JPH0680532B2 - Method of manufacturing thin film magnetic disk - Google Patents
Method of manufacturing thin film magnetic diskInfo
- Publication number
- JPH0680532B2 JPH0680532B2 JP60022255A JP2225585A JPH0680532B2 JP H0680532 B2 JPH0680532 B2 JP H0680532B2 JP 60022255 A JP60022255 A JP 60022255A JP 2225585 A JP2225585 A JP 2225585A JP H0680532 B2 JPH0680532 B2 JP H0680532B2
- Authority
- JP
- Japan
- Prior art keywords
- disk
- thin film
- slit
- substrate
- magnetic disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、コンピュータなどの周辺機器の一つである磁
気記録装置に用いられる薄膜磁気ディスクの製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film magnetic disk used in a magnetic recording device which is one of peripheral devices such as a computer.
従来の技術 近年、コンピュータの周辺機器として磁気記録装置の発
展はめざましく、より小型化,より高密度記録化が進ん
でいる。それに用いる磁気ディスクはγ−酸化鉄の塗布
型のものが大勢を占めているが、より高密度記録を求め
て現在では、薄膜化して行く傾向にある。塗布型ではよ
り薄膜化するのに特にハードディスクにおいては、スピ
ンコートなどの手法,あるいは塗布後研磨して薄膜化す
るなどの方法がとられている、また塗布型以外に真空技
術、たとえばスパッタ膜形成技術を用いて、コバルト−
テッケル素,コバルト−クロムなどの金属膜,γ−酸化
鉄,バリウムフェライトなどの酸化膜がさかんにおこな
われている。コバルト−クロム,バリウムフェライトは
垂直磁化膜として面内磁化膜のものより、より高密度な
媒体として最近さかんに検討されているものである。2. Description of the Related Art In recent years, a magnetic recording device has been remarkably developed as a peripheral device of a computer, and further miniaturization and higher density recording have been advanced. Most of the magnetic disks used for this purpose are those of γ-iron oxide coating type, but at the present time, there is a tendency toward thinning in order to achieve higher density recording. In order to make the coating type thinner, especially in the case of a hard disk, a method such as spin coating or a method such as coating and polishing to thin the film is used. In addition to the coating type, vacuum technology, for example, sputtered film formation Using technology, cobalt-
Metallic films such as Teckel element, cobalt-chromium, and oxide films such as γ-iron oxide and barium ferrite are widely used. Cobalt-chromium and barium ferrite have recently been studied extensively as a medium having a higher density than that of an in-plane magnetic film as a perpendicular magnetic film.
コバルトを主成分とする面内磁化膜も薄膜形成技術によ
り検討されており、より薄膜化できれば、塗布型の媒体
より、より高密度媒体として有望である。An in-plane magnetized film containing cobalt as a main component has also been studied by a thin film forming technique, and if it can be made thinner, it is more promising as a higher density medium than a coating type medium.
この媒体をハードディスクに応用する場合は、平滑度の
高い、たとえばアルミーマグネシウム合金からなるハー
ドディスク用円板,ガラス円板などの表面に真空蒸着,
スパッタ蒸着などの薄膜形成技術でつけられ実用化が検
討されている。また、フレキシブルディスクの場合は、
ポリエチレンテレフタレート,ポリアミド,ポリイミド
などの有機フィルム上に上記薄膜形成法で析出して作成
することが検討されている。When this medium is applied to a hard disk, it is vacuum-deposited on the surface of a disk with high smoothness, such as a disk for a hard disk made of an aluminum-magnesium alloy or a glass disk
It is applied by a thin film forming technology such as sputter deposition and is being studied for practical use. In the case of a flexible disk,
It is being studied to deposit it on an organic film such as polyethylene terephthalate, polyamide, or polyimide by the above-mentioned thin film forming method.
発明が解決しようとする問題点 ハードディスク,フレキシブルディスクなどの媒体は、
円板の中心を軸にして、面内方向に回転させて使用する
もので、記録再生は、円周方向におこなわれる。この場
合、媒体の磁化の磁化方向が円周方向に揃っておれば、
記録時の磁化反転はより、スムースになり再生時の出力
も大となると共に雑音レベルも低下する。塗布膜におい
ては、塗布した膜が固化するまえに、回転磁場中に媒体
を置いて磁化方向を円周方向に揃えるなどの手段をとっ
ている(たとえば特公昭53−62505)。しかし真空蒸
着,スパッタ蒸着などの薄膜形成技術を用いて上記ディ
スクを作成する場合にも円周方向に磁化容易軸を持つよ
うに磁化させて膜形成することが必要である。Problems to be Solved by the Invention Media such as hard disks and flexible disks are
It is used by rotating it in the in-plane direction around the center of the disk, and recording / reproducing is performed in the circumferential direction. In this case, if the magnetization directions of the medium are aligned in the circumferential direction,
The magnetization reversal during recording becomes smoother, the output during reproduction becomes large, and the noise level also decreases. Regarding the coating film, before the coating film solidifies, a medium is placed in a rotating magnetic field so that the magnetization direction is aligned in the circumferential direction (for example, JP-B-53-62505). However, even when the above-mentioned disk is produced by using a thin film forming technique such as vacuum evaporation or sputter evaporation, it is necessary to form the film by magnetizing so as to have an easy axis of magnetization in the circumferential direction.
問題点を解決するための手段 真空蒸着,スパッタ蒸着などで磁性膜を形成する場合、
膜形成時に、磁界がある方向に印加されているとその方
向に膜の容易軸が、直角方向に固難軸ができることは知
られている。この現象は軟磁性膜ではより容易になり、
外部より磁界を設けなくても容易軸,困難軸ができる。Means for solving the problems When forming a magnetic film by vacuum vapor deposition, sputter vapor deposition, etc.,
It is known that when a magnetic field is applied in a certain direction during film formation, an easy axis of the film can be formed in that direction and a hard axis can be formed in a direction at right angles. This phenomenon becomes easier with soft magnetic films,
Easy axis and difficult axis can be created without external magnetic field.
しかし磁気記録媒体として使用する保磁力の大きい磁性
膜では外部より磁界を印加しないと上記の様な異方性は
つくりにくい、またディスクにする場合の様に、円周方
向に揃えたい場合は特にそうである。そこで本発明にお
いては、かかる点を鑑みて、着膜時に、 (i) 基板が円板であれば、その中心を軸として回転
させ、半径方向に長いスリットを通して着膜する。この
時スリット近くに基板面内の半径方向と直角方向に永久
磁石で直流磁界を印加しておく。However, a magnetic film with a large coercive force used as a magnetic recording medium is difficult to produce the above anisotropy unless a magnetic field is applied from the outside, and especially when it is desired to align it in the circumferential direction such as a disk. That's right. Therefore, in the present invention, in view of the above point, (i) if the substrate is a disk, it is rotated about its center as an axis and is deposited through a slit that is long in the radial direction. At this time, a DC magnetic field is applied in the vicinity of the slit in the direction perpendicular to the radial direction in the substrate surface with a permanent magnet.
(ii) 基板がテープ状のものでその上に円状の膜を形
成する場合は、回転円板にスリットを設け、スリットの
長手方向が半径方向になる様にして回転させる。この
時、スリットの長手方向に直角に永久磁石で直流磁界を
印加する。(Ii) When the substrate is tape-shaped and a circular film is formed on the tape-shaped substrate, a slit is provided on the rotary disc, and the slit is rotated so that the longitudinal direction of the slit is the radial direction. At this time, a DC magnetic field is applied by a permanent magnet at right angles to the longitudinal direction of the slit.
この様にして常に膜の容易軸方向がディスクの半径方向
に直角な方向になる様にして膜形成することにより磁化
方向を円周方向に揃える。In this way, the magnetization direction is aligned in the circumferential direction by always forming the film so that the easy axis direction of the film is perpendicular to the radial direction of the disk.
作 用 この技術的手段による作用は次の様になる。Working The operation of this technical means is as follows.
金属磁性膜よりなる面内磁化のディスクを作成する場
合、本発明の手段により膜形成をすれば、磁性膜の磁化
容易軸は常にディスク円板の半径方向に直角な、すなわ
ち円周の方向に向いており、γ−酸化鉄の塗布型で円周
方向に針状γ−酸化鉄を揃えたのと同等になる。したが
って、記録再生時の磁化反転は容易になり出力,雑音−
出力比もよくなる。When a disk with in-plane magnetization composed of a metal magnetic film is formed by the means of the present invention, the easy axis of magnetization of the magnetic film is always perpendicular to the radial direction of the disk disc, that is, in the circumferential direction. It is the same as the case where the needle-shaped γ-iron oxide is aligned in the circumferential direction with the γ-iron oxide coating type. Therefore, the magnetization reversal at the time of recording and reproduction becomes easy, and the output and noise
The output ratio also improves.
実施例 以下本発明を実施例により具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples.
(実施例1) 真空蒸着技術でCoを主成分とするCo−Ni−Pの蒸着をお
こない円板状基板の上に幅5mm,長さ90mmのスリットを介
して着膜した。このときスリットの中心が着膜する基板
の中心になる様にし、基板を面内で回転させた。回転速
度は1回転15秒とした。スリットの幅方向には、第1図
に示す如き位置に永久磁石を設け両側がそれぞれN極,S
極になる様にしてある。スリットに設けた永久磁石の極
性は回転中心に対して対称にしてある、これは常に回転
方向に対し同じになる様にするためである。なお中心部
は磁化方向が乱れるが、この部分の基板は機械的に打抜
いて除去するため不要である。1は基板を回転させるモ
ータ、2はその伝達軸、3は基板、4はスリット9が設
けてあるシャッタで、8,8′はスリットの両側に設けて
ある永久磁石で、本実施例では500エルステッドのアル
ニコ磁石を用いた。5はスリット9つきシャッタ4の支
柱、6はCo−Ni−Pの蒸発源、7は真空槽である。(Example 1) Co-Ni-P containing Co as a main component was vapor-deposited by a vacuum vapor deposition technique, and was deposited on a disc-shaped substrate through a slit having a width of 5 mm and a length of 90 mm. At this time, the center of the slit was made to be the center of the substrate on which the film was deposited, and the substrate was rotated in the plane. The rotation speed was 15 seconds per rotation. In the width direction of the slit, permanent magnets are provided at the positions shown in FIG.
It's a pole. The polarities of the permanent magnets provided in the slits are symmetrical with respect to the center of rotation, so that they are always the same in the direction of rotation. Although the magnetization direction is disturbed in the central portion, the substrate in this portion is mechanically punched and removed, so that it is unnecessary. Reference numeral 1 is a motor for rotating a substrate, 2 is a transmission shaft thereof, 3 is a substrate, 4 is a shutter provided with a slit 9, 8 and 8'are permanent magnets provided on both sides of the slit, and in this embodiment, 500. An Oersted Alnico magnet was used. 5 is a pillar of the shutter 4 with a slit 9, 6 is an evaporation source of Co-Ni-P, and 7 is a vacuum chamber.
この方法で1000オングストロームの上記磁性膜を形成し
た。ディスクの数ケ所から直径10mmの円板を打抜き、デ
ィスクの半径方向とそれに直角な円周方向のトルク曲線
を測定した。その結果円周方向が常に容易軸方向になっ
ていた。By this method, the above magnetic film having a thickness of 1000 angstrom was formed. Discs with a diameter of 10 mm were punched out from several places on the disc, and the torque curves in the radial direction of the disc and the circumferential direction perpendicular thereto were measured. As a result, the circumferential direction was always the easy axis direction.
(実施例2) 平行平板型マグネトロンスパッタを用い、基板の前に実
施例1と基本的に同じ構成のスリット、永久磁石を設け
たシャッタを設置した、本実施例では基板を回転させた
がシャッタを基板の軸と同軸にして回転し基板を固定し
ても問題ない。第2図に本発明の一実施例を示した。10
は基板を回転するモータ、11はその伝達軸、12は基板ホ
ルダー、13は基板、14はスリットと永久磁石のついたシ
ャッタ、15はシャッタの支柱、16はCo−Ni−Pのターゲ
ット、17はスパッタ用マグネットである。(Example 2) Parallel plate magnetron sputtering was used, and a shutter having a slit and a permanent magnet having basically the same configuration as in Example 1 was installed in front of the substrate. In this example, the substrate was rotated, but the shutter was used. There is no problem even if the substrate is fixed by rotating it so that it is coaxial with the substrate axis. FIG. 2 shows an embodiment of the present invention. Ten
Is a motor for rotating the substrate, 11 is a transmission shaft of the substrate, 12 is a substrate holder, 13 is a substrate, 14 is a shutter with a slit and a permanent magnet, 15 is a pillar of the shutter, 16 is a target of Co-Ni-P, 17 Is a magnet for sputtering.
基板の回転を15秒/回とし、5×10-2Torrのアルゴン圧
中、350Watt,ターゲットサイズφ90mmで、RFスパッタに
て膜形成をおこない1000オングストロームの厚みとし
た。実施例1と同様な方法で基板の数ケ所の半径方向と
円周方向のトルク曲線を調べた結果実施例と同様に円周
方向が容易軸方向であった。The rotation of the substrate was set to 15 seconds / rotation, 350 Watt, a target size of φ90 mm, a film was formed by RF sputtering in an argon pressure of 5 × 10 -2 Torr, and the thickness was set to 1000 Å. As a result of examining torque curves in several radial and circumferential directions of the substrate in the same manner as in Example 1, the circumferential direction was the easy axis direction as in Example 1.
発明の効果 以上述べて来たように、本発明の方法によれば、真空蒸
着,スパッタ蒸着などの膜形成技術によっても、円周方
向に容易軸を持った磁気ディスク形成でき、さらに、薄
膜化が容易であるため高密度磁気記録媒体を得るのに非
常に有用である。EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a magnetic disk having an easy axis in the circumferential direction can be formed by a film forming technique such as vacuum evaporation or sputter evaporation. It is very useful for obtaining a high density magnetic recording medium because it is easy.
【図面の簡単な説明】 第1図は、本発明の製造方法の一実施例を真空蒸着法に
より示す図、第2図は同じくスパッタ蒸着法を用いた実
施例を示す図である。 3……基板、4……スリット,永久磁石つきシャッタ、
8,8′……永久磁石、9……スリット、12……基板、14
……スリット,永久磁石つきシャッタ、16……ターゲッ
ト、17……スパッタ装置のマグネット。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of a manufacturing method of the present invention by a vacuum vapor deposition method, and FIG. 2 is a diagram showing an embodiment similarly using a sputter vapor deposition method. 3 ... substrate, 4 ... slit, shutter with permanent magnet,
8,8 '... Permanent magnet, 9 ... Slit, 12 ... Substrate, 14
…… Slits, shutters with permanent magnets, 16 …… targets, 17 …… sputter magnets.
Claims (2)
基板面上に円の中心を軸とし円周方向に磁化容易軸を設
けた薄膜磁気ディスクの製造方法において、前記円板状
基板の中心から半径方向にスリット状の隙間を形成し、
しかもスリットの幅方向の一方がS極、他方がN極とな
るようそれぞれ永久磁石を固定して設けたマスクを蒸発
源側に前記円板状基板と平行に接近して置き、前記円板
状基板の中心を軸として回転させた状態で、磁性薄膜を
着膜形成してなることを特徴とする薄膜磁気ディスクの
製造方法。1. A method of manufacturing a thin film magnetic disk in which an axis of easy magnetization is provided in a circumferential direction on the surface of a disk-shaped substrate by vacuum vapor deposition or sputtering, the method comprising: Form a slit-shaped gap in the radial direction,
Moreover, a mask provided with fixed permanent magnets so that one side of the slit in the width direction has the S pole and the other side has the N pole is placed on the evaporation source side in parallel and close to the disk-shaped substrate, A method of manufacturing a thin-film magnetic disk, comprising forming a magnetic thin film while rotating the substrate about its center.
は、円板状基板上に着膜する磁性薄膜を十分磁化する強
さの磁化力をもってなることを特徴とする特許請求の範
囲第1項記載の薄膜磁気ディスクの製造方法。2. The permanent magnets fixed on both sides of the slit-like gap have a magnetizing force of sufficient strength to magnetize the magnetic thin film deposited on the disk-shaped substrate. A method of manufacturing a thin film magnetic disk according to the item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60022255A JPH0680532B2 (en) | 1985-02-07 | 1985-02-07 | Method of manufacturing thin film magnetic disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60022255A JPH0680532B2 (en) | 1985-02-07 | 1985-02-07 | Method of manufacturing thin film magnetic disk |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61182633A JPS61182633A (en) | 1986-08-15 |
JPH0680532B2 true JPH0680532B2 (en) | 1994-10-12 |
Family
ID=12077666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60022255A Expired - Lifetime JPH0680532B2 (en) | 1985-02-07 | 1985-02-07 | Method of manufacturing thin film magnetic disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0680532B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58133636A (en) * | 1982-02-02 | 1983-08-09 | Matsushita Electric Ind Co Ltd | Manufacture for magnetic recording medium |
-
1985
- 1985-02-07 JP JP60022255A patent/JPH0680532B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61182633A (en) | 1986-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kadokura et al. | Deposition of Co-Cr films for perpendicular magnetic recording by improved opposing targets sputtering | |
JP2001167420A (en) | Magnetic recording medium and its manufacturing method | |
JPS6029956A (en) | Production of photomagnetic recording medium | |
JPH0680532B2 (en) | Method of manufacturing thin film magnetic disk | |
JP2001256630A (en) | Magnetic recording medium and magnetic recording reproducing device | |
JPH0473212B2 (en) | ||
JPS61222024A (en) | Magnetic disk | |
JPS6255207B2 (en) | ||
JPS6035354A (en) | Photomagnetic recording medium | |
JP2738733B2 (en) | Magnetic film | |
JPH05101385A (en) | Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction | |
JP2817870B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JPS62271225A (en) | Method for forming magnetic thin film | |
JPS63251934A (en) | Production of magnetic recording medium | |
JPH0969459A (en) | Manufacture of magnetic recording medium | |
JPH04248115A (en) | Magnetic recording medium and its production | |
JPH0512765B2 (en) | ||
JPS59157830A (en) | Magnetic recording medium | |
JP2001216635A (en) | Method for manufacturing magnetic disk | |
JPS6260119A (en) | Magnetic recording medium and its production | |
JPS63244314A (en) | Production of magnetic disk | |
JPH0799578B2 (en) | Method of manufacturing magnetic recording medium | |
JPS5883335A (en) | Manufacture of metallic thin film type discoid magnetic recording medium | |
JPH0550051B2 (en) | ||
JPH04218668A (en) | Magnetron sputtering device |