JPH0550051B2 - - Google Patents

Info

Publication number
JPH0550051B2
JPH0550051B2 JP59171243A JP17124384A JPH0550051B2 JP H0550051 B2 JPH0550051 B2 JP H0550051B2 JP 59171243 A JP59171243 A JP 59171243A JP 17124384 A JP17124384 A JP 17124384A JP H0550051 B2 JPH0550051 B2 JP H0550051B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
orientation
alternating current
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59171243A
Other languages
Japanese (ja)
Other versions
JPS6150217A (en
Inventor
Kenji Katori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17124384A priority Critical patent/JPS6150217A/en
Publication of JPS6150217A publication Critical patent/JPS6150217A/en
Publication of JPH0550051B2 publication Critical patent/JPH0550051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、記録媒体磁性面に対して垂直方向の
残留磁化を用いて信号記録を行なういわゆる垂直
磁化記録方式において使用される磁気記録媒体
(垂直磁化記録媒体)の製造方法に関するもので
あり、さらに詳細には、この種の磁気記録媒体を
得るための磁場配向処理方法の改良に関するもの
である。 〔従来の技術〕 従来、例えばコンピユータ等の記憶媒体やオー
デイオテープレコーダ、ビデオテープレコーダ等
の記録媒体として使用される磁気記録媒体におい
ては、一般に基板上に被着形成される磁気記録層
に対して水平方向の磁化(面内方向磁化)を行な
つてその記録を行なつている。 ところが、この面内方向磁化による記録の場
合、記録密度が高まるにつれ媒体内の反磁界が増
して残留磁束密度が減衰し、再生出力が減少する
という欠点を有している。 そこでさらに従来、磁気記録媒体の記録層の厚
さ方向の磁化により記録を行なう垂直磁化記録方
式が提案されており、この垂直磁化記録方式によ
れば記録密度が高密度になるにしたがい減磁界が
小さくなることから、特に高密度記録、短波長記
録において上述した面内方向磁化による記録より
有利であることが知られている。 ところで、この垂直磁化記録方式に使用される
磁気記録媒体に必要な特性としては、磁気記録層
面に対し垂直な方向に磁気異方性を有することが
挙げられる。したがつて、通常は垂直方向に磁化
容易軸を出させるために、Co−Cr合金等の強磁
性金属をスパツタリング法や蒸着法等により被着
して生成された薄膜を記録層とするものが検討さ
れている。しかしながら、スパツタリング法や蒸
着法によつて垂直磁化記録媒体を製造するのは作
成工程に制約がありどうしても製造原価が高くな
り実用上好ましくないばかりか、耐久性や走行性
等の点でも問題が多い。 一方、塗布型の磁気記録媒体において、磁性塗
膜面に垂直方向に磁化容易軸を並べるには、例え
ばγ−Fe2O3などの針状磁性粒子のような形状磁
気異方性によつて抗磁力Hcを生じさせている粒
子の場合には、その磁性粒子を膜面に対して垂直
に並ぶようにしなければならないし、また、バリ
ウムフエライト等のように、形状ではなく結晶磁
気異方性によつて抗磁力Hcを生じさせている磁
性粒子の場合には、その異方性が磁性塗膜面に垂
直に向くようにしなければならない。そのために
は、上記磁性塗膜面に対して垂直方向に磁場を印
加する必要があるが、従来法において用いられて
いる磁場配向処理、例えば磁性塗膜の上下方向に
直流磁場を印加することにより磁性粒子を垂直に
配向した場合には、磁気凝集のためにその塗膜面
が印加磁場方向に立ち上がる現象が生じ、表面が
荒れてその表面性が著しく劣化してしまう。この
ように著しい表面性の劣化が生じると、磁気ヘツ
ドとの間隔がばらついて再生出力に大きく影響
し、特に短波長領域で用いる垂直磁化記録媒体と
して使用できなくなる。 そこで本願出願人は、先に特開昭57−205827号
明細書において、配向方向と直角方向に交流磁場
を印加して配向処理をすることを特徴とする磁気
記録媒体の製造方法を提案した。このように磁性
粒子の配向方向と直角方向に交流磁場を印加して
配向処理を施すことにより、表面性が劣化すると
いう現象が生じない実用上極めて有利な垂直磁化
記録媒体が得られることが分かつた。 しかしながら、上述のように単に交流磁場を印
加するという方法では、特に磁気デイスク等のよ
うに幅広の媒体を作製する場合等に、配向性が不
足し垂直方向の角形比を充分に確保することが難
かしい。 〔発明が解決しようとする問題点〕 そこで本発明は、表面性と配向性の両者を共に
改善することが可能で、垂直磁化記録方式用とし
て優れた特性を有する垂直磁化記録媒体を製造す
ることが可能な磁気記録媒体の製造方法を提供す
ることを目的とする。 〔問題点を解決するための手段〕 すなわち、本発明に係る磁気記録媒体の製造方
法は、配向方向と直交する面内で交流磁界発生装
置または磁性塗膜が塗布形成された支持体を回転
させ、前記磁性塗膜に対して配向方向と直交する
方向に交流回転磁場を印加して配向処理を施すこ
とにより垂直磁化記録媒体を得ることを特徴とす
るものであつて、交流磁場を回転させながら印加
するか、あるいは交流磁場中で磁性塗膜面を回転
させることにより表面性及び配向性に優れた磁気
記録媒体を得ようとするものである。 本発明に係る方法は、塗布型媒体のいずれにも
適用できるものであつて、テープ、シートなどの
非磁性支持体上に塗布される磁性粒子は何ら限定
されるものではなく、通常塗布型の磁気記録媒体
に使用される磁性粒子であれば何れも使用するこ
とができる。使用できる粒子としては、例えばγ
−Fe2O3、Fe3O4、γ−Fe2O3とFe3O4との中間の
酸化状態の酸化鉄、Co含有γ−Fe2O3、Co含有
Fe3O4、Co含有のγ−Fe2O3とFe3O4との中間の
酸化状態の酸化鉄、CrO2、CrO2に1種またはそ
れ以上の金属元素、例えばTe、Sb、Fe、Biなど
を含有させた酸化鉄、バリウムフエライト、Fe、
Co、Niなどの金属、Fe−Co、Fe−Ni、Fe−Co
−Ni、Fe−Co−B、Fe−Co−Cr−B、Mn−
Bi、Mn−Al、Fe−Co−Vなどの合金、窒化鉄
などが挙げられる。 前述したような磁性粒子を含有する磁性塗料を
常法に従つて非磁性支持体上に塗布した後、その
塗膜が未だ乾燥してなく流動しうる状態のとき
に、交流磁場を回転しながら印加して垂直配向処
理を行なう。この交流磁場の方向は、配向方向に
対して常に直交する方向となるように印加され
る。なお、磁場印加方向が配向方向に対して直角
といつても、実用上ある程度の方向のずれは許容
され、かかる方向のずれもここでいう直角方向に
包含されるものと解釈すべきことは当然である。 上述のような垂直配向処理の具体的手法として
は、例えば第1図に示すような方法が考えられ
る。この第1図は、垂直磁化記録用磁気デイスク
の作製に適用されるものであつて、デイスク1の
磁性塗膜面1aにおける磁性粒子の配向方向(図
中、矢印X方向)に対して直交する方向(図中、
矢印Y方向)に一対の交流磁場発生装置2,3を
対向配置し、これら装置2,3間に矢印Y方向の
交流磁場を発生させるとともに、上記デイスク1
をモータ4によつて矢印W方向に回転駆動する。
あるいは、上記交流磁場発生装置2,3を上記デ
イスク1の周縁に沿つて回転させてもよい。 上記交流磁場を発生させるには、上記交流磁場
発生装置2,3として例えばソレノイド交流磁石
などの交流磁場発生装置を用いればよい。本発明
で使用されるソレノイド交流磁石はその交流磁界
が周波数50Hzで0から約5KOeまでの範囲で可変
できるものである。なお、その周波数は約40Hz以
上であるのが好ましい。また、印加する磁場の強
さは、使用する磁性粒子の抗磁力Hcの近傍であ
るのが好ましく、特に抗磁力Hc以下であること
が好ましい。さらに、磁場印加時間は、約100m
sec以上であることが好ましい。 また、使用するソレノイド交流磁石などの交流
磁場発生装置は単数個であつても、複数個であつ
てもよいが、いずれの場合にもその交流磁場発生
装置は配向方向に対して直交する方向に交流磁場
を印加できるように配置する必要がある。 このように、磁性塗膜面の磁性粒子配向方向に
対して直交する方向に交流磁場を印加し、これを
回転することにより、上記磁性粒子が安定な姿勢
である交流磁場に対してほぼ90°の向きに留まつ
て、上記磁性塗膜面に対して垂直に配向され、厚
み方向に磁気異方性を有する垂直磁化記録媒体が
得られる。 ところで、通常は磁場配向処理を行なつた後に
上記磁性塗膜を乾燥して硬化するが、本発明にお
いては、この乾燥工程も上述の交流回転磁場中で
行なうことが好ましい。これは、厚み方向に配向
していた磁性粒子が乾燥時の塗膜厚の減少に伴な
つて倒されるのを防止するためで、これによつて
配向性をより一層確保することができる。 また、本発明はスピンコータ等に応用すると好
適で、例えばスピンコータの回転テーブルの両側
に前述の交流磁場印加装置を配置することによ
り、磁性塗料のコーテイングから磁場配向、乾燥
までを一貫したシステムで行なうことができる。 〔作用〕 以上述べたように、配向方向と直交する方向の
交流回転磁場中で磁場配向処理を施すことによ
り、表面性を荒らすことなく磁性粒子が磁性塗膜
面の厚み方向に配向される。 第2図は、交流回転磁場配向処理を施した時と
直流磁場配向処理を施した時の表面反射率
(GLOSS)と垂直方向の角形比Rsの関係を示す
ものであつて、この第2図より、直流磁場配向処
理を施した場合には角形比Rsの上昇に伴ない表
面反射率が低下し、したがつて表面性が悪くなる
のに対して、交流回転磁場配向処理を施した場合
には表面反射率の低下はほとんど見られないこと
が分かる。 実施例 1 以下、実施例により本発明を具体的に説明する
が、本発明がこの実施例に限定されるものでない
ことは言うまでもない。 実施例 Co被着型γ−Fe2O3(抗磁力Hc700Oe)
100重量部 塩化ビニル−酢酸ビニル共重合体(米国UCC社
製、商品名VAGH) 20重量部 分散剤(商品名プライサーフ) 5重量部 シクロヘキサノン・メチルエチルケトン・トルエ
ン混合溶剤 180重量部 上記組成物をボールミルにて48時間混練して磁
性塗料を調製した後、ポリエチレンテレフタレー
トフイルム上にブレードコータを用いて塗布し、
その塗膜が乾燥しない間に交流回転磁場配向処理
を施しサンプルテープを得た。 なお、上記交流回転磁場配向処理の条件は、ソ
レノイド交流磁石50Hz、有効磁場400Oe、回転数
60rpmであつた。 比較例 先の実施例1と同様の磁性塗料を塗布したポリ
エチレンテレフタレートフイルムに対し、配向処
理を施さないでサンプルテープを作成した(比較
例1)。 さらに、同様に磁場の強さを変えて直流磁場配
向処理を施しサンプルテープを作成した(比較例
2〜比較例4)。 さらに、第3図に示すように先の実施例1と同
様の磁性塗料を塗布したポリエチレンテレフタレ
ートフイルム5にソレノイド交流磁石6を面内一
方向に配置し、あるいは第4図に示すようにソレ
ノイド交流磁石7を面内二方向に配置し、交流磁
場配向処理を施してサンプルテープを作成した
(比較例5及び比較例6)。 これら実施例及び比較例で得られた各サンプル
テープについて、表面反射率(GLOSS)及び垂
直方向角形比Rsを測定した。結果を次表に示す。
[Industrial Field of Application] The present invention relates to the production of magnetic recording media (perpendicular magnetization recording media) used in the so-called perpendicular magnetization recording method, in which signals are recorded using residual magnetization perpendicular to the magnetic surface of the recording medium. The present invention relates to a method, and more particularly, to an improvement in a magnetic field alignment treatment method for obtaining this type of magnetic recording medium. [Prior Art] Conventionally, in magnetic recording media used as storage media for computers, audio tape recorders, video tape recorders, etc., the magnetic recording layer is generally formed on a substrate. Recording is performed by performing magnetization in the horizontal direction (in-plane direction magnetization). However, recording using in-plane magnetization has the drawback that as the recording density increases, the demagnetizing field within the medium increases, the residual magnetic flux density attenuates, and the reproduction output decreases. Therefore, a perpendicular magnetization recording method has been proposed in which recording is performed by magnetization in the thickness direction of the recording layer of a magnetic recording medium. According to this perpendicular magnetization recording method, as the recording density increases, the demagnetizing field decreases. It is known that it is more advantageous than the above-mentioned recording using in-plane direction magnetization, especially in high-density recording and short-wavelength recording, because it is smaller. Incidentally, a characteristic necessary for a magnetic recording medium used in this perpendicular magnetization recording method is that it has magnetic anisotropy in a direction perpendicular to the surface of the magnetic recording layer. Therefore, in order to make the axis of easy magnetization extend in the perpendicular direction, the recording layer is usually a thin film formed by depositing a ferromagnetic metal such as a Co-Cr alloy by sputtering or vapor deposition. It is being considered. However, manufacturing perpendicular magnetization recording media using the sputtering method or vapor deposition method has restrictions on the manufacturing process, which inevitably leads to high manufacturing costs, which is not desirable in practice, and also has many problems in terms of durability, runnability, etc. . On the other hand, in coating-type magnetic recording media, in order to align the axis of easy magnetization in the direction perpendicular to the magnetic coating surface, it is necessary to use the shape magnetic anisotropy of acicular magnetic particles such as γ-Fe 2 O 3 . In the case of particles that produce a coercive force Hc, the magnetic particles must be arranged perpendicular to the film surface, and, like barium ferrite, the crystal magnetic anisotropy rather than the shape In the case of magnetic particles that generate a coercive force Hc by , the anisotropy must be oriented perpendicular to the surface of the magnetic coating. To do this, it is necessary to apply a magnetic field perpendicularly to the magnetic coating surface, but by applying the magnetic field orientation treatment used in conventional methods, for example, applying a DC magnetic field in the vertical direction of the magnetic coating, When magnetic particles are oriented perpendicularly, a phenomenon occurs in which the coated film surface rises in the direction of the applied magnetic field due to magnetic aggregation, resulting in a roughened surface and significant deterioration of its surface properties. If such a significant deterioration in surface properties occurs, the distance from the magnetic head will vary, greatly affecting the reproduction output, and the medium cannot be used as a perpendicular magnetization recording medium, particularly in a short wavelength region. Therefore, the applicant of the present application previously proposed in Japanese Patent Application Laid-open No. 57-205827 a method for manufacturing a magnetic recording medium characterized in that alignment treatment is performed by applying an alternating magnetic field in a direction perpendicular to the alignment direction. It has been found that by performing orientation treatment by applying an alternating magnetic field in a direction perpendicular to the orientation direction of the magnetic particles, it is possible to obtain a perpendicular magnetization recording medium that is extremely advantageous in practice and does not cause the phenomenon of deterioration of surface properties. Ta. However, with the method of simply applying an alternating magnetic field as described above, the orientation is insufficient and it is difficult to ensure a sufficient squareness ratio in the vertical direction, especially when producing wide media such as magnetic disks. It's difficult. [Problems to be Solved by the Invention] Therefore, the present invention aims to manufacture a perpendicular magnetization recording medium that can improve both surface properties and orientation and has excellent characteristics for perpendicular magnetization recording systems. The purpose of the present invention is to provide a method for manufacturing a magnetic recording medium that enables the following. [Means for Solving the Problems] That is, the method for manufacturing a magnetic recording medium according to the present invention rotates an AC magnetic field generator or a support coated with a magnetic coating in a plane perpendicular to the orientation direction. , characterized in that a perpendicularly magnetized recording medium is obtained by applying an alternating current rotating magnetic field to the magnetic coating film in a direction perpendicular to the orientation direction to perform an orientation treatment, wherein the perpendicularly magnetized recording medium is obtained while rotating the alternating magnetic field. The objective is to obtain a magnetic recording medium with excellent surface properties and orientation by applying a magnetic field or by rotating the magnetic coating surface in an alternating current magnetic field. The method according to the present invention can be applied to any coated type media, and the magnetic particles coated on a non-magnetic support such as a tape or a sheet are not limited in any way. Any magnetic particles used in magnetic recording media can be used. Examples of particles that can be used include γ
−Fe 2 O 3 , Fe 3 O 4 , γ− Iron oxide in an oxidation state intermediate between Fe 2 O 3 and Fe 3 O 4 , containing Co γ−Fe 2 O 3 , containing Co
Fe 3 O 4 , Co-containing iron oxide in an oxidation state intermediate between γ-Fe 2 O 3 and Fe 3 O 4 , CrO 2 , CrO 2 with one or more metal elements such as Te, Sb, Fe , iron oxide containing Bi, barium ferrite, Fe,
Metals such as Co and Ni, Fe-Co, Fe-Ni, Fe-Co
-Ni, Fe-Co-B, Fe-Co-Cr-B, Mn-
Examples include alloys such as Bi, Mn-Al, Fe-Co-V, and iron nitride. After applying a magnetic paint containing magnetic particles as described above onto a non-magnetic support according to a conventional method, while the paint film is still in a flowable state and not yet dry, it is applied while rotating an alternating current magnetic field. The voltage is applied to perform vertical alignment processing. The direction of this alternating magnetic field is always applied perpendicular to the orientation direction. Note that even if the direction of magnetic field application is said to be perpendicular to the alignment direction, a certain degree of deviation in direction is allowed in practice, and it is natural that such deviation in direction should be interpreted as being included in the perpendicular direction here. It is. As a specific method for the above-mentioned vertical alignment process, for example, a method as shown in FIG. 1 can be considered. This figure 1 is applied to the production of a magnetic disk for perpendicular magnetization recording, and is orthogonal to the direction of orientation of magnetic particles on the magnetic coating surface 1a of the disk 1 (direction of arrow X in the figure). direction (in the figure,
A pair of alternating current magnetic field generators 2 and 3 are arranged facing each other in the direction of the arrow Y), and generate an alternating magnetic field in the direction of the arrow Y between these devices 2 and 3.
is rotated in the direction of arrow W by motor 4.
Alternatively, the AC magnetic field generators 2 and 3 may be rotated along the periphery of the disk 1. In order to generate the alternating current magnetic field, an alternating current magnetic field generating device such as a solenoid alternating current magnet may be used as the alternating current magnetic field generating devices 2 and 3. The solenoidal alternating current magnet used in the present invention has an alternating magnetic field that can be varied in the range from 0 to about 5 KOe at a frequency of 50 Hz. Note that the frequency is preferably about 40 Hz or higher. Further, the strength of the applied magnetic field is preferably close to the coercive force Hc of the magnetic particles used, and particularly preferably equal to or less than the coercive force Hc. Furthermore, the magnetic field application time is approximately 100 m.
It is preferable that it is sec or more. In addition, the AC magnetic field generator such as a solenoid AC magnet may be used in a single piece or in multiple pieces, but in either case, the AC magnetic field generator is placed in a direction perpendicular to the orientation direction. It must be placed so that an alternating magnetic field can be applied. In this way, by applying an alternating current magnetic field in a direction perpendicular to the orientation direction of the magnetic particles on the magnetic coating surface and rotating it, the above magnetic particles are kept in a stable posture by approximately 90 degrees with respect to the alternating magnetic field. A perpendicular magnetization recording medium which is oriented perpendicularly to the surface of the magnetic coating film and has magnetic anisotropy in the thickness direction is obtained. By the way, although the above-mentioned magnetic coating film is usually dried and cured after performing a magnetic field orientation treatment, in the present invention, it is preferable that this drying step is also carried out in the above-mentioned alternating current rotating magnetic field. This is to prevent the magnetic particles, which were oriented in the thickness direction, from falling over as the coating thickness decreases during drying, and thereby the orientation can be further ensured. Further, the present invention is suitable for application to a spin coater, etc. For example, by arranging the above-mentioned AC magnetic field application device on both sides of the rotary table of the spin coater, it is possible to perform everything from coating of magnetic paint to magnetic field orientation and drying in an integrated system. I can do it. [Operation] As described above, by performing magnetic field orientation treatment in an alternating current rotating magnetic field in a direction perpendicular to the orientation direction, the magnetic particles are oriented in the thickness direction of the magnetic coating surface without roughening the surface properties. Figure 2 shows the relationship between surface reflectance (GLOSS) and vertical squareness ratio Rs when subjected to alternating current rotating magnetic field alignment treatment and DC magnetic field alignment treatment. Therefore, when the direct current magnetic field orientation treatment is applied, the surface reflectance decreases as the squareness ratio Rs increases, and the surface quality deteriorates, whereas when the alternating current rotating magnetic field orientation treatment is performed, the surface reflectance decreases as the squareness ratio Rs increases. It can be seen that there is almost no decrease in surface reflectance. Example 1 The present invention will be specifically explained below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. Example Co-coated type γ-Fe 2 O 3 (coercive force Hc700Oe)
100 parts by weight Vinyl chloride-vinyl acetate copolymer (manufactured by UCC, USA, trade name VAGH) 20 parts by weight Dispersant (trade name Prysurf) 5 parts by weight Cyclohexanone/methyl ethyl ketone/toluene mixed solvent 180 parts by weight The above composition was milled into a ball mill. After preparing the magnetic paint by kneading it for 48 hours, it was applied onto polyethylene terephthalate film using a blade coater.
While the coating film was not dry, an alternating current rotating magnetic field orientation treatment was applied to obtain a sample tape. The conditions for the above AC rotating magnetic field alignment treatment are: solenoid AC magnet 50Hz, effective magnetic field 400Oe, rotation speed.
It was hot at 60 rpm. Comparative Example A sample tape was prepared from a polyethylene terephthalate film coated with the same magnetic paint as in Example 1 without being subjected to orientation treatment (Comparative Example 1). Furthermore, sample tapes were created by subjecting them to direct current magnetic field orientation treatment while changing the strength of the magnetic field (Comparative Examples 2 to 4). Furthermore, as shown in FIG. 3, a solenoid AC magnet 6 is arranged in one direction within the plane of the polyethylene terephthalate film 5 coated with the same magnetic paint as in Example 1, or as shown in FIG. Sample tapes were prepared by arranging magnets 7 in two in-plane directions and performing an alternating current magnetic field orientation treatment (Comparative Examples 5 and 6). Surface reflectance (GLOSS) and vertical squareness ratio Rs were measured for each sample tape obtained in these Examples and Comparative Examples. The results are shown in the table below.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上述の説明らも明らかなように、本発明におい
ては、配向方向に対して直交する方向の交流磁場
を回転しながら印加しているので、配向性、表面
性共に良好で、磁気ヘツドに対する当りや磁気特
性等に優れた垂直磁気記録媒体を製造することが
可能である。
As is clear from the above explanation, in the present invention, since an alternating current magnetic field in a direction perpendicular to the orientation direction is applied while rotating, both orientation and surface properties are good, and there is less contact with the magnetic head. It is possible to manufacture a perpendicular magnetic recording medium with excellent magnetic properties and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る垂直配向処理の具体的手
法の一例を示す概略的な斜視図である。第2図は
交流回転磁場配向処理を施したときの表面反射率
と垂直方向角形比Rsの関係を、直流磁場配向処
理を施したときのそれと比較して示す特性図であ
る。第3図は比較例における交流面内一方向磁場
配向処理の手法を示す模式的な平面図、第4図は
交流面内二方向磁場配向処理の手法を示す模式的
な平面図である。 1……磁気デイスク、2,3……交流磁場発生
装置。
FIG. 1 is a schematic perspective view showing an example of a specific method of vertical alignment processing according to the present invention. FIG. 2 is a characteristic diagram showing the relationship between the surface reflectance and the vertical squareness ratio Rs when subjected to an alternating current rotating magnetic field alignment treatment, in comparison with that when a direct current magnetic field alignment treatment is carried out. FIG. 3 is a schematic plan view showing a method of orientation treatment using a one-way magnetic field in an AC plane in a comparative example, and FIG. 4 is a schematic plan view showing a method of orientation treatment using a two-way magnetic field within an AC plane. 1... Magnetic disk, 2, 3... AC magnetic field generator.

Claims (1)

【特許請求の範囲】[Claims] 1 配向方向と直交する面内で交流磁界発生装置
または磁性塗膜が塗布形成された支持体を回転さ
せ、前記磁性塗膜に対して配向方向と直交する方
向に交流回転磁場を印加して配向処理を施すこと
により垂直磁化記録媒体を得ることを特徴とする
磁気記録媒体の製造方法。
1. Rotate an alternating current magnetic field generator or a support coated with a magnetic coating in a plane perpendicular to the orientation direction, and apply an alternating current rotating magnetic field to the magnetic coating in a direction perpendicular to the orientation direction to achieve orientation. 1. A method for producing a magnetic recording medium, the method comprising obtaining a perpendicularly magnetized recording medium through processing.
JP17124384A 1984-08-17 1984-08-17 Production of magnetic recording medium Granted JPS6150217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17124384A JPS6150217A (en) 1984-08-17 1984-08-17 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17124384A JPS6150217A (en) 1984-08-17 1984-08-17 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6150217A JPS6150217A (en) 1986-03-12
JPH0550051B2 true JPH0550051B2 (en) 1993-07-28

Family

ID=15919693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17124384A Granted JPS6150217A (en) 1984-08-17 1984-08-17 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6150217A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933819B2 (en) * 2005-09-29 2012-05-16 協立化学産業株式会社 Method for producing light reflecting or shielding material using one or both of magnetic field and electric field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205827A (en) * 1981-06-10 1982-12-17 Sony Corp Manufacture of magnetic recording medium
JPS58169335A (en) * 1982-03-31 1983-10-05 Toshiba Corp Manufacture of vertical magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205827A (en) * 1981-06-10 1982-12-17 Sony Corp Manufacture of magnetic recording medium
JPS58169335A (en) * 1982-03-31 1983-10-05 Toshiba Corp Manufacture of vertical magnetic recording medium

Also Published As

Publication number Publication date
JPS6150217A (en) 1986-03-12

Similar Documents

Publication Publication Date Title
Bate Magnetic recording materials since 1975
JPS58139337A (en) Magnetic recording medium
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPH0550051B2 (en)
WO1991016706A1 (en) Method of producing magnetic disks having signals
JPH0250531B2 (en)
JPH0576703B2 (en)
JP2561455B2 (en) Magnetic recording / reproducing device
JPS62277626A (en) Production of magnetic recording medium
JPH07105525A (en) Magnetic recording medium
JPS6387614A (en) Production of magnetic recording medium
JPH0766511B2 (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH0746417B2 (en) Magnetic recording medium
JPS58171717A (en) Magnetic recording medium
JPH0370854B2 (en)
JPH0312823A (en) Production of magnetic recording medium
JPH0760514B2 (en) Magnetic recording medium and manufacturing method thereof
JPS583294B2 (en) Manufacturing method for magnetic recording media
JPS63167423A (en) Orientation processing method for magnetic field
JPS5857628A (en) Flexible magnetic recording medium
JPH022219B2 (en)
JPS6080129A (en) Magnetic recording medium
JPS58199433A (en) Magnetic recording and reproducing plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees