシュ管を、下部に冷媒を噴霧
する孔を設けたフラッシュ管と下部受け皿とで構成する
ことができ、構造が簡単なものとなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention improves the performance by improving the structure and arrangement of equipment constituting the low temperature drum of an absorption chiller / cooling / heating machine. The present invention relates to an absorption chiller / cooling / heating machine capable of simplifying the structure. 2. Description of the Related Art Conventionally, absorption refrigerators and cold / hot water machines using, for example, lithium bromide as an absorbent and, for example, water as a refrigerant are known. Such an absorption refrigerator / cooling / heating machine, for example, as an absorption cooling / heating machine,
As an example, a configuration as shown in FIG. 5 is known. In the absorption chiller / heater shown in FIG. 5, the low temperature regenerator 10, the condenser 12, the absorber 14, the evaporator 16, the high temperature regenerator 18,
The low-temperature heat exchanger 20, the high-temperature heat exchanger 22, and pipes that connect these devices are provided, and the diluted liquid in the absorber 14 is
It is sent to the low temperature regenerator 10 through the pipe line 26, the low temperature heat exchanger 20, and the pipe line 28 by the low temperature pump 24. The rare liquid of the low temperature regenerator 10 is heated by the high-temperature refrigerant vapor that has flowed from the gas-liquid separator 30 of the high temperature regenerator 18 via the pipe line 32 and is concentrated to an intermediate concentration. This intermediate concentration liquid is divided in two. One of the bisected liquids is supplied by the high-temperature pump 34 to the pipelines 36, 38,
It is sent to the high temperature regenerator 18 through the high temperature heat exchanger 22 and the pipe line 40. The intermediate concentration liquid in the high-temperature regenerator 18 is removed from the combustion device 42.
Then, the heat recovery unit 44 rises and enters the gas-liquid separator 30 to be separated into refrigerant vapor and concentrated liquid. The concentrated liquid in the gas-liquid separator 30 is supplied from the pipe 46, the high temperature heat exchanger 22, and the pipe 4.
8, mixed with the intermediate concentration liquid from the pipe 50 (the other of the half-divided intermediate concentration liquid), mixed into a concentrated liquid, introduced into the low-temperature heat exchanger 20, and then passed through the pipe 52. Spraying device 5
4 is spread on the heat transfer tube of the absorber 14. On the other hand, the refrigerant vapor separated by the gas-liquid separator 30 enters the low-temperature regenerator 10 through the pipe line 32, where it condenses and liquefies by heating the liquid and enters the condenser 12. The refrigerant vapor generated when the dilute liquid is concentrated to an intermediate concentration in the low-temperature regenerator 10 enters the condenser 12 and condenses, and then enters the evaporator 16, and the condensed refrigerant water is piped by the refrigerant pump 56. It is sprayed on the heat transfer tube of the evaporator 16 by the spraying device 60 via the path 58. In addition, 62 is a combustion chamber and 64 is an exhaust pipe. [0004] In addition, a low temperature drum of a conventional absorption refrigerator / cooling / heating machine has a configuration as shown in FIG. 6 as an example. That is, the absorber 14 is disposed at the bottom of the main body 66 of the cryogenic cylinder, the evaporator 16 is disposed above the absorber 14, and the low-temperature regenerator 10 and the condenser 12 are disposed above the evaporator 16. Yes. The heat transfer tube 68 of the absorber 14 has a spraying device 5.
The absorbing liquid is sprayed from 4. Further, the non-condensable gas collected in the absorber 14 is exhausted through the extraction pipe 70.
Reference numeral 72 denotes an absorbing liquid reservoir, 74 denotes a low temperature regenerator liquid outlet box, 76 denotes a baffle plate, and 78 denotes a refrigerant reservoir. Further, the evaporator 16 is provided with a refrigerant flash pipe 80, and the refrigerant vapor from the refrigerant flash pipe 80 is in the upper heat transfer pipe 82.
Also, the refrigerant liquid is sent to the lower refrigerant reservoir 84.
This refrigerant liquid is spread by the spraying device 60 to the heat transfer tube 8 of the evaporator 16.
2, the evaporated refrigerant vapor is evaporated from the upper part of the evaporator 16 and the eliminator 86 on the side of the evaporator 16. As shown in FIG. 7, an extraction pipe 70 is installed between the heat transfer pipes 68 of the absorber 14 in the low temperature drum of the conventional absorption refrigerator / cooling / heating machine. Thus, the non-condensable gas is extracted from the extraction port 88 provided in the extraction pipe 70. Further, the refrigerant vapor flows into the absorber 14 only from the upper side of the heat transfer tube 68. Note that the arrows in FIG. 7 indicate the flow of the refrigerant vapor. However, in the configuration in which the extraction pipes are installed at the important points in the tube group, the non-condensable gas staying position does not necessarily coincide with the extraction port position of the extraction pipe. May lead to performance degradation. Further, in the configuration in which the refrigerant vapor flows only from the upper part of the tube group, the refrigerant vapor flow velocity at the inlet of the tube group becomes high, the pressure loss of the refrigerant vapor is large, and the absorber performance is reduced. [0006] Further, as described above, the eliminator is disposed at the refrigerant vapor outlet portion at the side of the evaporator tube group in the low temperature drum of the conventional absorption refrigerator / cooling / heating device. This is because the shape of the evaporator is vertically long, and if the refrigerant vapor evaporated by the evaporator flows out only from the upper part of the evaporator, the flow velocity of the refrigerant vapor becomes excessive, causing the refrigerant liquid to carry over or the refrigerant vapor pressure. This is because the loss becomes excessive, so that the refrigerant vapor flows out from the side of the tube group to prevent carryover of the refrigerant liquid. However, in the configuration in which the eliminator is installed on the side of the tube group of the evaporator, the structure of the evaporator is complicated. The arrangement of the evaporator, absorber, condenser, and low-temperature regenerator constituting the conventional low-temperature cylinder is such that an evaporator 16 is provided on the upper side of the absorber 14 as shown in FIG.
The low-temperature regenerator 10 and the condenser 12 are arranged side by side on the upper side, and the condenser 12 is arranged on the high-temperature regenerator side. However, as shown in FIG. 8, in the configuration in which the condenser 12 is disposed on the high temperature regenerator 18 side, the condenser 14 to the condenser 1.
The cooling water communication pipe 90 to 2 and the refrigerant vapor pipe 92 from the high temperature regenerator 18 to the refrigerant vapor header of the low temperature regenerator 10 have a complicated arrangement. Further, in the low temperature drum of a conventional absorption refrigerator / cooling / heating machine, as shown in FIG. 9, a refrigerant flash tube 80 of an evaporator includes a flash tube 94, an upper baffle 96,
It consists of a lower tray 98. In this case, the refrigerant liquid from the condenser is ejected from the hole 100 of the flash tube 94 to the upper baffle 96, the refrigerant vapor and the refrigerant liquid flow to the lower tray 98, and the refrigerant vapor is notched 10 in the upper baffle 96.
2 flows into the upper tube group, and the refrigerant liquid is in the hole 1 of the lower tray 98.
Flows from 04 to the lower refrigerant pool. In addition, the arrow of FIG. 9 has shown the flow of the refrigerant | coolant. However, the structure of the evaporator refrigerant flash tube as described above is complicated. The present invention has been made in view of the above points, and the object of the present invention is to improve the performance by improving the structure and arrangement of the devices constituting the low temperature drum of the absorption refrigerator and the hot and cold water machine. Another object of the present invention is to provide an absorption chiller / cooling / heating device that can simplify the structure and the like. In order to achieve the above object, the absorption refrigerator / cooling / heating machine of the present invention comprises a low-temperature regenerator,
Condenser, absorber, evaporator, high temperature regenerator, low temperature heat exchanger,
In an absorption refrigerator / cooling / heating machine equipped with a high-temperature heat exchanger and piping connecting these devices, the upper end is closed and the lower end is opened so as to surround a part of the tube group in the absorber,
An enclosure with an extraction port is provided on the side surface to form an extraction box, an extraction tube is connected to the upper part of the extraction box, and non-condensable gas is collected in the extraction box and extracted from the extraction tube (See FIGS. 1 and 2). In the above absorption refrigerator / cooling / heating machine, a refrigerant vapor passage is provided on the side of the tube group in the absorber so that gas is collected in the extraction box, and a lower portion of the side surface of the passage is closed with a baffle. Preferred (see FIGS. 1 and 2). Also, the absorption refrigerator / cooling / heating machine of the present invention comprises:
Low temperature regenerators, condensers, absorbers, evaporators, high temperature regenerators, low temperature heat exchangers, high temperature heat exchangers and absorption refrigerators and chiller / heaters equipped with pipes connecting these devices. The tube group is arranged in a horizontally long shape, and the pipe pitch at the upper part of the tube group is increased to expand the refrigerant vapor passage at the upper part of the tube group so that the refrigerant vapor flows out only from the upper part of the evaporator. (See FIG. 1). Further, the absorption refrigerator / cooling / heating machine of the present invention comprises:
Low-temperature regenerators, condensers, absorbers, evaporators, high-temperature regenerators, low-temperature heat exchangers, high-temperature heat exchangers, and absorption refrigerators and chiller / heaters equipped with pipes that connect these devices The evaporator, absorber, condenser, and low-temperature regenerator to be configured are provided. The evaporator is provided on the upper side of the absorber, and the condenser and low-temperature regenerator are provided side by side with the low-temperature regenerator on the upper side of the evaporator. (Figs. 1 and 3)
reference). In the above absorption refrigerator / cooling / heating machine, the liquid outlet box of the low temperature regenerator is placed on the side of the condenser opposite to the high temperature regenerator, and the low temperature regenerator and liquid outlet box are connected inside the low temperature barrel. A tube is preferably provided (see FIG. 1). Also, the absorption refrigerator / cooling / heating machine of the present invention comprises:
Low temperature regenerators, condensers, absorbers, evaporators, high temperature regenerators, low temperature heat exchangers, high temperature heat exchangers and absorption refrigerators and chiller / heaters equipped with pipes connecting these devices. The refrigerant flash tube is composed of a flash tube and a lower tray, and a hole for spraying the refrigerant is provided on the lower tray side of the flash tube, and a hole for introducing the refrigerant liquid into the refrigerant reservoir is provided in the lower tray. (See FIGS. 1 and 4). Of course, it is also possible to configure the absorption refrigerator / cooling / heating machine by appropriately combining the configurations of the present invention described above. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in the case of an absorption chiller / heater, but the present invention is not limited to the case of an absorption chiller / heater, and an absorption refrigerator. This can also be applied to the case. FIG. 1 shows a cryogenic cylinder of an absorption chiller / heater according to an embodiment of the present invention. As shown in FIG. 1, the absorber 10 is located at the bottom of the body 106 of the cryostat.
8, the evaporator 110 is disposed above the absorber 108, and the condenser 112 and the low temperature regenerator 114 are disposed above the evaporator 110. In FIG. 1, the low temperature regenerator 114 is arranged on the high temperature regenerator side. Further, the low temperature regenerator liquid outlet box 116 is disposed on the condenser 112 side, and the low temperature regenerator 114 and the liquid outlet box 116 are connected by a connecting pipe 118. 120 is a baffle plate and 122 is a refrigerant reservoir. The absorber 108 is provided with a surrounding member 124 whose upper end is closed so as to surround a part of the tube group, and a bleed box 126 for non-condensable gas is formed. Extraction box 1
The non-condensable gas collected in 26 is exhausted through the extraction pipe 128. 130 is a bleed port. Absorber 10
8 is provided with a refrigerant vapor passage 132 on the side of the tube group, and a lower portion of the side surface of the refrigerant vapor passage 132 is closed by a baffle 134. 136 is an absorbent spraying device, 13
8 is an absorption liquid reservoir. Further, in the evaporator 110, the heat transfer tubes 140 are arranged so that the shape of the evaporator is horizontally long, and the tube pitch of the upper heat transfer tubes 140 is increased. By enlarging the refrigerant vapor passage at the top of the tube group, there is no need to install an eliminator on the side of the evaporator. The evaporator 1
10 is provided with a refrigerant flash pipe 142 (the structure will be described later). The refrigerant vapor from the refrigerant flash pipe 142 is sent to the upper heat transfer pipe 140, and the refrigerant liquid is sent to the lower refrigerant reservoir 144. This refrigerant liquid is sprayed onto the heat transfer tube 140 of the evaporator 110 by the spraying device 146,
The evaporated refrigerant vapor flows out from the upper part of the evaporator 110. FIG. 2 is an enlarged view of the absorber shown in FIG. 1, and shows the configuration of the absorber in the low temperature drum of the absorption chiller / heater according to the first embodiment of the present invention. As shown in FIG. 2, a surrounding member 124 whose upper end is closed so as to surround a part of the heat transfer tube 148 in the absorber 108 is provided to provide the extraction box 12.
6 is formed, a bleed pipe 128 is connected to the upper part of the bleed box 126, and non-condensable gas is collected in the bleed box 126 to extract the bleed pipe 1.
Extract from 28. In addition, the refrigerant vapor passage 132 is provided at the side of the heat transfer tube 148 group in the absorber 108 so that the gas is collected in the extraction box 126, and the refrigerant vapor passage 132 is provided.
The lower part of the side surface is closed with a baffle 134. In addition, the arrow of FIG. 2 has shown the flow of the refrigerant | coolant vapor | steam and gas. In this way, by enclosing a part of the tube group as an extraction box, and collecting and extracting the gas in the extraction box, the non-condensable gas can be reliably exhausted, so the performance of the absorber is improved. In addition, a refrigerant vapor passage is provided on the side of the tube group, and the lower portion of the passage is closed with a baffle, so that not only gas is easily collected in the extraction box, but also refrigerant vapor flows from the upper and side of the tube group. Thus, the refrigerant vapor flow velocity at the inlet of the tube group is lowered, the pressure loss of the refrigerant vapor is reduced, and the performance of the absorber is improved. The second embodiment of the present invention is an evaporator structure in which the eliminator can be omitted. As shown in FIG. 1 described above, the heat transfer tubes 140 are arranged with the shape of the evaporator 110 being horizontally long, and the vertical and horizontal tube pitches of the upper heat transfer tubes 140 are increased so that the refrigerant vapor passage at the upper portion of the tube group is formed. The refrigerant vapor is made to flow out only from the upper part of the evaporator 110. In this way, the refrigerant vapor passage at the top of the tube group is expanded to suppress the flow velocity of the refrigerant vapor and reduce pressure loss, thereby eliminating the need for the refrigerant vapor to flow out from the side of the tube group and preventing carryover of the refrigerant liquid. Therefore, the eliminator can be omitted, and the structure of the evaporator can be simplified. Moreover, since the evaporator shape is horizontally long, as can be seen from FIG. 3 described later, the height of the low-temperature cylinder is lowered, and the installation height of the apparatus can be lowered. The third embodiment of the present invention is an arrangement of an evaporator, an absorber, a condenser, and a low temperature regenerator constituting a low temperature cylinder. As shown in FIG. 1 described above, the evaporator 110 is provided above the absorber 108, and the low temperature regenerator 1 is disposed above the evaporator 110.
The condenser 112 and the low-temperature regenerator 114 are arranged side by side with 14 being the high-temperature regenerator side. As shown in FIG. 3, by arranging the low temperature regenerator 114 on the high temperature regenerator 150 side, the absorber 108 to the condenser 112 are arranged.
To the coolant vapor pipe 1 from the high temperature regenerator 150 to the refrigerant vapor header of the low temperature regenerator 114
54 is the shortest and simple. In this case, as shown in FIG. 1, the low temperature regenerator liquid outlet box 116 is disposed on the side of the condenser 112 opposite to the high temperature regenerator, and the low temperature regenerator 114 and the liquid outlet box are disposed inside the low temperature cylinder. A connecting pipe 118 is provided for connecting to 116. As described above, when the low temperature regenerator is placed on the high temperature regenerator side, if the low temperature regenerator liquid outlet box is provided on the side of the low temperature regenerator, it is connected to the liquid outlet box between the low temperature cylinder and the high temperature regenerator. Since a space for piping is required, the machine width dimension is increased. Therefore, in order to solve this problem, a low temperature regenerator liquid outlet box is disposed on the side of the condenser, and a connecting pipe from the low temperature regenerator to the liquid outlet box is installed inside the low temperature cylinder. FIG. 4 is an enlarged view showing the details of the refrigerant flash tube of the evaporator shown in FIG. 1, and the configuration of the evaporator refrigerant flash tube in the low temperature drum of the absorption chiller / heater according to the fourth embodiment of the present invention. Is shown. As shown in FIG. 4, the refrigerant flash pipe 142 of the evaporator is composed of a flash pipe 156 and a lower tray 158, a hole 160 for spraying refrigerant is provided on the lower tray 158 side of the flash pipe 156, and the lower tray 158 has a refrigerant. Hole 1 for introducing liquid into the refrigerant reservoir
62 is provided. In this case, the refrigerant liquid from the condenser is ejected from the hole 160 of the flash tube 156 to the lower tray 158, the refrigerant vapor flows to the upper tube group, and the refrigerant liquid flows from the hole 162 of the lower tray 158 to the lower refrigerant pool. In addition,
The arrows in FIG. 4 indicate the flow of the refrigerant. Thus, the evaporator refrigerant flash tube can be constituted by the flash tube and the lower tray, and the structure becomes simple. In addition,
It is possible to configure the absorption refrigerator / cooling / heating machine by appropriately combining the configurations of the first to fourth embodiments described above. Since the present invention is constructed as described above, the following effects can be obtained. (1) surrounds the portion of the tube bundle of the absorber and extraction box, and
Furthermore, by providing a bleed port in the bleed box and collecting and evacuating the gas in the bleed box, the non-condensable gas can be reliably exhausted, so that the performance of the absorber is improved. In addition, when the refrigerant vapor passage is also provided on the side of the tube group and the lower portion of this passage is closed with a baffle, not only the gas is likely to collect in the extraction box, but also the refrigerant vapor flows from the upper and side portions of the tube group. Thus, the refrigerant vapor flow velocity at the inlet of the tube group is lowered, the pressure loss of the refrigerant vapor is reduced, and the performance of the absorber is improved. (2) By arranging the tube group with the shape of the evaporator horizontally long, and increasing the tube pitch at the upper part of the tube group to widen the refrigerant vapor passage at the upper part of the tube group, the refrigerant vapor can be drawn only from the upper part of the evaporator. It can be set as the structure made to flow out, and it becomes unnecessary to install an eliminator in the pipe group side part. Thereby, the structure of an evaporator is simplified. (3) The low temperature regenerator is placed on the high temperature regenerator side in the low temperature body of the absorption chiller / cooling / hot water machine, so that the cooling water communication pipe from the absorber to the condenser and the low temperature from the high temperature regenerator The refrigerant vapor piping to the refrigerant vapor header of the regenerator is shortest and simple. In this case, to place the low-temperature regenerator liquid outlet box to the condenser side, since the established connection pipe from the low-temperature regenerator to the liquid outlet box inside cold cylinder, between the cold cylinder and the high-temperature regenerator, liquid It is not necessary to provide a space for piping connected to the outlet box, and the machine width dimension is not increased. (4) Evaporating refrigerant on the bottom of the evaporator flash tube
It can be constituted by a flash tube provided with a hole to be formed and a lower tray, and the structure becomes simple.

【図面の簡単な説明】 【図1】本発明の実施の形態による吸収冷温水機の低温
胴を示す概略構成断面説明図である。 【図2】本発明の実施の第1形態による吸収冷温水機の
低温胴における吸収器を示す拡大構成断面説明図であ
る。 【図3】本発明の実施の第3形態等による吸収冷温水機
を示す概略構成外観図である。 【図4】本発明の実施の第4形態による吸収冷温水機の
低温胴における蒸発器冷媒フラッシュ管を示す拡大構成
断面図である。 【図5】従来の吸収冷温水機の一例を示す系統的概略構
成図である。 【図6】従来の吸収冷温水機の低温胴を示す概略構成断
面説明図である。 【図7】従来の吸収冷温水機の低温胴における吸収器を
示す拡大構成断面説明図である。 【図8】従来の吸収冷温水機を示す概略構成外観図であ
る。 【図9】従来の吸収冷温水機の低温胴における蒸発器冷
媒フラッシュ管を示す拡大構成断面図である。 【符号の説明】 10、114 低温再生器 12、112 凝縮器 14、108 吸収器 16、110 蒸発器 18、150 高温再生器 20 低温熱交換器 22 高温熱交換器 24 低温ポンプ 26、28、32、36、38、40、46、48、5
0、52、58 管路 30 気液分離器 34 高温ポンプ 42 燃焼装置 44 熱回収器 54、60、136、146 散布装置 56 冷媒ポンプ 62 燃焼室 64 排気筒 66、106 低温胴の本体 68、82、140、148 伝熱管 70、128 抽気管 72、138 吸収液溜り 74、116 低温再生器液出口箱 76、120 バッフルプレート 78、84、122、144 冷媒溜り 80、142 冷媒フラッシュ管 86 エリミネータ 88、130 抽気口 90、152 冷却水連絡配管 92、154 冷媒蒸気配管 94、156 フラッシュ管 96 上部バッフル 98、158 下部受け皿 100、104、160、162 孔 102 切欠 118 連絡管 124 囲み部材 126 抽気箱 132 冷媒蒸気通路 134 バッフル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional explanatory view showing a cryogenic cylinder of an absorption chiller / heater according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional explanatory view showing an absorber in a low temperature drum of the absorption chiller / heater according to the first embodiment of the present invention. FIG. 3 is a schematic external view of an absorption chiller / heater according to a third embodiment of the present invention. FIG. 4 is an enlarged cross-sectional view showing an evaporator refrigerant flash tube in a low temperature drum of an absorption chiller / heater according to a fourth embodiment of the present invention. FIG. 5 is a systematic schematic configuration diagram showing an example of a conventional absorption chiller / heater. FIG. 6 is an explanatory schematic cross-sectional view showing a low temperature drum of a conventional absorption chiller / heater. FIG. 7 is an enlarged cross-sectional explanatory view showing an absorber in a low-temperature body of a conventional absorption chiller / heater. FIG. 8 is a schematic external view of a conventional absorption chiller / heater. FIG. 9 is an enlarged cross-sectional view showing an evaporator refrigerant flash pipe in a low temperature drum of a conventional absorption chiller / heater. DESCRIPTION OF SYMBOLS 10, 114 Low temperature regenerator 12, 112 Condenser 14, 108 Absorber 16, 110 Evaporator 18, 150 High temperature regenerator 20 Low temperature heat exchanger 22 High temperature heat exchanger 24 Low temperature pump 26, 28, 32 , 36, 38, 40, 46, 48, 5
0, 52, 58 Pipe 30 Gas-liquid separator 34 High-temperature pump 42 Combustion device 44 Heat recovery device 54, 60, 136, 146 Dispersing device 56 Refrigerant pump 62 Combustion chamber 64 Exhaust cylinder 66, 106 Cryogenic body 68, 82 140, 148 Heat transfer tube 70, 128 Extraction tube 72, 138 Absorption liquid reservoir 74, 116 Low temperature regenerator liquid outlet box 76, 120 Baffle plates 78, 84, 122, 144 Refrigerant reservoir 80, 142 Refrigerant flush tube 86 Eliminator 88, 130 Extraction port 90, 152 Cooling water communication pipe 92, 154 Refrigerant vapor pipe 94, 156 Flash pipe 96 Upper baffle 98, 158 Lower tray 100, 104, 160, 162 Hole 102 Notch 118 Connection pipe 124 Enclosing member 126 Extraction box 132 Refrigerant Steam passage 134 baffle

フロントページの続き (72)発明者 沖田 富安 滋賀県草津市青地町1000番地 川重冷熱 工業株式会社 滋賀工場内 (72)発明者 篠原 進 滋賀県草津市青地町1000番地 川重冷熱 工業株式会社 滋賀工場内 (56)参考文献 特開 平5−215431(JP,A) 特開 平6−307735(JP,A) 特開 昭54−149055(JP,A) 特開 昭61−280363(JP,A) 特開 平8−271096(JP,A) 特開 平8−313109(JP,A) 実開 平2−147766(JP,U) 実開 平4−36570(JP,U) 実開 昭56−72155(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/04 F25B 15/00 303 F25B 37/00 F25B 39/02 Continuation of front page (72) Inventor Tomiyasu 1000 Aochi-cho, Kusatsu-shi, Shiga Pref. Kawashige Cold Industrial Co., Ltd. Shiga Factory (72) Inventor Susumu Shinohara 1000 Aochi-cho, Kusatsu-shi, Shiga Kawashige Cold Industrial Co., Ltd. Shiga (56) References JP-A-5-215431 (JP, A) JP-A-6-307735 (JP, A) JP-A-54-149055 (JP, A) JP-A 61-280363 (JP, A) JP-A-8-271096 (JP, A) JP-A-8-313109 (JP, A) Real open 2-147766 (JP, U) Real open 4-36570 (JP, U) Real open 56- 72155 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) F25B 43/04 F25B 15/00 303 F25B 37/00 F25B 39/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 低温再生器、凝縮器、吸収器、蒸発器、
高温再生器、低温熱交換器、高温熱交換器及びこれらの
各機器を接続する配管を備えた吸収冷凍機・冷温水機に
おいて、低温胴を構成する蒸発器、吸収器、凝縮器、低
温再生器を、吸収器の上側に蒸発器を設け、蒸発器の上
側に低温再生器を高温再生器側として凝縮器及び低温再
生器を並設するように配置し、抽気箱にガスが集まるよ
うに、吸収器内の管群側部に冷媒蒸気通路を設けるとと
もに、この通路の側面下部をバッフルで塞ぐようにし、
蒸発器の形状を横長として管群を配列するとともに、管
群上部の管ピッチを大きくとって、管群上部の冷媒蒸気
通路を拡大させ蒸発器上部のみから冷媒蒸気を流出させ
るようにし、蒸発器の冷媒フラッシュ管をフラッシュ管
と下部受け皿とで構成し、フラッシュ管の下部受け皿側
に冷媒を噴霧する孔を設け、下部受け皿に冷媒液を冷媒
溜りに導入するための孔を設けた吸収冷凍機・冷温水機
であって、吸収器内に管群の一部を囲うように上端が閉
するとともに下端が開口し、側面に抽気口を備えた囲
み部材を設けて抽気箱を形成させ、抽気箱の上部に抽気
管を接続して、抽気箱に非凝縮性ガスを集めて抽気管か
ら抽気するようにし、低温再生器の液出口箱を高温再生
器と反対側の凝縮器側部に配置し、低温胴内部に低温再
生器と液出口箱とを接続する連絡管を設けたことを特徴
とする吸収冷凍機・冷温水機。
(57) [Claims] [Claim 1] Low temperature regenerator, condenser, absorber, evaporator,
High-temperature regenerators, low-temperature heat exchangers, high-temperature heat exchangers, and absorption refrigerators and chiller / heaters equipped with pipes that connect these devices, evaporators, absorbers, condensers, and low-temperature regenerators that constitute the low-temperature body The evaporator is installed on the upper side of the absorber, and the condenser and the low temperature regenerator are arranged side by side with the low temperature regenerator on the upper side of the evaporator so that the gas is collected in the extraction box. In addition, a refrigerant vapor passage is provided on the side of the tube group in the absorber, and a lower portion of the side surface of the passage is closed with a baffle.
The tube group is arranged with the shape of the evaporator horizontally long, and the pipe pitch at the top of the tube group is increased to expand the refrigerant vapor passage at the top of the tube group so that the refrigerant vapor flows out only from the top of the evaporator. The refrigerant flash tube is composed of a flash tube and a lower tray, an absorption refrigerator having a hole for spraying refrigerant on the lower tray side of the flash tube and a hole for introducing the refrigerant liquid into the refrigerant reservoir in the lower tray・ Cooling / heating machine, the upper end is closed so as to enclose a part of the tube group in the absorber, the lower end is opened, and a surrounding member with an extraction port is provided on the side surface to form an extraction box, A bleed pipe is connected to the top of the box to collect non-condensable gas in the bleed box and bleed from the bleed pipe, and the liquid outlet box of the low temperature regenerator is placed on the side of the condenser opposite to the high temperature regenerator And a low temperature regenerator and a liquid outlet box inside the low temperature drum Absorption chiller-chiller, characterized in that a connection pipe to be connected.
JP2000116129A 2000-04-18 2000-04-18 Absorption refrigerator / cooling / heating machine Expired - Lifetime JP3492590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116129A JP3492590B2 (en) 2000-04-18 2000-04-18 Absorption refrigerator / cooling / heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116129A JP3492590B2 (en) 2000-04-18 2000-04-18 Absorption refrigerator / cooling / heating machine

Publications (2)

Publication Number Publication Date
JP2001304727A JP2001304727A (en) 2001-10-31
JP3492590B2 true JP3492590B2 (en) 2004-02-03

Family

ID=18627630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116129A Expired - Lifetime JP3492590B2 (en) 2000-04-18 2000-04-18 Absorption refrigerator / cooling / heating machine

Country Status (1)

Country Link
JP (1) JP3492590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104893B1 (en) * 2012-12-06 2020-04-27 엘지전자 주식회사 Evaporator and Turbo chiller comprising the same

Also Published As

Publication number Publication date
JP2001304727A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
US6820440B2 (en) Absorption-type air conditioner core structure
JP3492590B2 (en) Absorption refrigerator / cooling / heating machine
KR880009254A (en) Dual-effect air-cooled freezer
JP5570969B2 (en) Exhaust gas heat recovery device and absorption refrigerator
JP3215248B2 (en) Refrigerant freezing prevention device for absorption chiller / heater / refrigerator
JP4266697B2 (en) Absorption refrigerator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP2001349631A (en) Absorption type freezer machine
US3266267A (en) Absorption refrigeration
KR200172397Y1 (en) High temperature generator for an absorption refrigerator
JP3153004B2 (en) Absorption refrigerator / cooler / heater element and absorption refrigerator / cooler / heater
JP2899645B2 (en) Absorption refrigerator
JP3489934B2 (en) Evaporator in absorption refrigerator
JP3684897B2 (en) Absorption refrigerator vertical absorber
KR100188892B1 (en) Absorption air-conditioning apparatus
JPH04270826A (en) Heating apparatus
JP3017053B2 (en) Absorption refrigeration system with heat exchanger
JPH04268171A (en) Absorption type heat source device
KR20000013950A (en) Plate heat exchanger type absorber for absorbing type cooling/heating device
JPH0450504B2 (en)
JP2004053085A (en) Triple effect absorbing type freezing device
JPH0882456A (en) Absorption type freezer
JP2002195679A (en) Absorption refrigerator
JPS60263057A (en) Absorption type cold and hot water machine
JPS6115980B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3492590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term