JPH0682310A - Standard correction device of chromaticity monitor - Google Patents

Standard correction device of chromaticity monitor

Info

Publication number
JPH0682310A
JPH0682310A JP13137892A JP13137892A JPH0682310A JP H0682310 A JPH0682310 A JP H0682310A JP 13137892 A JP13137892 A JP 13137892A JP 13137892 A JP13137892 A JP 13137892A JP H0682310 A JPH0682310 A JP H0682310A
Authority
JP
Japan
Prior art keywords
chromaticity
measured
optical element
liquid
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13137892A
Other languages
Japanese (ja)
Other versions
JP2727146B2 (en
Inventor
Masami Sugiyama
正実 杉山
Mitsunobu Ota
充伸 太田
Nagahiro Shiyouji
長浩 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Minolta Co Ltd
Original Assignee
Kurimoto Ltd
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, Minolta Co Ltd filed Critical Kurimoto Ltd
Priority to JP4131378A priority Critical patent/JP2727146B2/en
Publication of JPH0682310A publication Critical patent/JPH0682310A/en
Application granted granted Critical
Publication of JP2727146B2 publication Critical patent/JP2727146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To use a solid optical element for correction of standard chromaticity and precisely perform the correction of the standard chromaticity at the time when the chromaticity of water in a water quality inspection item is measured. CONSTITUTION:An optical element 5 composed of a material having a spectral diffraction transmission characteristic approximated to a rate of spectral diffraction transmission of liquid to be measured such as glass and synthetic resin is provided so as to be freely retreatably inserted between a light casting part 2 and a light receiving part 3. At the time of correction, the optical element 5 is inserted between the light casting part 2 and the light receiving part 3, correction data are obtained, at the time of measurement, it is shifted to a retreating position, a space therebetween is filled with the liquid to be measured and chromaticity of the liquid to be measured is determined. A measurement result is corrected with previously obtained correction data and output as measurement values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水道水などの色度を
監視する色度モニタ−の基準色度を校正する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for calibrating reference chromaticity of a chromaticity monitor for monitoring chromaticity of tap water and the like.

【0002】[0002]

【従来の技術】水道水などの水質検査項目の1つとして
水の色度がある。これを常時監視するため、水道水の配
管の途中に色度モニタ−を設置することが提案されてい
る。
2. Description of the Related Art The chromaticity of water is one of the water quality inspection items for tap water. In order to constantly monitor this, it has been proposed to install a chromaticity monitor in the middle of the tap water pipe.

【0003】この種の色度モニタ−は、検出部は投光部
と受光部とからなり、両者の間に被測定液を満たし、受
光部で検出した被測定液を透過した光の三刺激値から色
度を求めるようになつている。
In this type of chromaticity monitor, the detection section is composed of a light projecting section and a light receiving section, and the liquid to be measured is filled between them, and the three stimuli of light transmitted through the liquid to be measured detected by the light receiving section. The chromaticity is calculated from the value.

【0004】[0004]

【発明が解決しようとする課題】ところで、色度モニタ
−は、色度の基準値が温度により変動する温度ドリフト
特性を持つため、色度を測定する都度、基準色度を校正
する必要がある。
By the way, since the chromaticity monitor has a temperature drift characteristic in which the reference value of chromaticity varies with temperature, it is necessary to calibrate the reference chromaticity every time the chromaticity is measured. .

【0005】基準の色度を持つ液体としては、蒸留水が
用いられており、また、これに代えて空気も用いられて
いる。蒸留水を用いる場合は、測定に際して、まず基準
色度の校正のため、検出部の投光部と受光部との間の液
体を抜きとつて蒸留水を満たして基準色度の校正を行
い、ついで、先に満たして蒸留水を抜きとつて被測定液
を満たしてその色度の測定に移ることになる。したがつ
て、オンラインで常時色度を監視するには、上記した繁
雑な操作を頻繁に繰り返さねばならないほか、蒸留水を
常時補給するなど保守管理に手数がかかる。
Distilled water is used as the liquid having a standard chromaticity, and air is also used in place of this. When using distilled water, when measuring, first calibrate the reference chromaticity, and then calibrate the reference chromaticity by draining the liquid between the light emitting section and the light receiving section of the detection section and filling it with distilled water. Next, it is first filled with distilled water and then filled with the liquid to be measured, and the measurement of the chromaticity is started. Therefore, in order to constantly monitor the chromaticity online, it is necessary to frequently repeat the complicated operation described above, and it is troublesome to maintain and manage such as constantly supplying distilled water.

【0006】蒸留水に代えて空気を用いて基準色度の校
正を行う場合は、検出部に満たされる被測定液の排除と
再充填操作のみで良いから、操作性は改善されるが、被
測定液と空気との屈折率の違いにより受光部の受光光量
の差が大きくなつて測定精度が低下するという問題があ
る。
When the reference chromaticity is calibrated by using air instead of distilled water, it is only necessary to remove and refill the liquid to be measured filled in the detecting portion, so that the operability is improved, but the operability is improved. There is a problem that the difference in the refractive index between the measurement liquid and the air causes a large difference in the amount of light received by the light receiving unit, which lowers the measurement accuracy.

【0007】この発明は上記課題を解決することを目的
とするものである。
The present invention is intended to solve the above problems.

【0008】[0008]

【課題を解決するための手段】この発明は上記課題を解
決するため、基準色度の校正時に、検出部の投光部と受
光部との間に蒸留水を満たすのに代えて、所定の分光透
過特性をもつ光学素子を配置するようにしたものであつ
て、被測定液を透過する光のスペクトル特性から被測定
液の色度を決定する色度モニタ−において、被測定液を
収容する容器壁面に配置された投光部と、該投光部から
投射される光を受光する位置で前記容器壁面に配置され
た受光部と、前記投光部と受光部との間に挿入されて投
光部から投射される光を受光部に導く所定の分光透過特
性をもつ光学素子と、色度校正時には前記光学素子を前
記投光部と受光部との間の挿入位置に設定し、被測定液
の色度測定時には前記光学素子を前記挿入位置外の退避
位置に設定する光学素子移動手段とを備えたことを特徴
とする。
In order to solve the above-mentioned problems, the present invention replaces filling the distilled water between the light-projecting section and the light-receiving section of the detecting section with a predetermined value when calibrating the reference chromaticity. An optical element having a spectral transmission characteristic is arranged, and the liquid to be measured is accommodated in a chromaticity monitor that determines the chromaticity of the liquid to be measured from the spectral characteristics of light transmitted through the liquid to be measured. A light projecting section arranged on the wall surface of the container, a light receiving section arranged on the wall surface of the container at a position for receiving light projected from the light projecting section, and inserted between the light projecting section and the light receiving section. An optical element having a predetermined spectral transmission characteristic that guides the light projected from the light projecting section to the light receiving section, and the optical element is set at the insertion position between the light projecting section and the light receiving section during chromaticity calibration. A light that sets the optical element to the retracted position outside the insertion position when measuring the chromaticity of the measurement liquid. Characterized by comprising an element moving unit.

【0009】そして、前記光学素子はガラス、あるいは
合成樹脂などの材料から構成することができ、被測定液
の分光透過率に近似した分光透過特性をもつ材料から構
成するとよい。
The optical element can be made of a material such as glass or synthetic resin, and is preferably made of a material having a spectral transmission characteristic close to that of the liquid to be measured.

【0010】[0010]

【作用】投光部と受光部との間に移動自在に配置された
光学素子は、校正時には投光部と受光部との間に挿入さ
れ、測定時には投光部と受光部との間以外の位置に退避
し、投光部と受光部との間に被測定液が満たされる。基
準色度の校正に固体の光学素子を使用するので、頻繁な
校正操作が容易となる。
The optical element movably arranged between the light projecting section and the light receiving section is inserted between the light projecting section and the light receiving section at the time of calibration, and other than between the light projecting section and the light receiving section at the time of measurement. The liquid to be measured is filled between the light projecting section and the light receiving section. Since the solid-state optical element is used for the calibration of the reference chromaticity, the frequent calibration operation becomes easy.

【0011】[0011]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0012】図1は、この発明を実施した色度モニタ−
の構成の概略を示す斜視図であつて、図において、10
0は検出部、200は光電変換部、300はデ−タ処理
部を示す。
FIG. 1 shows a chromaticity monitor embodying the present invention.
FIG. 10 is a perspective view showing the outline of the configuration of FIG.
Reference numeral 0 is a detection unit, 200 is a photoelectric conversion unit, and 300 is a data processing unit.

【0013】検出部100は、被測定液Sを収容する容
器1と、その側壁に設けた投光部2、受光部3、及び投
光部2と受光部3との間に挿入されるガラス、合成樹脂
などの透光性材料からなる所定の分光透過特性をもつ光
学素子5から構成される。
The detection unit 100 includes a container 1 containing the liquid S to be measured, a light projecting unit 2 and a light receiving unit 3 provided on the side wall of the container 1, and a glass inserted between the light projecting unit 2 and the light receiving unit 3. , An optical element 5 made of a transparent material such as a synthetic resin and having a predetermined spectral transmission characteristic.

【0014】光学素子5は、図示しない駆動機構で往復
動するプランジャ9、及びフレ−ム8を介して矢印aの
方向に移動可能とされており、基準色度の校正時には投
光部2と受光部3との間の挿入位置に設定され、被測定
液Sの色度測定時には、投光部2と受光部3との間の、
挿入位置外の退避位置に設定されるよう構成されてい
る。
The optical element 5 is movable in the direction of the arrow a through a plunger 9 and a frame 8 which reciprocate by a drive mechanism (not shown), and when the reference chromaticity is calibrated, the optical element 5 and It is set at the insertion position between the light receiving unit 3 and the chromaticity measurement of the liquid S to be measured, and between the light projecting unit 2 and the light receiving unit 3,
It is configured to be set to a retracted position outside the insertion position.

【0015】また、投光部2には後述する光電変換部2
00内に設けられた光源Lから投射された光が光フアイ
バ−6を介して導かれ、受光部3に向けて投射される。
受光部3で受光された光は光フアイバ−7を介して後述
する光電変換部200内に設けられた後述するフオトダ
イオ−ドに導かれる。さらに、容器1には図示しない被
測定液供給手段により、色度をモニタ−すべき被測定
液、ここでは水道水が常時供給されて満たされるよう構
成されている。
Further, the light projecting section 2 includes a photoelectric conversion section 2 which will be described later.
The light projected from the light source L provided in 00 is guided through the optical fiber 6 and projected toward the light receiving unit 3.
The light received by the light receiving section 3 is guided through the optical fiber 7 to a photo diode described later provided in the photoelectric conversion section 200 described later. Further, the container 1 is configured so that a liquid to be measured (not shown) for measuring the chromaticity, here tap water, is constantly supplied to and filled in the container 1 by a liquid to be measured supply (not shown).

【0016】図2は色度モニタ−の回路ブロツク図であ
り、光電変換部200とデ−タ処理部300から構成さ
れている。
FIG. 2 is a circuit block diagram of the chromaticity monitor, which comprises a photoelectric conversion unit 200 and a data processing unit 300.

【0017】光電変換部200は、被測定液Sの色度の
測定を行い、測定デ−タを出力する試料測定部と、光源
Lの測定を行い、参照デ−タを出力する光源測定部とか
らなる。これは、被測定液Sの測定値と光源Lの測定値
との比率を求めることによつて、光源Lのゆらぎ等に基
づく測定誤差を打ち消して常に安定した測定結果を得る
ためである。また、試料測定部及び光源測定部とは、そ
れぞれ3系列の回路を備えているが、これは測定した光
を3つの基本成分に分解して処理するためである。
The photoelectric conversion unit 200 measures the chromaticity of the liquid S to be measured and outputs a measurement data of a sample, and a light source measurement unit which measures a light source L and outputs reference data. Consists of. This is to obtain a stable measurement result by canceling the measurement error due to the fluctuation of the light source L and the like by obtaining the ratio of the measurement value of the measured liquid S and the measurement value of the light source L. The sample measuring unit and the light source measuring unit each have three series of circuits, because this is to decompose the measured light into three basic components for processing.

【0018】試料測定部はフオトダイオ−ドP1〜P
3、フオトダイオ−ドの前方に配置された検出光を基本
色成分に分解するフイルタF1〜F3、光電変換回路E
1〜E3、ゲ−トG1〜G3、サンプルホ−ルド回路H
1〜H3、ゲ−トG7〜G9から構成される。また、光
源測定部はフオトダイオ−ドP4〜P6、フオトダイオ
−ドの前方に配置された検出光を基本色成分に分解する
フイルタF4〜F6、光電変換回路E4〜E6、ゲ−ト
G4〜G6、サンプルホ−ルド回路H4〜H6、ゲ−ト
G10〜G12から構成される。
The sample measuring unit is a photo diode P1 to P.
3, filters F1 to F3 for separating the detection light arranged in front of the photo diode into basic color components, and a photoelectric conversion circuit E
1-E3, gates G1-G3, sample-hold circuit H
1 to H3 and gates G7 to G9. The light source measuring section includes photo diodes P4 to P6, filters F4 to F6 for separating the detection light arranged in front of the photo diodes into basic color components, photoelectric conversion circuits E4 to E6, and gates G4 to G6. It is composed of sample hold circuits H4 to H6 and gates G10 to G12.

【0019】デ−タ処理部300は中央処理装置(CP
U)22と、CPU22に接続された、制御プログラム
・色変換プログラム等を格納したROM23,演算処理
した色情報等を一時格納するRAM24、制御用クロツ
ク信号発生器25、CPU22と周辺装置との入出力を
制御するI/O制御部27、I/O制御部27に接続さ
れた測定結果を表示し、印字する表示部28、警告部2
9、キ−ボ−ド30、ゲ−トG1〜G6、校正/測定の
切換信号に応答して検出部100の光学素子5を投光部
2と受光部3との間の挿入位置及び退避位置に移動させ
る図示しない駆動機構を駆動する光学素子駆動回路3
1、及び光源Lの点灯制御を行う照明回路32からな
る。
The data processing unit 300 is a central processing unit (CP).
U) 22, a ROM 23 connected to the CPU 22 for storing a control program, a color conversion program, etc., a RAM 24 for temporarily storing color information, etc. for which arithmetic processing has been performed, a control clock signal generator 25, an input of the CPU 22 and peripheral devices. I / O control unit 27 for controlling output, display unit 28 for displaying and printing measurement results connected to I / O control unit 27, warning unit 2
9, the keyboard 30, the gates G1 to G6, the optical element 5 of the detector 100 in response to the calibration / measurement switching signal, and the retracted position between the light emitter 2 and the light receiver 3 and the withdrawal. An optical element drive circuit 3 for driving a drive mechanism (not shown) that moves to a position
1 and an illumination circuit 32 that controls the lighting of the light source L.

【0020】次に、その動作について図3から図6まで
のフロ−チヤ−トを参照しつつ説明する。
Next, the operation will be described with reference to the flow charts shown in FIGS.

【0021】まず、検出部100の容器1に被測定液を
充填し、電源の投入、プログラムのロ−ド、初期化な
ど、一連の処理を実行して装置を動作可能状態に設定し
た上で、色度基準の校正処理、被測定液の色度の測定処
理の順序で処理が実行される。
First, the container 1 of the detection unit 100 is filled with the liquid to be measured, and a series of processes such as power-on, program loading, and initialization are executed to set the apparatus to an operable state. The chromaticity reference calibration process and the chromaticity measurement process of the liquid to be measured are performed in this order.

【0022】まず、色度基準の校正処理について説明す
る。図3のフロ−チヤ−トは色度基準の校正処理を示す
もので、キ−ボ−ド30から校正の基準とする光学素子
5の色度の標準値である三刺激値X0 、Y0 、Z0 を入
力する(ステツプP1)。光学素子5を投光部2と受光
部3との間の挿入位置に設定し(ステツプP2)、光学
素子5を透過する光を検出して、その検出信号を後述す
る三刺激値演算ル−チンにより演算し、光学素子5の色
度を示す三刺激値Xm 、Ym 、Zm を求める(ステツプ
P3)。
First, the chromaticity-based calibration process will be described. The flow chart in FIG. 3 shows the calibration processing based on chromaticity, and the tristimulus values X0, Y0, which are the standard values of the chromaticity of the optical element 5 used as the reference for calibration from the keyboard 30, are shown. Input Z0 (step P1). The optical element 5 is set at the insertion position between the light projecting section 2 and the light receiving section 3 (step P2), the light transmitted through the optical element 5 is detected, and the detection signal is used as a tristimulus value calculation rule described later. The tristimulus values Xm, Ym, and Zm indicating the chromaticity of the optical element 5 are calculated by chin (step P3).

【0023】次に、以下の式により校正定数α0 、β0
、γ0 を算出し(ステツプP4)、 α0 =X0 /Xm β0 =Y0 /Ym γ0 =Z0 /Zm 算出して得た校正定数α0 、β0 、γ0 を、RAM24
に格納する(ステツプP5)。
Next, the calibration constants α0 and β0 are calculated by the following equation.
, Γ0 is calculated (step P4), and α0 = X0 / Xm β0 = Y0 / Ym γ0 = Z0 / Zm The calibration constants α0, β0, γ0 obtained by the calculation are stored in the RAM 24.
(Step P5).

【0024】次に、被測定液の色度の測定処理について
説明する。図4のフロ−チヤ−トは被測定液の色度の測
定処理を示すもので、投光部2と受光部3との間の挿入
位置にある光学素子5を退避位置に移動設定して投光部
2と受光部3との間に被測定液Sを満たし(ステツプP
11)、被測定液Sを透過する光を検出して、その検出
信号を後述する三刺激値演算ル−チンにより演算し、被
測定液Sの色度を示す三刺激値Xs 、Ys 、Zs を求め
る(ステツプP12)。
Next, the process of measuring the chromaticity of the liquid to be measured will be described. The flow chart of FIG. 4 shows the measurement process of the chromaticity of the liquid to be measured, and the optical element 5 at the insertion position between the light projecting section 2 and the light receiving section 3 is moved to the retracted position and set. The liquid S to be measured is filled between the light emitter 2 and the light receiver 3 (step P
11), the light transmitted through the liquid to be measured S is detected, and the detection signal is calculated by a tristimulus value calculation routine described later, and the tristimulus values Xs, Ys, and Zs indicating the chromaticity of the liquid S to be measured are detected. Is calculated (step P12).

【0025】RAM24に格納されている校正定数α0
、β0 、γ0 を読みだし(ステツプP13)、測定し
た被測定液Sの色度を示す三刺激値Xs 、Ys 、Zs に
校正定数α0 、β0 、γ0 を乗算して補正する(ステツ
プP14)。補正された被測定液Sの色度を示す三刺激
値X、Y、Zを公知の手段で指定された表色系へ色空間
変換し(ステツプP15)、これを表示部28へ表示
し、プリントして(ステツプP16)、処理を終了す
る。
Calibration constant α0 stored in RAM 24
, Β0, γ0 are read (step P13), and the tristimulus values Xs, Ys, Zs indicating the measured chromaticity of the measured liquid S are multiplied by the calibration constants α0, β0, γ0 for correction (step P14). The color space conversion of the tristimulus values X, Y, and Z indicating the corrected chromaticity of the measured liquid S into the designated color system by known means (step P15) is displayed on the display unit 28, After printing (step P16), the process ends.

【0026】次に、図3に示すフロ−チヤ−トのステツ
プP3,及び図4に示すフロ−チヤ−トのステツプP1
2として示した三刺激値演算ル−チンを図5、図6に示
すフロ−チヤ−トにより説明する。
Next, the flow chart step P3 shown in FIG. 3 and the flow chart step P1 shown in FIG.
The tristimulus value calculation routine shown as 2 will be described with reference to the flow charts shown in FIGS.

【0027】まず、サンプルホ−ルド回路H1〜H6を
リセツトするリセツト信号をONとし、所定の時間経過
を待つてリセツト信号をOFFとする(ステツプP21
〜ステツプP23)。これによりサンプルホ−ルド回路
H1〜H6がリセツト状態となる。ゲ−トG1〜G6を
ONとし、照明回路32をONとして光源Lを点灯する
(ステツプP24)。校正時には光学素子5を透過した
光、測定時には被測定液Sを透過した光はフイルタF1
〜F3を透過して基本色成分に分解され、フオトダイオ
−ドP1〜P3で検出され、光電変換回路E1〜E3で
増幅され、ゲ−トG1〜G3を経てサンプルホ−ルド回
路H1〜H3にホ−ルドされる。また、光源Lのゆらぎ
補正信号を得るため、光源Lから投射された光は直接フ
イルタF4〜F6を透過して基本色成分に分解され、フ
オトダイオ−ドP4〜P6で検出され、光電変換回路E
4〜E6で増幅され、ゲ−トG4〜G6を経てサンプル
ホ−ルド回路H4〜H6にホ−ルドされる。
First, the reset signal for resetting the sample hold circuits H1 to H6 is turned on, and the reset signal is turned off after waiting a predetermined time (step P21).
~ Step P23). As a result, the sample hold circuits H1 to H6 are in the reset state. The gates G1 to G6 are turned on and the illumination circuit 32 is turned on to turn on the light source L (step P24). The light transmitted through the optical element 5 during calibration and the light transmitted through the measured liquid S during measurement are filtered by the filter F1.
Through F3 to be separated into basic color components, detected by photo diodes P1 to P3, amplified by photoelectric conversion circuits E1 to E3, and passed through gates G1 to G3 to sample hold circuits H1 to H3. Holded. Further, in order to obtain the fluctuation correction signal of the light source L, the light projected from the light source L directly passes through the filters F4 to F6 and is decomposed into the basic color components, which are detected by the photo diodes P4 to P6 and are detected by the photoelectric conversion circuit E.
It is amplified by 4 to E6 and is held in the sample hold circuits H4 to H6 through the gates G4 to G6.

【0028】上記の処理の完了に要する所定の時間経過
を待って(ステツプP25)、ゲ−トG1〜G6をOF
Fとし、照明回路32をOFFとする(ステツプP2
6)。ゲ−ト番号を指定する係数iを7にセツトし(ス
テツプP27)、CPU内に設けたカウンタをリセツト
する(ステツプP28)。ゲ−トGi(最初はゲ−トG
7)をONとし、サンプルホ−ルド回路Hiにホ−ルド
されたデ−タをA/D変換器21へ出力する(ステツプ
P29)。
After waiting a predetermined time required to complete the above processing (step P25), the gates G1 to G6 are turned off.
F, and the illumination circuit 32 is turned off (step P2
6). The coefficient i designating the gate number is set to 7 (step P27), and the counter provided in the CPU is reset (step P28). Gate Gi (First is Gate G
7) is turned on, and the data held in the sample hold circuit Hi is output to the A / D converter 21 (step P29).

【0029】A/D変換器21の出力が“H”か否かを
判定し、“H”でない場合は、カウンタの内容を1増加
させる(ステツプP30、P31)。A/D変換器21
の出力が“H”の場合はA/D変換器21の出力デ−タ
CiをCPUのレジスタに格納する(ステツプP3
2)。ゲ−トGiをOFFとし(ステツプP33)、係
数iが12を越えたか否か、即ち、ゲ−トG7〜G12
を順次開いてサンプルホ−ルド回路H1〜H6にホ−ル
ドされたデ−タの全てについて処理が終了したか否かを
判定し、i≦12の場合はステツプP29に戻り、i>
12の場合は次の処理に進む(ステツプP34)。
Whether or not the output of the A / D converter 21 is "H" is determined. If it is not "H", the content of the counter is incremented by 1 (steps P30 and P31). A / D converter 21
When the output of is "H", the output data Ci of the A / D converter 21 is stored in the register of the CPU (step P3).
2). The gate Gi is turned off (step P33) and whether the coefficient i exceeds 12 or not, that is, the gates G7 to G12
Are sequentially opened to determine whether or not the processing has been completed for all the data held in the sample hold circuits H1 to H6. If i≤12, the process returns to step P29, where i>
In the case of 12, the process proceeds to the next process (step P34).

【0030】サンプルホ−ルド回路H1〜H6のリセツ
ト、証明回路32のON/OFF、ゲ−トG1〜G6,
ゲ−トG7〜G12のON/OFF、及びA/D変換器
21の作動タイミングを図7に示す。
Reset of the sample hold circuits H1 to H6, ON / OFF of the proof circuit 32, and gates G1 to G6.
FIG. 7 shows ON / OFF of the gates G7 to G12 and the operation timing of the A / D converter 21.

【0031】ステツプP35〜P48の処理は、光源L
を点灯しない状態で、校正時には光学素子5を透過した
光、測定時には被測定液Sを透過した光を測定し、出力
デ−タをCPUのレジスタに格納する処理で、処理の内
容は先に説明したステツプP21〜P34の処理と同じ
であるから、詳細な説明は省略する。尚、ここでは出力
デ−タA/D変換器21の出力デ−タはDiとして識別
されている。
The processing of steps P35 to P48 is performed by the light source L
With the light not lit, the light transmitted through the optical element 5 during calibration and the light transmitted through the measured liquid S during measurement are measured, and the output data is stored in the register of the CPU. Since the processing is the same as the processing in steps P21 to P34 described above, detailed description will be omitted. Incidentally, here, the output data of the output data A / D converter 21 is identified as Di.

【0032】以上の処理で、CPUのレジスタには光源
Lを点灯した状態で測定したデ−タC1〜C6と、光源
Lを点灯しない状態で測定したデ−タD1〜D6とが格
納されたことになる。
Through the above processing, data C1 to C6 measured with the light source L turned on and data D1 to D6 measured without the light source L turned on are stored in the register of the CPU. It will be.

【0033】ステツプP49では、以下の演算式により
演算を行つて中間値A(1)〜A(6)を求める。
At step P49, the intermediate values A (1) to A (6) are calculated by performing the following arithmetic expressions.

【0034】 A(1)=C(1)−D(1)・・・・・(1) A(2)=C(2)−D(2)・・・・・(2) ・・・・・・・・・・・・・ ・・・・・・・・・・・・・ A(6)=C(6)−D(6)・・・・・(6) 次に、ステツプP50で光源Lのゆらぎを補正する以下
の演算を実行し、光学素子5の三刺激値Xm 、Ym 、Z
m 、あるいは被測定液Sの三刺激値Xs 、Ys、Zs を
求めて処理を終了する。
A (1) = C (1) −D (1) (1) A (2) = C (2) −D (2) (2)・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ A (6) = C (6) -D (6) ・ ・ ・ ・ ・ (6) Next, step P50 Then, the following calculation for correcting the fluctuation of the light source L is executed, and the tristimulus values Xm, Ym, Z of the optical element 5 are
m, or the tristimulus values Xs, Ys, and Zs of the measured liquid S are obtained, and the process ends.

【0035】 Xm (Xs )=A(1)/A(4)・・・(7) Ym (Ys )=A(2)/A(5)・・・(8) Zm (Zs )=A(3)/A(6)・・・(9) 図8はこの発明を実施した色度モニタ−の遠隔監視シス
テムの構成の概略を示す図であつて、図において100
は検出部、200は光電変換部、300はデ−タ処理
部、400は測定制御部、500は光学素子駆動操作
部、600はモデム内蔵電話、700は一般公衆回線
(電話回線)、800は制御監視盤を示す。
Xm (Xs) = A (1) / A (4) ... (7) Ym (Ys) = A (2) / A (5) ... (8) Zm (Zs) = A ( 3) / A (6) ... (9) FIG. 8 is a diagram showing the outline of the configuration of a remote monitoring system for a chromaticity monitor embodying the present invention, in which 100
Is a detection unit, 200 is a photoelectric conversion unit, 300 is a data processing unit, 400 is a measurement control unit, 500 is an optical element drive operation unit, 600 is a telephone with a built-in modem, 700 is a general public line (telephone line), and 800 is The control monitoring board is shown.

【0036】測定制御部400は一定時間間隔毎に光学
素子駆動操作部500及びデ−タ処理部300に測定開
始の指令を行う。デ−タ処理部300は決められた順序
に従つて、前述の如く被測定液の三刺激値等を測定し、
各種表色モ−ドに従つて演算し、結果を記憶する。表色
モ−ドは、前もつて得られた標準液による分析法の色度
の度数との対比演算式により測定制御部400で色度相
関数に換算される。
The measurement control section 400 issues an instruction to start measurement to the optical element drive operation section 500 and the data processing section 300 at regular time intervals. The data processing unit 300 measures the tristimulus values and the like of the liquid to be measured according to the determined order as described above,
The calculation is performed according to various color modes and the result is stored. The colorimetric mode is converted into a chromaticity correlation number by the measurement control unit 400 by an arithmetic expression for comparison with the chromaticity frequency of the analytical method using the previously obtained standard solution.

【0037】換算された色度相関数はデ−タ処理された
上、モデム内蔵電話600から一般公衆回線700等を
経て制御監視盤800に伝送され、正色度に換算されて
収録及び表示される。
The converted chromaticity correlation number is data-processed, and then transmitted from the telephone 600 with a built-in modem to the control and monitoring board 800 via the general public line 700 and the like, and is converted into the normal chromaticity and recorded and displayed. .

【0038】図9は図8に示した検出部100の構成を
示すものである。容器1の一端には被測定液を導入する
管101が接続され、被測定液導入口102と容器1と
の間にはストツプ弁103、減圧弁104、逆止弁10
5が設けられている。一方、容器1の他端には管106
が接続され、測定済の被測定液は管106を経て排出口
109から排出される。容器1と排出口109との間に
は電磁弁107、ストツプ弁108が設けられている。
FIG. 9 shows the structure of the detecting section 100 shown in FIG. A pipe 101 for introducing the liquid to be measured is connected to one end of the container 1, and a stop valve 103, a pressure reducing valve 104, a check valve 10 are provided between the liquid to be measured introducing port 102 and the container 1.
5 are provided. On the other hand, a pipe 106 is provided at the other end of the container 1.
The measured liquid to be measured is discharged from the discharge port 109 through the pipe 106. An electromagnetic valve 107 and a stop valve 108 are provided between the container 1 and the discharge port 109.

【0039】容器1の内部には、光学素子5が挿入され
ており、プランジヤ9を介して容器1の外部の駆動装置
150に連結されている。容器1の外部に出ているプラ
ンジヤ9にはドツグ153が設けられており、プランジ
ヤ9の軸方向に設置された挿入位置スイツチ151、退
避位置スイツチ152を機械的に蹴ることにより、端子
盤501に電気的な信号を送る。容器1の上部にはフロ
−トスイツチ154が設けられており、容器1が被測定
液で十分に満たされたか否かを検出する。
An optical element 5 is inserted inside the container 1, and is connected to a driving device 150 outside the container 1 via a plunger 9. A dog 153 is provided on the plunger 9 protruding outside the container 1, and the insertion position switch 151 and the retreat position switch 152, which are installed in the axial direction of the plunger 9, are mechanically kicked to the terminal board 501. Send an electrical signal. A float switch 154 is provided on the upper part of the container 1 to detect whether or not the container 1 is sufficiently filled with the liquid to be measured.

【0040】次に、その動作を図10、図11のフロ−
チヤ−ト、図12のタイミングチヤ−トにより説明す
る。
Next, the operation will be described with reference to the flow charts of FIGS.
The chart will be described with reference to the timing chart of FIG.

【0041】まず、初期条件の設定動作を図10のフロ
−チヤ−トで説明する。フロ−トスイツチ154をON
(ステツプP101)、電磁弁107を閉(ステツプP
102)、挿入位置スイツチ151をOFF(ステツプ
P103)、退避位置スイツチ152をON(ステツプ
P104)、カウンタ−502を0(零)に設定する
(ステツプP105)。
First, the initial condition setting operation will be described with reference to the flowchart of FIG. Turn on the float switch 154
(Step P101), the solenoid valve 107 is closed (step P101).
102), the insertion position switch 151 is turned off (step P103), the retracted position switch 152 is turned on (step P104), and the counter 502 is set to 0 (zero) (step P105).

【0042】次に、測定動作を図11のフロ−チヤ−ト
で説明する。電磁弁107を開き、被測定液を容器1に
導入して、一定時間流すことにより容器1内の被測定液
を入れ換える(ステツプP111、P112)。次に電
磁弁107を閉じ(ステツプP113)、光学素子5を
挿入位置と退避位置との間を往復動させ(回数をカウン
タ−502で計数)、被測定液の攪拌を行う(ステツプ
P114〜P119)。4回往復動の後、光学素子5を
挿入位置に止め、光学素子5による校正値の測定を行う
(ステツプP120〜P121)。光学素子5を退避位
置に戻し、被測定液の測定を行う(ステツプP122〜
P124)。測定値はデ−タ処理部300に送られ、処
理される。以上の処理が終了すると、電磁弁107は
閉、挿入位置スイツチ151はOFF、退避位置スイツ
チ152はON、カウンタ−502は0となり、1回の
測定が終了する。
Next, the measuring operation will be described with reference to the flow chart of FIG. The electromagnetic valve 107 is opened, the solution to be measured is introduced into the container 1, and the solution to be measured in the container 1 is exchanged by flowing it for a certain period of time (steps P111 and P112). Next, the electromagnetic valve 107 is closed (step P113), the optical element 5 is reciprocated between the insertion position and the retracted position (the number of times is counted by the counter 502), and the liquid to be measured is stirred (steps P114 to P119). ). After reciprocating four times, the optical element 5 is stopped at the insertion position, and the calibration value is measured by the optical element 5 (steps P120 to P121). The optical element 5 is returned to the retracted position and the liquid to be measured is measured (steps P122 to P122).
P124). The measured value is sent to the data processing unit 300 and processed. When the above process is completed, the solenoid valve 107 is closed, the insertion position switch 151 is turned off, the retracted position switch 152 is turned on, the counter 502 is 0, and one measurement is completed.

【0043】[0043]

【発明の効果】以上説明した通り、この発明によれば光
学素子を投光部と受光部との間の挿入位置、及びこれか
ら離れた退避位置に移動自在に配置したので、校正時に
は光学素子を投光部と受光部との間の挿入位置に設定し
て両者間にある被測定液を排除し、色度の校正基準とす
る所定の分光透過特性をもつ光学素子による校正を行な
う。被測定液の色度の測定時には、光学素子を退避位置
に移動設定すると、投光部と受光部との間に被測定液が
満たされるので、直ちに測定を行なうことができる。従
来の装置のように、校正の都度、蒸留水のような校正基
準液と被測定液との交換を行なう必要がないから、頻繁
な校正作業も極めて容易に実施でき、蒸留水のような校
正基準液を常時補給する必要も無く、保守管理も容易と
なる。
As described above, according to the present invention, the optical element is movably arranged at the insertion position between the light projecting portion and the light receiving portion and the retracted position away from the light receiving portion. It is set at the insertion position between the light projecting section and the light receiving section to eliminate the liquid to be measured between them, and the calibration is performed by an optical element having a predetermined spectral transmission characteristic as a chromaticity calibration standard. When measuring the chromaticity of the liquid to be measured, if the optical element is set to the retracted position, the liquid to be measured is filled between the light projecting portion and the light receiving portion, so that the measurement can be performed immediately. Unlike conventional devices, it is not necessary to replace the calibration reference solution such as distilled water with the measured solution each time calibration is performed, so frequent calibration work can be performed very easily. There is no need to constantly replenish the reference solution, and maintenance management becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施した色度モニタ−の外観を示す
斜視図。
FIG. 1 is a perspective view showing an appearance of a chromaticity monitor embodying the present invention.

【図2】色度モニタ−の回路ブロツク図。FIG. 2 is a circuit block diagram of a chromaticity monitor.

【図3】校正処理のフロ−チヤ−ト。FIG. 3 is a flowchart of a calibration process.

【図4】測定処理のフロ−チヤ−ト。FIG. 4 is a flow chart of measurement processing.

【図5】演算処理のフロ−チヤ−ト(その1)。FIG. 5 is a flowchart (part 1) of arithmetic processing.

【図6】演算処理のフロ−チヤ−ト(その2)。FIG. 6 is a flowchart of the arithmetic processing (part 2).

【図7】制御動作のタイミングを示すタイミングチヤ−
ト。
FIG. 7 is a timing chart showing the timing of control operation.
To.

【図8】色度モニタ−の遠隔監視システムの構成の概略
を示す図。
FIG. 8 is a diagram showing a schematic configuration of a remote monitoring system for a chromaticity monitor.

【図9】検出部の構成の概略を示す図。FIG. 9 is a diagram showing a schematic configuration of a detection unit.

【図10】測定の際の初期条件の設定動作を説明するフ
ロ−チヤ−ト。
FIG. 10 is a flowchart for explaining the setting operation of initial conditions at the time of measurement.

【図11】測定動作を説明するフロ−チヤ−ト。FIG. 11 is a flowchart for explaining the measurement operation.

【図12】初期条件の設定、及び測定動作のタイミング
チヤ−ト。
FIG. 12 is a timing chart of initial condition setting and measurement operation.

【符号の説明】[Explanation of symbols]

1 容器 2 投光部 3 受光部 5 光学素子 6、7 光フアイバ− 9 プランジヤ L 光源 100 検出部 200 光電変換部 300 デ−タ処理部 DESCRIPTION OF SYMBOLS 1 Container 2 Light projecting part 3 Light receiving part 5 Optical element 6, 7 Optical fiber 9 Plunger L Light source 100 Detection part 200 Photoelectric conversion part 300 Data processing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 充伸 大阪市中央区安土町二丁目3番13号 大阪 国際ビルミノルタカメラ株式会社内 (72)発明者 庄司 長浩 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsunobu Ota 2-3-13 Azuchi-cho, Chuo-ku, Osaka, Osaka International Building Minolta Camera Co., Ltd. (72) Inventor Nagahiro Shoji 1-12 Kitahorie, Nishi-ku, Osaka No. 19 Stock Company Kurimoto Iron Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定液を透過する光のスペクトル特性
から被測定液の色度を決定する色度モニタ−において、
被測定液を収容する容器壁面に配置された投光部と、該
投光部から投射される光を受光する位置で前記容器壁面
に配置された受光部と、前記投光部と受光部との間に挿
入されて投光部から投射される光を受光部に導く所定の
分光透過特性をもつ光学素子と、色度校正時には前記光
学素子を前記投光部と受光部との間の挿入位置に設定
し、被測定液の色度測定時には前記光学素子を前記挿入
位置外の退避位置に設定する光学素子移動手段とを備え
たことを特徴とする色度モニタ−の基準校正装置。
1. A chromaticity monitor for determining the chromaticity of a liquid to be measured from spectral characteristics of light transmitted through the liquid to be measured,
A light projecting section arranged on the wall surface of the container for containing the liquid to be measured, a light receiving section arranged on the wall surface of the container at a position for receiving the light projected from the light projecting section, the light projecting section and the light receiving section. An optical element having a predetermined spectral transmission characteristic that guides the light projected from the light projecting section to the light receiving section, and the optical element is inserted between the light projecting section and the light receiving section during chromaticity calibration. A reference calibration device for a chromaticity monitor, comprising: an optical element moving means for setting the optical element to a retracted position outside the insertion position when measuring the chromaticity of the liquid to be measured.
【請求項2】 請求項1記載の色度モニタ−の基準校正
装置において、前記光学素子はガラス材料から構成され
たことを特徴とする色度モニタ−の基準校正装置。
2. The standard calibration device for a chromaticity monitor according to claim 1, wherein the optical element is made of a glass material.
【請求項3】 請求項1記載の色度モニタ−の基準校正
装置において、前記光学素子は合成樹脂材料から構成さ
れたことを特徴とする色度モニタ−の基準校正装置。
3. The standard calibration device for a chromaticity monitor according to claim 1, wherein the optical element is made of a synthetic resin material.
【請求項4】 請求項1記載の色度モニタ−の基準校正
装置において、前記光学素子は被測定液の分光透過率に
近似した分光透過特性をもつ材料から構成されたことを
特徴とする色度モニタ−の基準校正装置。
4. The standard calibration device for a chromaticity monitor according to claim 1, wherein the optical element is made of a material having a spectral transmission characteristic close to the spectral transmission rate of the liquid to be measured. Degree monitor-reference calibration device.
JP4131378A 1992-04-27 1992-04-27 Chromaticity monitor Expired - Fee Related JP2727146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131378A JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131378A JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Publications (2)

Publication Number Publication Date
JPH0682310A true JPH0682310A (en) 1994-03-22
JP2727146B2 JP2727146B2 (en) 1998-03-11

Family

ID=15056551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131378A Expired - Fee Related JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Country Status (1)

Country Link
JP (1) JP2727146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7073085B2 (en) 2002-07-02 2006-07-04 Kabushiki Kaisha Toshiba Semiconductor circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944631A (en) * 1982-09-07 1984-03-13 Idemitsu Kosan Co Ltd Measuring device for saybolt chronometer
JPH0227227A (en) * 1988-07-16 1990-01-30 Kurabo Ind Ltd Colorimetry of liquid and optical system used therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944631A (en) * 1982-09-07 1984-03-13 Idemitsu Kosan Co Ltd Measuring device for saybolt chronometer
JPH0227227A (en) * 1988-07-16 1990-01-30 Kurabo Ind Ltd Colorimetry of liquid and optical system used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7073085B2 (en) 2002-07-02 2006-07-04 Kabushiki Kaisha Toshiba Semiconductor circuit device

Also Published As

Publication number Publication date
JP2727146B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US5499794A (en) Process and device for detecting foreign substances in a textile test material using an alternating light and dark background
CN101399032B (en) Display apparatus with brightness and color temperature control system and brightness and colour temperature control method
CN1030980A (en) density correction method and device
US20020001078A1 (en) Optical measuring arrangement, in particular for quality control in continuous processes
WO2001063587A3 (en) A method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
WO2007147717A1 (en) Leak detector
GB2137766A (en) Camera control
GB1559810A (en) Device for measuring light received from an illuminated material
JPH0682310A (en) Standard correction device of chromaticity monitor
CA2320607A1 (en) Apparatus for automatic measurement of measuring fields
US4303337A (en) Apparatus for determining hemoglobin and white blood cell count in blood
JPH06109545A (en) Color tone inspecting method
CN1036030C (en) Apparatus for development of film
US20200158653A1 (en) System for Visual and Electronic Reading of Colorimetric Tubes
US4498140A (en) Automated self calibrating exposure computer
US4500793A (en) Apparatus for monitoring inside of treating column
JPS5761919A (en) Electronic balance
EP0092246A2 (en) Method and apparatus for determining concentration of gas
US20070234486A1 (en) Method and Device for Controlling a Dyeing Machine
CN2234613Y (en) Automatic checking instrument for hemomanometer
CA2314938C (en) Motion picture camera and cassette system
JPS62142241A (en) Color measuring instrument
EP1207385A4 (en) Optical ct device and method of image reformation
CN112945867B (en) Reflective gray-scale test card measuring system and method
CN1453558A (en) Aperture size mesurer and measuring method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091212

LAPS Cancellation because of no payment of annual fees