JPH0682135B2 - Load electricity quantity measurement circuit of AC power supply - Google Patents

Load electricity quantity measurement circuit of AC power supply

Info

Publication number
JPH0682135B2
JPH0682135B2 JP19689287A JP19689287A JPH0682135B2 JP H0682135 B2 JPH0682135 B2 JP H0682135B2 JP 19689287 A JP19689287 A JP 19689287A JP 19689287 A JP19689287 A JP 19689287A JP H0682135 B2 JPH0682135 B2 JP H0682135B2
Authority
JP
Japan
Prior art keywords
phase
output
power supply
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19689287A
Other languages
Japanese (ja)
Other versions
JPS6439560A (en
Inventor
敬一 田中
光 江南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP19689287A priority Critical patent/JPH0682135B2/en
Publication of JPS6439560A publication Critical patent/JPS6439560A/en
Publication of JPH0682135B2 publication Critical patent/JPH0682135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 A.産業上の利用分野 この発明は三相3線式回路網における交流電源装置の負
荷電気量計測回路に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a load electricity amount measuring circuit of an AC power supply device in a three-phase three-wire circuit network.

B.発明の概要 この発明は交流電源装置の負荷電気量計測回路におい
て、 電源側出力端の各相にそれぞれ変流器からなる電流検出
器を設け、各相の電流検出器の出力電流を加算し、その
加算出力が零となるような接続部を設けたことにより、 三相3線式回路網における負荷電気量の計測を電源側出
力端で行うことができるようにしたものである。
B. Summary of the Invention The present invention is a load electricity amount measurement circuit for an AC power supply device, in which a current detector composed of a current transformer is provided for each phase of the output end on the power supply side, and the output current of the current detector for each phase is added. However, by providing the connecting portion so that the added output becomes zero, the load electricity amount in the three-phase three-wire circuit network can be measured at the output end on the power source side.

C.従来の技術 例えば第3図に示すように電源側が三相平衡で、負荷側
が分布状に存在する三相不平衡負荷からなる一般配電線
のような三相3線式回路網において、電源負担を求める
ためには、電源側出力端において、検出可能な線間電圧
及び線路電流より2電力計法等の計測手段を用いて不平
衡時でも三相電力(有効分,無効分とも)の計測は可能
である。特に、不平衡負荷に対する電源負担を検討する
にあたっては、各線間に負荷されている電力を、電源側
出力端から計測把握できれば大きなメリットがある。こ
のメリットとしては次のようなものがある。電源側出力
端で各線間の有効、無効電力あるいは力率等が簡便に計
測できれば、等価的な各線間負荷インピーダンスが把握
でき、電気設備の運用、保守、点検等に対し便利にな
る。
C. Conventional technology For example, as shown in Fig. 3, in a three-phase three-wire network such as a general distribution line consisting of a three-phase unbalanced load in which the power supply side is three-phase balanced and the load side is distributed, In order to obtain the load, at the output end on the power supply side, the three-phase power (both active and reactive) is measured from the detectable line voltage and line current by using a measuring means such as a two-power meter method even when unbalanced. Measurement is possible. In particular, when considering the load on the power source for the unbalanced load, there is a great merit if the power loaded between the lines can be measured and grasped from the output end on the power source side. The advantages of this are as follows. If the active / reactive power or power factor between each line can be easily measured at the output end on the power supply side, the equivalent load impedance between each line can be grasped, which is convenient for the operation, maintenance and inspection of electrical equipment.

なお、不平衡負荷が電源に対して及ぼす影響として、電
源側出力端で検出可能な線路電流や線間電圧のアンバラ
ンス分をもとに種々推定したり、電源や負荷に対する保
護や負荷制限等を行っていた。
As for the effect of the unbalanced load on the power supply, various estimates can be made based on the imbalance of the line current and line voltage that can be detected at the output end on the power supply side, protection against the power supply and load, load limitation, etc. Was going on.

第4図は考察を簡単化するため、第3図の負荷を等価的
に集中負荷に置換したものである。第4図のΔ電源内部
の各枝路電流成分が電源側出力端で位相も含めて等価的
に検出できれば電源の各線間にかかる有効電力Pの次式
のようになる。
FIG. 4 shows the load of FIG. 3 replaced equivalently with a concentrated load in order to simplify the consideration. If each branch current component inside the Δ power supply in FIG. 4 can be equivalently detected including the phase at the output end on the power supply side, the effective power P applied between each line of the power supply is given by the following equation.

P=線間電圧×Δ電源相電流×cosθ 無効電力Qは次式のようになる。P = line voltage × Δ power supply phase current × cos θ Reactive power Q is expressed by the following equation.

Q=線間電圧×Δ電源相電流×sinθ 但し、θはそれぞれ対応する各相の電圧電流の位相差と
する。
Q = line voltage × Δ power supply phase current × sin θ where θ is the phase difference between the voltage and current of each corresponding phase.

上記P,Qの式から通常の計測回路で測定可能となる。と
ころが、一般の電気設備における発電機はほとんど であり、変圧器の場合は、 も,Δ結線も存在するが、Δ結線の変圧器の場合であっ
ても機器内部に電流検出回路を設けなければならない。
一般には電源設備を等価的にΔ結線におきかえた場合の
Δ結線の各枝路の電流検出は不可能である。
From the above P and Q equations, it becomes possible to measure with a normal measuring circuit. However, most generators in general electrical equipment And for a transformer, Also, there is a delta connection, but even in the case of a delta connection transformer, a current detection circuit must be provided inside the equipment.
Generally, it is impossible to detect the current in each branch of the Δ connection when the power supply equipment is equivalently replaced by the Δ connection.

D.発明が解決しようとする問題点 第4図に示すような回路で、電源側出力端の線間電圧、
線電流検出のみで、有効無効等の負荷電気量を測定する
には計算上の仮定条件(例えば すること)のもとに複雑なベクトル展開、複素数計算に
より解析、算定しなければならない。これを即応性をも
って監視するためには電子計算機等の演算回路を必要と
し、通常の配電盤に取付ける計器では指示させることが
できない問題がある。
D. Problems to be solved by the invention In the circuit as shown in FIG. 4, the line voltage at the output end on the power supply side,
In order to measure the load electric quantity such as valid and invalid only by detecting the line current, the calculation assumptions (for example, Must be analyzed and calculated by complex vector expansion and complex number calculation. In order to monitor this promptly, an arithmetic circuit such as an electronic computer is required, and there is a problem that it cannot be instructed by an instrument attached to an ordinary switchboard.

また、第4図に示す回路で、電源側出力端で電源側端子
からみた各線間にかかる有効電力、無効電力を測定する
ためにはΔ負荷側の各相に電流検出回路を設け、電源側
に情報伝達(遠隔であればテレメータ等を必要とする)
する必要があった。しかし、この場合、情報伝達のため
の設備を要したり、分布負荷の場合は分布線間負荷の各
枝路に電流検出回路を要し、多数の分布負荷が存在する
場合、膨大な設備となり、実現性に乏しい設備となる問
題がある。
Further, in the circuit shown in FIG. 4, a current detection circuit is provided in each phase on the Δ load side in order to measure active power and reactive power applied between each line at the output end on the power supply side viewed from the terminal on the power supply side. Information transmission to remote (requires telemeter etc. if remote)
Had to do. However, in this case, equipment for information transmission is required, in the case of distributed load, a current detection circuit is required in each branch of the load between distributed lines, and if there are many distributed loads, a huge amount of equipment is required. However, there is a problem that the equipment is not feasible.

E.問題点を解決するための手段 この発明の第1発明は三相3線式回路網において、電源
側出力端の各相にそれぞれ電流検出器を設け、各相の電
流検出器の出力電流を加算し、その加算出力が零となる
ような接続部を設けたものである。第2発明は第1発明
に電流回路選択切替部、電圧検出部、電圧検出相選択切
替部、三相用と単相用電力変換器及び計測器を設けたも
のである。
E. Means for Solving Problems The first aspect of the present invention is a three-phase three-wire circuit network, in which a current detector is provided for each phase of the power supply side output terminal and the output current of the current detector for each phase is provided. Is added, and a connection portion is provided so that the added output becomes zero. A second invention provides the first invention with a current circuit selection switching unit, a voltage detection unit, a voltage detection phase selection switching unit, three-phase and single-phase power converters, and a measuring instrument.

F.作用 電源側出力端のみの計測で負荷電気量を配電盤に取付け
られた計測器で指示させるために、線路電流から電源を
等価的に表したΔ結線の各相電流に等価な電流成分を検
出するようにしたものである。
F. Action In order to indicate the amount of load electricity with a measuring device attached to the switchboard by measuring only the output end on the power supply side, a current component equivalent to each phase current of the Δ connection, which represents the power supply equivalently from the line current, is calculated. It is designed to be detected.

G.実施例 以下図面を参照してこの発明の一実施例を説明する。G. Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図において、PWRは電源装置で、この電源装置PWRは
交流発電機,変圧器等から構成される。通常発電機は またはΔ結線があるが、この実施例では全て等価Δ結線
に変換するものとして以下述べる。等価Δ結線の電源装
置PWRの各相R,S,Tは線路を介して等価Δ結線の負荷LDに
接続される。電源装置PWRの出力端近傍の各相線路には
電流検出器である変流器CTR,CTS,CTTが設けられる。
変流器CTRの2次側の一端と変流器CTSの2次側の他端と
を接続し、変流器CTSの2次側の一端と変流器CTTの2次
側の他端とを接続し、変流器CTTの2次側の一端と変流
器CTRの2次側の他端とを接続する。各接続点CO1,C
O2,CO3はCT回路2次側合成電流の加
算出力が零となるような接続部COTに接続される。な
お、変流器CTR,CTS,CTTの比は1:1と仮定する。図中、
RSSTTRはΔ結線換負荷合成インピーダンス,
RSSTTRは電源装置PWR出力端からみた各線間
有効電力,QRS,QST,QTRは電源装置PWR出力端からみた
各線間有効電力である。
In FIG. 1, PWR is a power supply device, and this power supply device PWR is composed of an AC generator, a transformer and the like. Usually the generator Alternatively, although there is a Δ connection, this embodiment will be described below assuming that they are all converted into equivalent Δ connections. Each phase R, S, T of the power supply device PWR having an equivalent Δ connection is connected to a load LD having an equivalent Δ connection via a line. Current transformers CT R , CT S , and CT T , which are current detectors, are installed in each phase line near the output end of the power supply PWR.
And the other end of the secondary side of the current transformer CT R of the secondary side of the one end and the current transformer CT S connected, the secondary side of the secondary side end and current transformer CT T of a current transformer CT S Is connected to the other end of the current transformer CT T and the other end of the current transformer CT R is connected to the other end. Each connection point CO 1 , C
O 2 and CO 3 are connected to the connecting portion COT where the added output of the CT circuit secondary side combined currents A , B and C becomes zero. The ratio of the current transformers CT R , CT S , and CT T is assumed to be 1: 1. In the figure,
RS , ST , TR are combined impedances of delta connection load,
RS , ST , and TR are active power between lines as seen from the PWR output end of the power supply unit, and Q RS , Q ST , and Q TR are active power between lines as seen from the PWR output end of the power supply unit.

また、RSSTTRは電源装置内部誘起電圧、RSSTTRは電源側端子(線間)電圧、は電源装置出力線路電流、RSSTTRは電源装置等価Δ結線相電流、はCT回路2次側合成電流、 は電源装置内部インピーダンス(Δ結線換算値) 次に第1図の動作を数式を用いて述べる。第1図に示す
電源装置出力線路電流はキルヒホック
の法則より(1)式のようになる。=0 ・・・・・(1)は(2)〜(4)式で与えられる。RSTR ・・・・・(2)STRS ・・・・・(3)TRST ・・・・・(4) また、一般に電源装置の内部インピーダンスは三相
分相等しく、内部誘起電圧は三相平衡とみなせるため次
式のようになる。
In addition, RS , ST and TR are power supply internal induced voltages, RS , ST and TR are power supply side terminal (line) voltages, R , S and T are power supply output line currents, and RS , ST and TR are power supply equivalent. Δ connection phase current, A , B , C are CT circuit secondary side combined currents, S is power supply device internal impedance (Δ connection conversion value) Next, the operation of FIG. 1 will be described using mathematical expressions. The power supply device output line currents R 1 , S 2 , and T 3 shown in FIG. 1 are expressed by equation (1) according to Kirchhock's law. R + S + T = 0 (1) R , S , and T are given by equations (2) to (4). R = RS - TR (2) S = ST - RS (3) T = TR - ST (4) Generally, the internal impedance S of the power supply device is 3 Since the phases are equal and the internal induced voltage can be regarded as three-phase equilibrium, the following equation is obtained.

RSSTTRRSSTTR=0 ∴RSSTTR=0 ・・・・・(5) 同様に変流器の2次回路のキルヒホック法則を適用する
と(6)〜(8)式が得られる。 ・・・・・(6) ・・・・・(7) ・・・・・(8) 以上よりを求めると(9)〜(11)式
のようになる。 =2RS−(TRST)=3RS ・・(9) =2ST−(RSTR)=3ST ・・(10) =2TR−(STRS)=3TR ・・(11) (9)〜(11)式より、CT2次側合成電流
は電源装置等価Δ結線相電流のRSSTTR
同相で大きさのみ3倍の値が得られる。すなわちRS/3 ・・・・・(12)ST/3 ・・・・・(13)TR/3 ・・・・・(14) として検出測定ができる。
( RS + ST + TR ) S = RS + ST + TR = 0 ∴ RS + ST + TR = 0 (5) Similarly, if Kirchhock's law of the secondary circuit of the current transformer is applied (6) ~ Equation (8) is obtained. A = R - S (6) B = S - T (7) C = T - R (8) From the above, A , B , and C are calculated ( Expressions 9) to (11) are obtained. A = 2 RS- ( TR + ST ) = 3 RS .. (9) B = 2 ST- ( RS + TR ) = 3 ST .. (10) C = 2 TR- ( ST + RS ) = 3 TR.・ (11) From equations (9) to (11), the CT secondary side combined currents A , B ,
C is in phase with RS , ST , and TR of the power supply equivalent Δ connection phase current, and a value that is three times larger in magnitude is obtained. That is, detection measurement can be performed as RS = A / 3 (12) ST = B / 3 (13) TR = C / 3 (14).

一方、電源側出力端では線間電圧RSSTTRも容
易に検出できるため、上記に加え、次の電気量が容易に
計測可能になった。
On the other hand, at the output end on the power supply side, the line voltages RS , ST , and TR can also be easily detected, so in addition to the above, the following electric quantities can be easily measured.

(イ)電源装置出力端の各線間にかかる有効電力と無効
電力は次式のようになる。
(B) The active power and the reactive power applied between each line at the output end of the power supply device are as follows.

WRS=VRS・IRS・cosθRS=VRS・IA・cosθRS/3 WST=VST・IST・cosθST=VST・IB・cosθST/3 WTR=VTR・ITR・cosθTR=VTR・IC・cosθTR/3 QRS=VRS・IRS・sinθRS=VRS・IA・sinθRS/3 QST=VST・IST・sinθST=VST・IB・sinθST/3 QTR=VTR・ITR・sinθTR=VTR・IC・sinθTR/3 なお、三相分はそれぞれ、WRS+WST+WTR,QRS+QST+Q
TRとなる。
W RS = V RS・ I RS・ cos θ RS = V RS・ I A・ cos θ RS / 3 W ST = V ST・ I ST・ cos θ ST = V ST・ I B・ cos θ ST / 3 W TR = V TR・I TR・ cos θ TR = V TR・ I C・ cos θ TR / 3 Q RS = V RS・ I RS・ sin θ RS = V RS・ I A・ sin θ RS / 3 Q ST = V ST・ I ST・ sin θ ST = V ST , I B , sin θ ST / 3 Q TR = V TR , I TR , sin θ TR = V TR , I C , sin θ TR / 3 In addition, the three phases are W RS + W ST + W TR , Q RS + Q ST + Q
Become TR .

なお、θRS,θST,θTRRSSTTR
の位相差である。また、実際は電源の内部等価
インピーダンスの影響も含まれるが、一般には負荷イン
ピーダンスに比べ僅少のため省略した。
Note that θ RS , θ ST , and θ TR are RS , ST , TR and A ,
It is the phase difference between B and C. In addition, the effect of the internal equivalent impedance of the power supply is actually included, but it is generally small compared to the load impedance and is therefore omitted.

(ロ)電源装置出力端の各線間における力率はRS
STTRの位相差検出により計測で
きる。R−S、S−T、T−R相間の合成に対する力率
はcosθRS,cosθST,cosθTRとなる。
(B) The power factor between each line at the output of the power supply is RS ,
It can be measured by detecting the phase difference between ST , TR and A , B , C. The power factors for the synthesis between the RS , ST , and TR phases are cos θ RS , cos θ ST , and cos θ TR .

(ハ)電源装置出力端の各線間に接続される合成負荷イ
ンピーダンスの値は次のように求められる。なお、R−
S,S−T,T−R間のそれぞれ電力ベクトル表示したものを
それぞれRSSTTRとすると 以上から負荷インピーダンスは次のように簡単に求める
ことができる。RS =V2 RS/(WRS+jQRSST =V2 ST/(WST+jQSTTR =V2 TR/(WTR+jQTR) なお、単相回路における電力は負荷インピーダンス
の端子電圧を,そこに流れる電流をとする
と、電力のベクトル表示は次式のようになる。
(C) The value of the combined load impedance connected between each line at the output terminal of the power supply device is obtained as follows. In addition, R-
Let RS , ST , and TR be the power vector representations between S, S-T, and TR , respectively. From the above, the load impedance can be easily obtained as follows. RS = V 2 RS / (W RS + jQ RS ) ST = V 2 ST / (W ST + jQ ST ) TR = V 2 TR / (W TR + jQ TR ) Note that the power 1 in a single-phase circuit is the load impedance
Assuming that the terminal voltage of 1 is 1 and the current flowing therein is 1 , the vector representation 1 of electric power is as follows.

この式より=V1 2/(W+jQ)が求められる。 From this formula, 1 = V 1 2 / (W + jQ) is obtained.

上記実施例から従来電源側出力端では容易に計測できな
かった電気量が簡単に求められる。これは電源側出力端
(送電端)の線路電流を検出することにより、等価的に
Δ接続表示した電源の各枝路電流が検出できるからであ
る。また、三相電源にかかる各線間の有効,無効電力,
力率が線間電圧と電源枝路電流とから検出できる利点が
ある。
From the above embodiment, it is possible to easily obtain the amount of electricity that could not be easily measured at the output end on the power supply side. This is because, by detecting the line current at the output end (transmission end) on the power supply side, each branch current of the power supply that is equivalently represented by Δ connection can be detected. In addition, active and reactive power between each line of the three-phase power supply,
There is an advantage that the power factor can be detected from the line voltage and the power supply branch current.

第2図はこの発明の他の実施例を示すもので、負荷回路
は省略してあるとともに同一部分は同一符号して示す。
第2図において、変流器CTR,CTS,CTTの接続部COTの所
に電流回路選択切換部ISWを設ける。このISWは三相のう
ち1相を切換して出力を、単相用電力変換器SCVの端子1
S,1Lに入力する。PTは電圧検出器となる変圧器で、この
変圧器PTは電源装置PWRの出力端に1次側が接続され
る。変圧器PTの2次側は三相用電力変換器PCVの端子P1,
P2,P3に接続される。PCVの電流入力端1S,1Lには変流器C
TR,CTSの2次側の一端及び他端が接続され、3S,3Lには
変流器CTT,CTRの2次側の一端及び他端が接続される。
PCVは電圧,電流量から三相電力を+,−端に得る。
FIG. 2 shows another embodiment of the present invention, in which the load circuit is omitted and the same parts are designated by the same reference numerals.
In Fig. 2, a current circuit selection switching unit ISW is provided at the connection COT of the current transformers CT R , CT S , and CT T. This ISW switches the output of one of the three phases and outputs it to the terminal 1 of the single-phase power converter SCV.
Input to S, 1L. PT is a transformer that serves as a voltage detector, and the primary side of this transformer PT is connected to the output terminal of the power supply device PWR. The secondary side of the transformer PT is the terminal P1, of the three-phase power converter PCV.
Connected to P2 and P3. The current transformer C is connected to the PCS current input terminals 1S and 1L.
T R, one end and the other end of the secondary side of the CT S is connected, 3S, current transformer CT T, one end and the other end of the secondary side of the CT R is connected to the 3L.
PCV obtains three-phase power at the + and-terminals from the voltage and current amount.

VSWは電圧検出相選択切替部で、VSWはPTの2次側に接続
され、三相のうち2相が選択されて出力電圧を得るもの
で、得られた電圧はSCVの端子P1,P2に入力される。SCV
は端子P1,P2と1S,1Lの電圧電流量から単相電力を得る。
得られた三相と単相電力は切替器SWを介して電力計測器
PWMに接続される。
VSW is a voltage detection phase selection switching unit, VSW is connected to the secondary side of PT, and two of the three phases are selected to obtain the output voltage. The obtained voltage is applied to SCV terminals P1 and P2. Is entered. SCV
Obtains single-phase power from the amount of voltage and current at terminals P1, P2 and 1S, 1L.
The obtained three-phase and single-phase power is supplied to the power meter via the switch SW.
Connected to PWM.

上記実施例を使用すると1つの計測器で単相三相の電力
等が電源側出力端で計測できる。
Using the above-described embodiment, single-phase / three-phase power and the like can be measured at the output end on the power source side with one measuring instrument.

H.発明の効果 以上述べたように、この発明によれば、第1発明では三
相3線式回路網における負荷電気量の計測が電源側出力
端で行うことができる。第2発明では第1発明の効果の
他に、1つの計測器で単相、三相の電気量が計測でき
る。
H. Effects of the Invention As described above, according to the present invention, the load electric quantity in the three-phase three-wire circuit network can be measured at the output end on the power source side in the first invention. In the second invention, in addition to the effects of the first invention, single-phase and three-phase electricity quantities can be measured with one measuring instrument.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す等価回路図、第2図
はこの発明の他の実施例を示す回路構成図、第3図は三
相3線式回路網を示す概略構成図、第4図は第3図の等
価回路図である。 PWR…電源装置、CTR,CTS,CTT…変流器、COT…接続
部、ISW…電流回路選択切替部、PT…変圧器、VSW…電圧
検出相選択切替部、PCV…三相用電力変換器、SCV…単相
用電力変換器、PWM…計測器。
FIG. 1 is an equivalent circuit diagram showing one embodiment of the present invention, FIG. 2 is a circuit configuration diagram showing another embodiment of the present invention, and FIG. 3 is a schematic configuration diagram showing a three-phase three-wire network. FIG. 4 is an equivalent circuit diagram of FIG. PWR ... power supply, CT R, CT S, CT T ... current transformer, COT ... connecting portion, ISW ... current circuit selecting switch unit, PT ... transformer, VSW ... voltage detection phase selection switching unit, for PCV ... three-phase Power converter, SCV ... Single-phase power converter, PWM ... Measuring instrument.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】三相3線式回路網において、電源側出力端
の各相にそれぞれ電流検出器を設け、各相の電流検出器
の出力電流を加算し、その加算出力が零となるような接
続部を設けたことを特徴とする交流電源装置の負荷電気
量計測回路。
1. In a three-phase three-wire circuit network, a current detector is provided for each phase of a power supply side output terminal, and the output currents of the current detectors of the respective phases are added so that the added output becomes zero. A circuit for measuring the amount of load electricity of an AC power supply device, which is provided with various connecting portions.
【請求項2】三相3線式回路網において、電源側出力端
の各相にそれぞれ電流検出器を設け、各相の電流検出器
の出力電流を加算し、その加算出力が零となるような接
続部を設け、その接続部に電流回路選択切替部を設け、
前記電源側出力端の各相間の電圧を検出する電圧検出器
を設け、この電圧検出器の出力と前記電流検出器の出力
が供給され、出力端に三相電力出力を得る三相用電力変
換器を設け、前記電圧検出器の出力のうち2相出力を得
る電圧検出相選択切替部を設け、この切替部の出力と前
記電流回路選択切替部からの2相の出力とが供給され、
出力端に単相電力出力を得る単相用電力変換器を設け、
この単相用電力変換器と三相用電力変換器の出力を切替
回路を介して計測器に供給したことを特徴とする交流電
源装置の負荷電気量計測回路。
2. In a three-phase three-wire circuit network, a current detector is provided for each phase at the output end on the power supply side, and the output currents of the current detectors for each phase are added so that the added output becomes zero. , A current circuit selection switching unit is provided at the connection unit,
A voltage detector for detecting the voltage between each phase of the power source side output terminal is provided, and the output of this voltage detector and the output of the current detector are supplied, and a three-phase power conversion for obtaining a three-phase power output at the output terminal And a voltage detection phase selection switching unit that obtains a two-phase output from the outputs of the voltage detector, and the output of this switching unit and the two-phase output from the current circuit selection switching unit are supplied.
Provide a single-phase power converter that obtains single-phase power output at the output end,
A load electricity quantity measuring circuit for an AC power supply device, characterized in that the outputs of the single-phase power converter and the three-phase power converter are supplied to a measuring instrument via a switching circuit.
JP19689287A 1987-08-06 1987-08-06 Load electricity quantity measurement circuit of AC power supply Expired - Fee Related JPH0682135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19689287A JPH0682135B2 (en) 1987-08-06 1987-08-06 Load electricity quantity measurement circuit of AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19689287A JPH0682135B2 (en) 1987-08-06 1987-08-06 Load electricity quantity measurement circuit of AC power supply

Publications (2)

Publication Number Publication Date
JPS6439560A JPS6439560A (en) 1989-02-09
JPH0682135B2 true JPH0682135B2 (en) 1994-10-19

Family

ID=16365384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19689287A Expired - Fee Related JPH0682135B2 (en) 1987-08-06 1987-08-06 Load electricity quantity measurement circuit of AC power supply

Country Status (1)

Country Link
JP (1) JPH0682135B2 (en)

Also Published As

Publication number Publication date
JPS6439560A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
US6922643B2 (en) Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
US6185508B1 (en) Power meter for determining parameters of multi-phase power lines
US6173236B1 (en) Vector electricity meters and associated vector electricity metering methods
BRPI1006797B1 (en) monitoring system configured to determine at least one phase conductor line condition, method for determining at least one condition on each of a plurality of segments of a phase conductor line, and computer readable medium encoded with instructions executable by computer to determine at least one phase conductor line condition
KR20010072187A (en) Method and apparatus for deriving power system data from configurable source points
JP3456151B2 (en) Multi-circuit wattmeter and multi-circuit watt-hour meter
JPH0682135B2 (en) Load electricity quantity measurement circuit of AC power supply
US6566895B2 (en) Unbalanced three phase delta power measurement apparatus and method
JPH11287836A (en) Compound measuring device of power supply circuit
JP2003032895A (en) Method of measuring loss in tidal current controller, and its use
JP3448735B2 (en) Multi power meter
KR200410792Y1 (en) Electronic energy meter
CN201011520Y (en) Three-phase electric energy meter
JP4752006B2 (en) Three-phase three-wire load simulator
JP2004226094A (en) Electronic type watt-hour meter
US3293497A (en) Ground fault detector
JPH0720577U (en) Leakage current measuring device
KR101144278B1 (en) Terminal for metering out fit protection
Hart Characterising the power system at a load busbar by measurement
JP2005233879A (en) Single-phase three-wire system watt-hour meter equipped with line current monitoring function, and line current managing system thereof
JP2005043231A (en) Wattmeter
JPS6357739B2 (en)
JP5098654B2 (en) Energy meter
JPH0620145Y2 (en) Test and measurement equipment for instrument transformers
JP2017041988A (en) Measuring system, distribution board, and construction method for measuring system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees