JP2727146B2 - Chromaticity monitor - Google Patents

Chromaticity monitor

Info

Publication number
JP2727146B2
JP2727146B2 JP4131378A JP13137892A JP2727146B2 JP 2727146 B2 JP2727146 B2 JP 2727146B2 JP 4131378 A JP4131378 A JP 4131378A JP 13137892 A JP13137892 A JP 13137892A JP 2727146 B2 JP2727146 B2 JP 2727146B2
Authority
JP
Japan
Prior art keywords
chromaticity
measured
liquid
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4131378A
Other languages
Japanese (ja)
Other versions
JPH0682310A (en
Inventor
正実 杉山
充伸 太田
長浩 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Kurimoto Iron Works Ltd
Original Assignee
Minolta Co Ltd
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd, Kurimoto Iron Works Ltd filed Critical Minolta Co Ltd
Priority to JP4131378A priority Critical patent/JP2727146B2/en
Publication of JPH0682310A publication Critical patent/JPH0682310A/en
Application granted granted Critical
Publication of JP2727146B2 publication Critical patent/JP2727146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 この発明は水道水などの色度を
監視する色度モニターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromaticity monitor for monitoring chromaticity of tap water or the like.

【0002】[0002]

【従来の技術】水道水などの水質検査項目の1つとして
水の色度がある。これを常時監視するため、水道水の配
管の途中に色度モニタ−を設置することが提案されてい
る。
2. Description of the Related Art One of water quality test items such as tap water is chromaticity of water. To constantly monitor this, it has been proposed to install a chromaticity monitor in the middle of the pipe of tap water.

【0003】この種の色度モニタ−は、検出部は投光部
と受光部とからなり、両者の間に被測定液を満たし、受
光部で検出した被測定液を透過した光の三刺激値から色
度を求めるようになつている。
In this type of chromaticity monitor, the detecting section is composed of a light projecting section and a light receiving section, and the space between the two is filled with the liquid to be measured and the tristimulus of light transmitted through the liquid to be measured detected by the light receiving section. The chromaticity is calculated from the value.

【0004】[0004]

【発明が解決しようとする課題】ところで、色度モニタ
−は、色度の基準値が温度により変動する温度ドリフト
特性を持つため、色度を測定する都度、基準色度を校正
する必要がある。
Since a chromaticity monitor has a temperature drift characteristic in which a chromaticity reference value varies with temperature, it is necessary to calibrate the reference chromaticity every time the chromaticity is measured. .

【0005】基準の色度を持つ液体としては、蒸留水が
用いられており、また、これに代えて空気も用いられて
いる。蒸留水を用いる場合は、測定に際して、まず基準
色度の校正のため、検出部の投光部と受光部との間の液
体を抜きとつて蒸留水を満たして基準色度の校正を行
い、ついで、先に満たして蒸留水を抜きとつて被測定液
を満たしてその色度の測定に移ることになる。したがつ
て、オンラインで常時色度を監視するには、上記した繁
雑な操作を頻繁に繰り返さねばならないほか、蒸留水を
常時補給するなど保守管理に手数がかかる。
[0005] Distilled water is used as the liquid having the standard chromaticity, and air is used instead. When using distilled water, at the time of measurement, first, for calibration of the reference chromaticity, perform calibration of the reference chromaticity by draining the liquid between the light emitting unit and the light receiving unit of the detection unit and filling with distilled water, Then, the liquid to be measured is filled first, distilled water is drained, and then the liquid to be measured is filled, and the chromaticity measurement is started. Therefore, in order to constantly monitor the chromaticity on-line, the complicated operation described above must be frequently repeated, and maintenance work such as constantly supplying distilled water is troublesome.

【0006】蒸留水に代えて空気を用いて基準色度の校
正を行う場合は、検出部に満たされる被測定液の排除と
再充填操作のみで良いから、操作性は改善されるが、被
測定液と空気との屈折率の違いにより受光部の受光光量
の差が大きくなつて測定精度が低下するという問題があ
る。
When the reference chromaticity is calibrated using air instead of distilled water, the operability is improved because only the operation of removing and refilling the liquid to be measured filled in the detection section is required. There is a problem in that the difference in the amount of light received by the light receiving unit becomes large due to the difference in the refractive index between the measurement liquid and air, and the measurement accuracy is reduced.

【0007】この発明は上記課題を解決することを目的
とするものである。
An object of the present invention is to solve the above problems.

【0008】[0008]

【課題を解決するための手段】 この発明は上記課題を
解決するもので、被測定液を透過する光のスペクトル特
性から被測定液の色度を決定する色度モニターにおい
て、被測定液を収容する容器と、前記容器の壁面に配置
された投光部と、該投光部から投射された光を受光する
位置で前記容器の壁面に配置された受光部と、前記容器
内に移動自在に配設された光学素子と、前記光学素子を
透過した光に基づいて校正データを算出する一方、前記
被測定液を透過した光に基づいて前記被測定液の色度デ
ータを算出し、該算出された色度データを前記校正デー
タにより補正して最終的な色度を決定する色度測定手段
と、前記校正データの算出時には前記光学素子を前記投
光部と受光部との間の挿入位置に移動させ、前記被測定
液の色度測定時には前記光学素子を前記挿入位置から退
避させる光学素子移動手段とを備えたことを特徴とす
る。
Means for Solving the Problems The present invention solves the above-mentioned problems, and accommodates a liquid to be measured in a chromaticity monitor that determines the chromaticity of the liquid to be measured from the spectral characteristics of light transmitted through the liquid to be measured. Container, a light projecting unit arranged on the wall surface of the container, a light receiving unit arranged on the wall surface of the container at a position for receiving light projected from the light projecting unit, and movably into the container. The arranged optical element and the calibration data are calculated based on the light transmitted through the optical element, and the chromaticity data of the measured liquid is calculated based on the light transmitted through the measured liquid. Chromaticity measuring means for correcting final chromaticity by correcting the corrected chromaticity data with the calibration data, and inserting the optical element between the light emitting unit and the light receiving unit when calculating the calibration data At the time of measuring the chromaticity of the liquid to be measured. Optical element moving means for retracting the optical element from the insertion position.

【0009】そして、前記光学素子はガラス、あるいは
合成樹脂などの材料から構成することができ、被測定液
の分光透過率に近似した分光透過特性をもつ材料から構
成するとよい。
The optical element can be made of a material such as glass or synthetic resin, and is preferably made of a material having a spectral transmission characteristic close to the spectral transmittance of the liquid to be measured.

【0010】[0010]

【作用】 色度測定手段は、光学素子を透過した光に基
づいて校正データを算出する一方、被測定液を透過した
光に基づいて被測定液の色度データを算出し、算出され
た色度データを校正データにより補正して最終的な色度
を決定する。容器内に移動自在に配設された光学素子
は、校正データの算出時には投光部と受光部との間の挿
入位置に移動し、被測定液の色度測定時には挿入位置か
ら退避し、投光部と受光部との間に被測定液が満たされ
る。
The chromaticity measuring means calculates calibration data based on the light transmitted through the optical element, and calculates chromaticity data of the measured liquid based on the light transmitted through the measured liquid, and calculates the calculated color. The chromaticity data is corrected by the calibration data to determine the final chromaticity. The optical element movably disposed in the container moves to the insertion position between the light emitting part and the light receiving part when calculating the calibration data, and retreats from the insertion position when measuring the chromaticity of the liquid to be measured, and projects the light. The liquid to be measured is filled between the light part and the light receiving part.

【0011】[0011]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0012】図1は、この発明を実施した色度モニタ−
の構成の概略を示す斜視図であつて、図において、10
0は検出部、200は光電変換部、300はデ−タ処理
部を示す。
FIG. 1 shows a chromaticity monitor embodying the present invention.
FIG. 2 is a perspective view schematically showing the configuration of FIG.
0 indicates a detection unit, 200 indicates a photoelectric conversion unit, and 300 indicates a data processing unit.

【0013】検出部100は、被測定液Sを収容する容
器1と、その側壁に設けた投光部2、受光部3、及び投
光部2と受光部3との間に挿入されるガラス、合成樹脂
などの透光性材料からなる所定の分光透過特性をもつ光
学素子5から構成される。
The detecting section 100 includes a container 1 containing the liquid S to be measured, a light projecting section 2 and a light receiving section 3 provided on a side wall thereof, and a glass inserted between the light projecting section 2 and the light receiving section 3. And an optical element 5 having a predetermined spectral transmission characteristic made of a light-transmitting material such as a synthetic resin.

【0014】光学素子5は、図示しない駆動機構で往復
動するプランジャ9、及びフレ−ム8を介して矢印aの
方向に移動可能とされており、基準色度の校正時には投
光部2と受光部3との間の挿入位置に設定され、被測定
液Sの色度測定時には、投光部2と受光部3との間の、
挿入位置外の退避位置に設定されるよう構成されてい
る。
The optical element 5 can be moved in the direction of arrow a via a plunger 9 and a frame 8 which reciprocate by a drive mechanism (not shown). It is set at the insertion position between the light receiving section 3 and the chromaticity measurement of the liquid S to be measured.
It is configured to be set at a retracted position outside the insertion position.

【0015】また、投光部2には後述する光電変換部2
00内に設けられた光源Lから投射された光が光フアイ
バ−6を介して導かれ、受光部3に向けて投射される。
受光部3で受光された光は光フアイバ−7を介して後述
する光電変換部200内に設けられた後述するフオトダ
イオ−ドに導かれる。さらに、容器1には図示しない被
測定液供給手段により、色度をモニタ−すべき被測定
液、ここでは水道水が常時供給されて満たされるよう構
成されている。
The light projecting unit 2 includes a photoelectric conversion unit 2 described later.
The light projected from the light source L provided in the light source 00 is guided through the optical fiber 6 and projected toward the light receiving unit 3.
The light received by the light receiving section 3 is guided via an optical fiber 7 to a later-described photo diode provided in a later-described photoelectric conversion section 200. Further, the container 1 is configured to be constantly filled with a liquid to be measured whose chromaticity is to be monitored, here tap water, by a liquid to be measured supply means (not shown).

【0016】図2は色度モニタ−の回路ブロツク図であ
り、光電変換部200とデ−タ処理部300から構成さ
れている。
FIG. 2 is a circuit block diagram of the chromaticity monitor, which comprises a photoelectric conversion unit 200 and a data processing unit 300.

【0017】光電変換部200は、被測定液Sの色度の
測定を行い、測定デ−タを出力する試料測定部と、光源
Lの測定を行い、参照デ−タを出力する光源測定部とか
らなる。これは、被測定液Sの測定値と光源Lの測定値
との比率を求めることによつて、光源Lのゆらぎ等に基
づく測定誤差を打ち消して常に安定した測定結果を得る
ためである。また、試料測定部及び光源測定部とは、そ
れぞれ3系列の回路を備えているが、これは測定した光
を3つの基本成分に分解して処理するためである。
The photoelectric conversion unit 200 measures the chromaticity of the liquid S to be measured and outputs measurement data. The photoelectric conversion unit 200 measures the light source L and outputs the reference data. Consists of This is because by obtaining the ratio between the measured value of the liquid S to be measured and the measured value of the light source L, the measurement error based on the fluctuation of the light source L or the like is canceled to always obtain a stable measurement result. Each of the sample measuring unit and the light source measuring unit includes three series of circuits for decomposing the measured light into three basic components for processing.

【0018】試料測定部はフオトダイオ−ドP1〜P
3、フオトダイオ−ドの前方に配置された検出光を基本
色成分に分解するフイルタF1〜F3、光電変換回路E
1〜E3、ゲ−トG1〜G3、サンプルホ−ルド回路H
1〜H3、ゲ−トG7〜G9から構成される。また、光
源測定部はフオトダイオ−ドP4〜P6、フオトダイオ
−ドの前方に配置された検出光を基本色成分に分解する
フイルタF4〜F6、光電変換回路E4〜E6、ゲ−ト
G4〜G6、サンプルホ−ルド回路H4〜H6、ゲ−ト
G10〜G12から構成される。
The sample measuring units are photodiodes P1 to P
3. Filters F1 to F3 for separating detection light arranged in front of the photodiode into basic color components, and a photoelectric conversion circuit E
1 to E3, gates G1 to G3, sample hold circuit H
1 to H3 and gates G7 to G9. Further, the light source measuring unit includes the photodiodes P4 to P6, filters F4 to F6 disposed in front of the photodiodes for decomposing the detection light into basic color components, photoelectric conversion circuits E4 to E6, gates G4 to G6, It is composed of sample hold circuits H4 to H6 and gates G10 to G12.

【0019】デ−タ処理部300は中央処理装置(CP
U)22と、CPU22に接続された、制御プログラム
・色変換プログラム等を格納したROM23,演算処理
した色情報等を一時格納するRAM24、制御用クロツ
ク信号発生器25、CPU22と周辺装置との入出力を
制御するI/O制御部27、I/O制御部27に接続さ
れた測定結果を表示し、印字する表示部28、警告部2
9、キ−ボ−ド30、ゲ−トG1〜G6、校正/測定の
切換信号に応答して検出部100の光学素子5を投光部
2と受光部3との間の挿入位置及び退避位置に移動させ
る図示しない駆動機構を駆動する光学素子駆動回路3
1、及び光源Lの点灯制御を行う照明回路32からな
る。
The data processing unit 300 includes a central processing unit (CP)
U) 22, a ROM 23 connected to the CPU 22 for storing a control program, a color conversion program, etc., a RAM 24 for temporarily storing arithmetically processed color information and the like, a control clock signal generator 25, an input to the CPU 22 and peripheral devices. I / O control unit 27 for controlling the output, display unit 28 for displaying and printing the measurement results connected to I / O control unit 27, warning unit 2
9, the keyboard 30, the gates G1 to G6, and the insertion position and retreat of the optical element 5 of the detecting unit 100 between the light projecting unit 2 and the light receiving unit 3 in response to the switching signal of calibration / measurement. Optical element drive circuit 3 for driving a drive mechanism (not shown) for moving the optical element to a position
1 and an illumination circuit 32 for controlling the lighting of the light source L.

【0020】次に、その動作について図3から図6まで
のフロ−チヤ−トを参照しつつ説明する。
Next, the operation will be described with reference to the flowcharts of FIGS.

【0021】まず、検出部100の容器1に被測定液を
充填し、電源の投入、プログラムのロ−ド、初期化な
ど、一連の処理を実行して装置を動作可能状態に設定し
た上で、色度基準の校正処理、被測定液の色度の測定処
理の順序で処理が実行される。
First, the container 1 of the detection unit 100 is filled with the liquid to be measured, and a series of processes such as turning on the power, loading a program, and initializing are executed to set the apparatus in an operable state. The processing is executed in the order of the chromaticity reference calibration processing and the chromaticity measurement processing of the liquid to be measured.

【0022】まず、色度基準の校正処理について説明す
る。図3のフロ−チヤ−トは色度基準の校正処理を示す
もので、キ−ボ−ド30から校正の基準とする光学素子
5の色度の標準値である三刺激値X0 、Y0 、Z0 を入
力する(ステツプP1)。光学素子5を投光部2と受光
部3との間の挿入位置に設定し(ステツプP2)、光学
素子5を透過する光を検出して、その検出信号を後述す
る三刺激値演算ル−チンにより演算し、光学素子5の色
度を示す三刺激値Xm 、Ym 、Zm を求める(ステツプ
P3)。
First, the chromaticity reference calibration process will be described. The flowchart of FIG. 3 shows the calibration process based on the chromaticity. The tristimulus values X0, Y0, which are the standard values of the chromaticity of the optical element 5 to be used as the reference for calibration from the keyboard 30. Z0 is input (step P1). The optical element 5 is set at the insertion position between the light projecting unit 2 and the light receiving unit 3 (step P2), the light transmitted through the optical element 5 is detected, and the detection signal is used as a tristimulus value calculation rule described later. The tristimulus values Xm, Ym and Zm indicating the chromaticity of the optical element 5 are calculated by the chin (step P3).

【0023】次に、以下の式により校正定数α0 、β0
、γ0 を算出し(ステツプP4)、 α0 =X0 /Xm β0 =Y0 /Ym γ0 =Z0 /Zm 算出して得た校正定数α0 、β0 、γ0 を、RAM24
に格納する(ステツプP5)。
Next, the calibration constants α0 and β0 are calculated by the following equations.
, Γ0 (step P4), and the calibration constants α0, β0, γ0 obtained by calculating α0 = X0 / Xmβ0 = Y0 / Ymγ0 = Z0 / Zm are stored in the RAM 24.
(Step P5).

【0024】次に、被測定液の色度の測定処理について
説明する。図4のフロ−チヤ−トは被測定液の色度の測
定処理を示すもので、投光部2と受光部3との間の挿入
位置にある光学素子5を退避位置に移動設定して投光部
2と受光部3との間に被測定液Sを満たし(ステツプP
11)、被測定液Sを透過する光を検出して、その検出
信号を後述する三刺激値演算ル−チンにより演算し、被
測定液Sの色度を示す三刺激値Xs 、Ys 、Zs を求め
る(ステツプP12)。
Next, the process of measuring the chromaticity of the liquid to be measured will be described. The flowchart of FIG. 4 shows a process for measuring the chromaticity of the liquid to be measured. The optical element 5 at the insertion position between the light projecting unit 2 and the light receiving unit 3 is moved to the retracted position and set. The liquid S to be measured is filled between the light projecting unit 2 and the light receiving unit 3 (step P).
11) The light transmitted through the liquid S to be measured is detected, and the detected signal is calculated by a tristimulus value calculation routine described later, and the tristimulus values Xs, Ys, and Zs indicating the chromaticity of the liquid S to be measured. (Step P12).

【0025】RAM24に格納されている校正定数α0
、β0 、γ0 を読みだし(ステツプP13)、測定し
た被測定液Sの色度を示す三刺激値Xs 、Ys 、Zs に
校正定数α0 、β0 、γ0 を乗算して補正する(ステツ
プP14)。補正された被測定液Sの色度を示す三刺激
値X、Y、Zを公知の手段で指定された表色系へ色空間
変換し(ステツプP15)、これを表示部28へ表示
し、プリントして(ステツプP16)、処理を終了す
る。
The calibration constant α0 stored in the RAM 24
, Β0, and γ0 are read out (Step P13), and are corrected by multiplying the measured tristimulus values Xs, Ys, and Zs indicating the chromaticity of the liquid S to be measured by calibration constants α0, β0, and γ0 (Step P14). The corrected tristimulus values X, Y, and Z indicating the chromaticity of the liquid S to be measured are color-space-converted to a color system designated by known means (step P15), and displayed on the display unit 28, Printing is performed (step P16), and the process ends.

【0026】次に、図3に示すフロ−チヤ−トのステツ
プP3,及び図4に示すフロ−チヤ−トのステツプP1
2として示した三刺激値演算ル−チンを図5、図6に示
すフロ−チヤ−トにより説明する。
Next, step P3 of the flowchart shown in FIG. 3 and step P1 of the flowchart shown in FIG.
The tristimulus value calculation routine shown as 2 will be described with reference to the flowcharts shown in FIGS.

【0027】まず、サンプルホ−ルド回路H1〜H6を
リセツトするリセツト信号をONとし、所定の時間経過
を待つてリセツト信号をOFFとする(ステツプP21
〜ステツプP23)。これによりサンプルホ−ルド回路
H1〜H6がリセツト状態となる。ゲ−トG1〜G6を
ONとし、照明回路32をONとして光源Lを点灯する
(ステツプP24)。校正時には光学素子5を透過した
光、測定時には被測定液Sを透過した光はフイルタF1
〜F3を透過して基本色成分に分解され、フオトダイオ
−ドP1〜P3で検出され、光電変換回路E1〜E3で
増幅され、ゲ−トG1〜G3を経てサンプルホ−ルド回
路H1〜H3にホ−ルドされる。また、光源Lのゆらぎ
補正信号を得るため、光源Lから投射された光は直接フ
イルタF4〜F6を透過して基本色成分に分解され、フ
オトダイオ−ドP4〜P6で検出され、光電変換回路E
4〜E6で増幅され、ゲ−トG4〜G6を経てサンプル
ホ−ルド回路H4〜H6にホ−ルドされる。
First, a reset signal for resetting the sample hold circuits H1 to H6 is turned on, and after a predetermined time has passed, the reset signal is turned off (step P21).
~ Step P23). As a result, the sample hold circuits H1 to H6 enter the reset state. The gates G1 to G6 are turned on, the lighting circuit 32 is turned on, and the light source L is turned on (step P24). The light transmitted through the optical element 5 at the time of calibration and the light transmitted through the liquid S to be measured at the time of measurement are filtered by the filter F1.
Through F3 to be separated into basic color components, detected by photodiodes P1 to P3, amplified by photoelectric conversion circuits E1 to E3, and passed through gates G1 to G3 to sample hold circuits H1 to H3. It is held. Further, in order to obtain a fluctuation correction signal of the light source L, the light projected from the light source L is directly transmitted through the filters F4 to F6, decomposed into basic color components, detected by the photo diodes P4 to P6, and detected by the photo diodes P4 to P6.
It is amplified at 4-E6 and is held at sample-hold circuits H4-H6 via gates G4-G6.

【0028】上記の処理の完了に要する所定の時間経過
を待って(ステツプP25)、ゲ−トG1〜G6をOF
Fとし、照明回路32をOFFとする(ステツプP2
6)。ゲ−ト番号を指定する係数iを7にセツトし(ス
テツプP27)、CPU内に設けたカウンタをリセツト
する(ステツプP28)。ゲ−トGi(最初はゲ−トG
7)をONとし、サンプルホ−ルド回路Hiにホ−ルド
されたデ−タをA/D変換器21へ出力する(ステツプ
P29)。
After a predetermined time required for completing the above processing has elapsed (step P25), the gates G1 to G6 are turned off.
F, and the lighting circuit 32 is turned off (step P2).
6). The coefficient i designating the gate number is set to 7 (step P27), and the counter provided in the CPU is reset (step P28). Gate Gi (Initially Gate G
7) is turned ON, and the data held by the sample hold circuit Hi is output to the A / D converter 21 (step P29).

【0029】A/D変換器21の出力が“H”か否かを
判定し、“H”でない場合は、カウンタの内容を1増加
させる(ステツプP30、P31)。A/D変換器21
の出力が“H”の場合はA/D変換器21の出力デ−タ
CiをCPUのレジスタに格納する(ステツプP3
2)。ゲ−トGiをOFFとし(ステツプP33)、係
数iが12を越えたか否か、即ち、ゲ−トG7〜G12
を順次開いてサンプルホ−ルド回路H1〜H6にホ−ル
ドされたデ−タの全てについて処理が終了したか否かを
判定し、i≦12の場合はステツプP29に戻り、i>
12の場合は次の処理に進む(ステツプP34)。
It is determined whether or not the output of the A / D converter 21 is "H". If the output is not "H", the content of the counter is incremented by 1 (steps P30 and P31). A / D converter 21
Is "H", the output data Ci of the A / D converter 21 is stored in the register of the CPU (step P3).
2). The gate Gi is turned off (step P33), and whether or not the coefficient i has exceeded 12, that is, the gates G7 to G12
Are sequentially opened and it is determined whether or not the processing has been completed for all the data held in the sample hold circuits H1 to H6. If i ≦ 12, the process returns to step P29 and i>
In the case of 12, the process proceeds to the next process (step P34).

【0030】サンプルホ−ルド回路H1〜H6のリセツ
ト、証明回路32のON/OFF、ゲ−トG1〜G6,
ゲ−トG7〜G12のON/OFF、及びA/D変換器
21の作動タイミングを図7に示す。
Reset of sample hold circuits H1 to H6, ON / OFF of certification circuit 32, and gates G1 to G6
FIG. 7 shows ON / OFF of the gates G7 to G12 and the operation timing of the A / D converter 21.

【0031】ステツプP35〜P48の処理は、光源L
を点灯しない状態で、校正時には光学素子5を透過した
光、測定時には被測定液Sを透過した光を測定し、出力
デ−タをCPUのレジスタに格納する処理で、処理の内
容は先に説明したステツプP21〜P34の処理と同じ
であるから、詳細な説明は省略する。尚、ここでは出力
デ−タA/D変換器21の出力デ−タはDiとして識別
されている。
The processing in steps P35 to P48 is based on the light source L
In the state where is not lit, the light transmitted through the optical element 5 during calibration, the light transmitted through the liquid S to be measured during measurement is measured, and the output data is stored in a register of the CPU. Since the processing is the same as the processing in steps P21 to P34 described above, a detailed description is omitted. Here, the output data of the output data A / D converter 21 is identified as Di.

【0032】以上の処理で、CPUのレジスタには光源
Lを点灯した状態で測定したデ−タC1〜C6と、光源
Lを点灯しない状態で測定したデ−タD1〜D6とが格
納されたことになる。
In the above process, data C1 to C6 measured with the light source L turned on and data D1 to D6 measured without the light source L turned on are stored in the register of the CPU. Will be.

【0033】ステツプP49では、以下の演算式により
演算を行つて中間値A(1)〜A(6)を求める。
In step P49, intermediate values A (1) to A (6) are obtained by performing calculations according to the following formulas.

【0034】 A(1)=C(1)−D(1)・・・・・(1) A(2)=C(2)−D(2)・・・・・(2) ・・・・・・・・・・・・・ ・・・・・・・・・・・・・ A(6)=C(6)−D(6)・・・・・(6) 次に、ステツプP50で光源Lのゆらぎを補正する以下
の演算を実行し、光学素子5の三刺激値Xm 、Ym 、Z
m 、あるいは被測定液Sの三刺激値Xs 、Ys、Zs を
求めて処理を終了する。
A (1) = C (1) -D (1) (1) A (2) = C (2) -D (2) (2) A (6) = C (6) -D (6) (6) Next, step P50 The following calculation for correcting the fluctuation of the light source L is executed by using the tristimulus values Xm, Ym, and Z of the optical element 5.
m or the tristimulus values Xs, Ys, Zs of the liquid S to be measured are obtained, and the process is terminated.

【0035】 Xm (Xs )=A(1)/A(4)・・・(7) Ym (Ys )=A(2)/A(5)・・・(8) Zm (Zs )=A(3)/A(6)・・・(9) 図8はこの発明を実施した色度モニタ−の遠隔監視シス
テムの構成の概略を示す図であつて、図において100
は検出部、200は光電変換部、300はデ−タ処理
部、400は測定制御部、500は光学素子駆動操作
部、600はモデム内蔵電話、700は一般公衆回線
(電話回線)、800は制御監視盤を示す。
Xm (Xs) = A (1) / A (4) (7) Ym (Ys) = A (2) / A (5) (8) Zm (Zs) = A ( 3) / A (6) (9) FIG. 8 is a diagram schematically showing the configuration of a remote monitoring system for a chromaticity monitor embodying the present invention.
Is a detection unit, 200 is a photoelectric conversion unit, 300 is a data processing unit, 400 is a measurement control unit, 500 is an optical element drive operation unit, 600 is a telephone with a built-in modem, 700 is a general public line (telephone line), and 800 is 3 shows a control monitoring panel.

【0036】測定制御部400は一定時間間隔毎に光学
素子駆動操作部500及びデ−タ処理部300に測定開
始の指令を行う。デ−タ処理部300は決められた順序
に従つて、前述の如く被測定液の三刺激値等を測定し、
各種表色モ−ドに従つて演算し、結果を記憶する。表色
モ−ドは、前もつて得られた標準液による分析法の色度
の度数との対比演算式により測定制御部400で色度相
関数に換算される。
The measurement control unit 400 instructs the optical element drive operation unit 500 and the data processing unit 300 to start measurement at regular time intervals. The data processing unit 300 measures the tristimulus values and the like of the liquid to be measured according to the determined order as described above,
The calculation is performed according to various colorimetric modes, and the result is stored. The colorimetric mode is converted into a chromaticity correlation number by the measurement control unit 400 by an arithmetic expression for comparison with the chromaticity frequency of the analysis method using the previously obtained standard solution.

【0037】換算された色度相関数はデ−タ処理された
上、モデム内蔵電話600から一般公衆回線700等を
経て制御監視盤800に伝送され、正色度に換算されて
収録及び表示される。
The converted chromaticity correlation number is subjected to data processing, and then transmitted from the telephone 600 with a built-in modem to the control and monitoring panel 800 via the general public telephone line 700 and the like, converted into a positive chromaticity, and recorded and displayed. .

【0038】図9は図8に示した検出部100の構成を
示すものである。容器1の一端には被測定液を導入する
管101が接続され、被測定液導入口102と容器1と
の間にはストツプ弁103、減圧弁104、逆止弁10
5が設けられている。一方、容器1の他端には管106
が接続され、測定済の被測定液は管106を経て排出口
109から排出される。容器1と排出口109との間に
は電磁弁107、ストツプ弁108が設けられている。
FIG. 9 shows the configuration of the detection unit 100 shown in FIG. A pipe 101 for introducing the liquid to be measured is connected to one end of the container 1, and a stop valve 103, a pressure reducing valve 104, a check valve 10 are provided between the liquid introduction port 102 and the container 1.
5 are provided. On the other hand, the other end of the container 1 has a tube 106
Is connected, and the measured liquid to be measured is discharged from the discharge port 109 via the pipe 106. An electromagnetic valve 107 and a stop valve 108 are provided between the container 1 and the discharge port 109.

【0039】容器1の内部には、光学素子5が挿入され
ており、プランジヤ9を介して容器1の外部の駆動装置
150に連結されている。容器1の外部に出ているプラ
ンジヤ9にはドツグ153が設けられており、プランジ
ヤ9の軸方向に設置された挿入位置スイツチ151、退
避位置スイツチ152を機械的に蹴ることにより、端子
盤501に電気的な信号を送る。容器1の上部にはフロ
−トスイツチ154が設けられており、容器1が被測定
液で十分に満たされたか否かを検出する。
An optical element 5 is inserted into the container 1 and is connected to a driving device 150 outside the container 1 via a plunger 9. A dog 153 is provided on the plunger 9 protruding outside the container 1, and the insertion position switch 151 and the retreat position switch 152 provided in the axial direction of the plunger 9 are mechanically kicked to the terminal board 501. Send electrical signals. A float switch 154 is provided at an upper portion of the container 1, and detects whether or not the container 1 is sufficiently filled with the liquid to be measured.

【0040】次に、その動作を図10、図11のフロ−
チヤ−ト、図12のタイミングチヤ−トにより説明す
る。
Next, the operation will be described with reference to FIGS.
This will be described with reference to a timing chart shown in FIG.

【0041】まず、初期条件の設定動作を図10のフロ
−チヤ−トで説明する。フロ−トスイツチ154をON
(ステツプP101)、電磁弁107を閉(ステツプP
102)、挿入位置スイツチ151をOFF(ステツプ
P103)、退避位置スイツチ152をON(ステツプ
P104)、カウンタ−502を0(零)に設定する
(ステツプP105)。
First, the operation of setting the initial conditions will be described with reference to the flowchart of FIG. Turn on the float switch 154
(Step P101), close the solenoid valve 107 (Step P101)
102), the insertion position switch 151 is turned off (step P103), the retreat position switch 152 is turned on (step P104), and the counter 502 is set to 0 (zero) (step P105).

【0042】次に、測定動作を図11のフロ−チヤ−ト
で説明する。電磁弁107を開き、被測定液を容器1に
導入して、一定時間流すことにより容器1内の被測定液
を入れ換える(ステツプP111、P112)。次に電
磁弁107を閉じ(ステツプP113)、光学素子5を
挿入位置と退避位置との間を往復動させ(回数をカウン
タ−502で計数)、被測定液の攪拌を行う(ステツプ
P114〜P119)。4回往復動の後、光学素子5を
挿入位置に止め、光学素子5による校正値の測定を行う
(ステツプP120〜P121)。光学素子5を退避位
置に戻し、被測定液の測定を行う(ステツプP122〜
P124)。測定値はデ−タ処理部300に送られ、処
理される。以上の処理が終了すると、電磁弁107は
閉、挿入位置スイツチ151はOFF、退避位置スイツ
チ152はON、カウンタ−502は0となり、1回の
測定が終了する。
Next, the measuring operation will be described with reference to the flowchart of FIG. The electromagnetic valve 107 is opened, the liquid to be measured is introduced into the container 1, and the liquid to be measured in the container 1 is exchanged by flowing for a predetermined time (steps P111 and P112). Next, the electromagnetic valve 107 is closed (step P113), the optical element 5 is reciprocated between the insertion position and the retreat position (the number of times is counted by the counter 502), and the liquid to be measured is stirred (steps P114 to P119). ). After four reciprocations, the optical element 5 is stopped at the insertion position, and the calibration value is measured by the optical element 5 (steps P120 to P121). The optical element 5 is returned to the retracted position, and the liquid to be measured is measured (steps P122 to P122).
P124). The measured values are sent to the data processing unit 300 and processed. When the above processing is completed, the solenoid valve 107 is closed, the insertion position switch 151 is turned off, the retreat position switch 152 is turned on, and the counter 502 becomes 0, thus completing one measurement.

【0043】[0043]

【発明の効果】 以上説明した通り、この発明の色度モ
ニターは、被測定液を収容した容器内に光学素子を移動
自在に配設し、校正データの算出時にはこれを投光部と
受光部との間の挿入位置に移動させて光学素子を透過し
た光に基づいて校正データを算出し、被測定液の色度測
定時には挿入位置から退避させて被測定液を透過した光
に基づいて被測定液の色度データを算出し、該算出され
た色度データを前記校正データにより補正して最終的な
色度を決定するものである。そして、被測定液を収容し
た容器内の光学素子は、校正データの算出時には挿入位
置にある被測定液が光学素子により排除され、被測定液
の色度測定時には光学素子の退避により挿入位置に被測
定液が満たされるので、校正データの算出、及び被測定
液の色度の測定を迅速に行うことができる。このため、
従来の装置のように、校正の都度、蒸留水のような校正
基準液と被測定液との交換を行う必要がないから、繁雑
な校正作業も極めて容易に実施でき、蒸留水のような校
正基準液を常時補充する必要も無く、保守管理も容易と
なる等、顕著な作用効果を奏するものである。
As described above, according to the chromaticity monitor of the present invention, the optical element is movably disposed in the container containing the liquid to be measured, and is used to calculate the calibration data. Calibration data is calculated based on the light transmitted through the optical element by moving to the insertion position between them, and when measuring the chromaticity of the liquid to be measured, the calibration data is retracted from the insertion position and the light is transmitted based on the light transmitted through the liquid to be measured. The chromaticity data of the measurement liquid is calculated, and the calculated chromaticity data is corrected by the calibration data to determine the final chromaticity. When the calibration data is calculated, the optical element in the container containing the liquid to be measured removes the liquid to be measured at the insertion position by the optical element, and when the chromaticity of the liquid to be measured is measured, the optical element is retracted to the insertion position. Since the liquid to be measured is filled, calculation of calibration data and measurement of chromaticity of the liquid to be measured can be performed quickly. For this reason,
Unlike the conventional equipment, it is not necessary to exchange the calibration reference solution such as distilled water and the solution to be measured each time calibration is performed. There is no need to constantly replenish the reference solution, and maintenance and management become easy, and the remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施した色度モニタ−の外観を示す
斜視図。
FIG. 1 is a perspective view showing the appearance of a chromaticity monitor embodying the present invention.

【図2】色度モニタ−の回路ブロツク図。FIG. 2 is a circuit block diagram of a chromaticity monitor.

【図3】校正処理のフロ−チヤ−ト。FIG. 3 is a flowchart of a calibration process.

【図4】測定処理のフロ−チヤ−ト。FIG. 4 is a flowchart of a measurement process.

【図5】演算処理のフロ−チヤ−ト(その1)。FIG. 5 is a flowchart (part 1) of an arithmetic processing;

【図6】演算処理のフロ−チヤ−ト(その2)。FIG. 6 is a flowchart (part 2) of an arithmetic processing.

【図7】制御動作のタイミングを示すタイミングチヤ−
ト。
FIG. 7 is a timing chart showing the timing of a control operation.
G.

【図8】色度モニタ−の遠隔監視システムの構成の概略
を示す図。
FIG. 8 is a diagram schematically showing a configuration of a chromaticity monitor remote monitoring system.

【図9】検出部の構成の概略を示す図。FIG. 9 is a diagram schematically illustrating a configuration of a detection unit.

【図10】測定の際の初期条件の設定動作を説明するフ
ロ−チヤ−ト。
FIG. 10 is a flowchart for explaining an initial condition setting operation at the time of measurement.

【図11】測定動作を説明するフロ−チヤ−ト。FIG. 11 is a flowchart illustrating a measuring operation.

【図12】初期条件の設定、及び測定動作のタイミング
チヤ−ト。
FIG. 12 is a timing chart for setting initial conditions and measuring operation.

【符号の説明】[Explanation of symbols]

1 容器 2 投光部 3 受光部 5 光学素子 6、7 光フアイバ− 9 プランジヤ L 光源 100 検出部 200 光電変換部 300 デ−タ処理部 DESCRIPTION OF SYMBOLS 1 Container 2 Light-emitting part 3 Light-receiving part 5 Optical element 6, 7 Optical fiber 9 Plunger L Light source 100 Detection part 200 Photoelectric conversion part 300 Data processing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庄司 長浩 大阪市西区北堀江1丁目12番19号 株式 会社 栗本鐵工所内 (56)参考文献 特開 昭59−44631(JP,A) 特開 平2−27227(JP,A) 実公 昭35−3998(JP,Y1) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nagahiro Shoji 1-12-19 Kitahorie, Nishi-ku, Osaka City Kurimoto Iron Works Co., Ltd. (56) References JP-A-59-44631 (JP, A) Hei 2-27227 (JP, A) Jiko 35-3998 (JP, Y1)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定液を透過する光のスペクトル特性
から被測定液の色度を決定する色度モニターにおいて、被測定液を収容する容器と、 前記容器の壁面に配置された投光部と、 該投光部から投射され光を受光する位置で前記容器
壁面に配置された受光部と、前記容器内に移動自在に配設された 光学素子と、前記光学素子を透過した光に基づいて校正データを算出
する一方、前記被測定液を透過した光に基づいて前記被
測定液の色度データを算出し、該算出された色度データ
を前記校正データにより補正して最終的な色度を決定す
る色度測定手段と、 前記校正データの算出時には 前記光学素子を前記投光部
と受光部との間の挿入位置に移動させ、前記被測定液の
色度測定時には前記光学素子を前記挿入位置から退避さ
せる光学素子移動手段とを備えたことを特徴とする色度
モニター
1. A chromaticity monitor for determining the chromaticity of a liquid to be measured from the spectral characteristics of light transmitted through the liquid to be measured, and a container for housing the liquid to be measured and a light projecting unit disposed on a wall of the container. When a light receiving portion <br/> disposed on the wall surface of the container at a position for receiving the light projected from the-projecting optical unit, an optical element which is movably disposed within said container, said optical element Calibration data is calculated based on the light transmitted through
On the other hand, based on the light transmitted through the liquid to be measured,
Calculate the chromaticity data of the measurement liquid and calculate the calculated chromaticity data
Is corrected by the calibration data to determine the final chromaticity.
Chromaticity measuring means, and when calculating the calibration data , move the optical element to an insertion position between the light projecting unit and the light receiving unit, and when measuring the chromaticity of the liquid to be measured , move the optical element to the insertion position. Evacuated from
Chromaticity, characterized in that an optical element moving means for
Monitor .
【請求項2】 前記光学素子はガラス材料から構成され
たことを特徴とする請求項1記載の色度モニター
2. The chromaticity monitor according to claim 1, wherein said optical element is made of a glass material.
【請求項3】 前記光学素子は合成樹脂材料から構成さ
れたことを特徴とする請求項1記載の色度モニター
3. The chromaticity monitor according to claim 1, wherein said optical element is made of a synthetic resin material.
【請求項4】 前記光学素子は被測定液の分光透過率に
近似した分光透過特性をもつ材料から構成されたことを
特徴とする請求項1記載の色度モニター。
4. The chromaticity monitor according to claim 1, wherein said optical element is made of a material having a spectral transmittance characteristic close to a spectral transmittance of the liquid to be measured .
JP4131378A 1992-04-27 1992-04-27 Chromaticity monitor Expired - Fee Related JP2727146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131378A JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131378A JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Publications (2)

Publication Number Publication Date
JPH0682310A JPH0682310A (en) 1994-03-22
JP2727146B2 true JP2727146B2 (en) 1998-03-11

Family

ID=15056551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131378A Expired - Fee Related JP2727146B2 (en) 1992-04-27 1992-04-27 Chromaticity monitor

Country Status (1)

Country Link
JP (1) JP2727146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825722B2 (en) 2002-07-02 2006-09-27 東芝エルエスアイシステムサポート株式会社 Semiconductor circuit device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944631A (en) * 1982-09-07 1984-03-13 Idemitsu Kosan Co Ltd Measuring device for saybolt chronometer
JPH07119652B2 (en) * 1988-07-16 1995-12-20 倉敷紡績株式会社 Liquid colorimetric method and optical system used therefor

Also Published As

Publication number Publication date
JPH0682310A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
CA2192212A1 (en) Method and Apparatus for Calibrating Moisture Sensors
WO2001063587A3 (en) A method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
GB2215926A (en) Tape rule
WO2007147717A1 (en) Leak detector
US3531208A (en) Automatic digital colorimeter
CN87107260A (en) The device for monitoring characteristics of film on substrate
JPS57166529A (en) Method and device for measuring temperature
JP2727146B2 (en) Chromaticity monitor
EP0250354A3 (en) Apparatus and method for determining position with light
US4303337A (en) Apparatus for determining hemoglobin and white blood cell count in blood
AU2003254893A1 (en) Method of measuring concentration of silanol group and cell for measurement
CN114397546A (en) Target luminous quantity calibration method and calibration device for ultraviolet imaging corona detection
CN100389340C (en) Device and method for quantitatively adjusting polarization
JPS6473239A (en) Gas concentration measurement for laser type gas sensor
CN201373833Y (en) Reflection portable color density meter based on three color filter density measuring method
KR100413120B1 (en) Urine analysis system using CIS
JPS55112546A (en) Atomic extinction analysis meter
JP2001318001A (en) Color measuring instrument
EP1207385A4 (en) Optical ct device and method of image reformation
CN2234613Y (en) Automatic checking instrument for hemomanometer
JPS62142241A (en) Color measuring instrument
CN220853463U (en) Optical lens size detection device
JPS56129825A (en) Electronic balance
JPH0660846B2 (en) Photoelectric colorimeter with spectral sensitivity correction function
CN2927092Y (en) Device for adjusting polarized state quantitatively

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees